CAPÍTULO II
DESCRIPCIÓN DE LAS OBRAS O ACTIVIDADES Y EN SU CASO, DE LOS PROGRAMAS O PLANES PARciaLES DE DESARROLLO
CONTENIDO

II. DESCRIPCIÓN DE LAS OBRAS O ACTIVIDADES Y, EN SU CASO, DE LOS PROGRAMAS O PLANES PARciaLES DE DESARROLLO.......................... 1

II.1 INFORMACIÓN GENERAL DEL PROYECTO .. 1
 II.1.1 Naturaleza del Proyecto ... 1
 II.1.2 Dimensiones del Proyecto ... 5
 II.1.2.1 Superficies útiles y por construir en Planta 8
 II.1.2.2 Superficies útiles y por construir en camino de acceso 15
 II.1.2.3 Superficies útiles y por construir de la línea de evacuación eléctrica y subestación de maniobra ... 17
 II.1.3 Antecedentes .. 24
 II.1.4 Justificación y objetivos ... 27
 II.1.4.1 Justificación general ... 27
 II.1.4.2 Justificación de Selección del Sitio ... 31
 II.1.4.3 Objetivo .. 37
 II.1.5 Ubicación física ... 38
 II.1.6 Inversión requerida ... 43
 II.1.7 Programa general de trabajo .. 44

II.2 CARACTERÍSTICAS PARTICULARES DEL PROYECTO 46

 II.2.1 Planta para el Aprovechamiento del Poder Calorífico de los Residuos Sólidos Urbanos ... 46
 II.2.1.1 Descripción general de obras y actividades 48
 II.2.1.1.1 Recepción y almacenamiento de residuos 48
 II.2.1.1.1 Recepción, pesaje y control de residuos 50
II.2.1.1.2 Plataforma de descarga de camiones .. 53
II.2.1.1.3 Almacenamiento y alimentación de residuos 57
II.2.1.2 Combustión y caldera de recuperación ... 64
 II.2.1.2.1 Horno de parrilla .. 66
 II.2.1.2.2 Caldera de recuperación ... 98
 II.2.1.2.3 Unidades de tratamiento térmico de residuos 111
II.2.1.3 Recuperación de energía .. 115
 II.2.1.3.1 Turbogenerador de vapor ... 118
 II.2.1.3.2 Desgasificador, bombas de agua de alimentación y otros elementos del ciclo .. 132
II.2.1.4 Justificación de los procesos y reactivos .. 141
 II.2.1.4.1 Conductos de combustión ... 141
 II.2.1.4.2 Tratamiento de los gases de combustión en seco (cal XEROSORP®) .. 142
 II.2.1.4.3 Suministro de reactivos .. 146
 II.2.1.4.4 Separación de partículas mediante filtro de mangas 148
 II.2.1.4.5 Reducción no catalítica selectiva SNCR 150
 II.2.1.4.6 Ventilador de tiro .. 154
 II.2.1.4.7 Medición de emisiones (CEMS) ... 154
 II.2.1.4.8 Chimenea ... 157
 II.2.1.4.9 Unidades de tratamiento de gases .. 158
 II.2.1.4.10 Sistema de análisis en continuo de emisiones 162
 II.2.1.4.11 Estimación de emisiones ... 164
 II.2.1.4.12 Tratamiento de residuos ... 175
 II.2.1.4.13 Descarga de economizadores .. 177
 II.2.1.4.14 Sistema de depuración de gases .. 177
II.2.1.1.6 Sistemas auxiliares ... 178
 II.2.1.1.6.1 Almacenamiento de aditivos sólidos 180
 II.2.1.1.6.2 Almacenamiento de adsorbente (carbón activo) 181
 II.2.1.1.6.3 Suministro de gas inerte .. 182
 II.2.1.1.6.4 Dispositivos de mantenimiento 183
II.2.1.1.7 Sistema eléctrico ... 186
 II.2.1.1.7.1 Sistema de distribución .. 186
 II.2.1.1.7.2 Sistema de auxiliares de media tensión 188
 II.2.1.1.7.3 Sistema eléctrico de baja tensión 188
 II.2.1.1.7.4 Variador de frecuencia (VSD) 197
II.2.1.1.8 Oficinas, estacionamientos, instalaciones, vialidades y otros 207
 II.2.1.1.8.1 Edificio de administración .. 209
 II.2.1.1.8.2 Estacionamientos .. 209
 II.2.1.1.8.3 Vialidades en el interior de la planta 209
 II.2.1.1.8.4 Áreas de reserva .. 212
 II.2.1.1.8.5 Área reservada para Escorias 212
 II.2.1.1.8.6 Foso de agua pluviales ... 213
 II.2.1.1.8.7 Tanques de agua .. 214
 II.2.1.1.8.8 Tanque diésel ... 215
 II.2.1.1.8.9 Planta de Tratamiento de Agua Desmineralizada 216
 II.2.1.1.8.10 Planta de Tratamiento de Aguas Residuales 218
 II.2.1.1.8.11 Sistema de aire comprimido 220
II.2.1.1.9 Sistema de control centralizado y niveles de automatización 226
 II.2.1.1.9.1 Arquitectura básica del sistema de control 226
II.2.1.1.10 Redes de sistema ... 231
 II.2.1.1.10.1 Área de trabajo del operador 233
 II.2.1.1.10.2 Redes de comunicación .. 235
II.2.1.2 Descripción de los servicios requeridos ... 237
 II.2.1.2.1 Conexión red de agua ... 237
 II.2.1.2.2 Conexión a cauce público y excedentes pluviales limpias 244
 II.2.1.2.3 Conexión telefónica ... 244
II.2.1.3 Vías de acceso al área donde se desarrollarán las obras o actividades ... 244
II.2.1.4 DESCRIPCIÓN DE OBRAS Y ACTIVIDADES PROVISIONALES Y ASOCIADAS... 246
 II.2.1.4.1 Terracerías ... 246
 II.2.1.4.2 Habilitación del terreno ... 246
 II.2.1.4.3 Urbanización y vialidades ... 248
 II.2.1.4.4 Cerca perimetral y puerta de acceso ... 249
 II.2.1.4.4.1 Cerca perimetral .. 249
 II.2.1.4.4.2 Puerta de acceso .. 250
II.2.1.5 PREPARACIÓN DEL SITIO Y CONSTRUCCIÓN 251
 II.2.1.5.1 Preparación del sitio .. 251
 II.2.1.5.1.1 Movimiento de Tierras y Obras Civiles Generales 251
 II.2.1.5.2 Construcción .. 252
 II.2.1.5.2.1 Especificaciones para el procedimiento constructivo de la cimentación ... 252
 II.2.1.5.2.2 Construcción y edificaciones ... 269
 II.2.1.5.2.3 Descripción de materiales del edificio 273
 II.2.1.5.2.4 Urbanización y Vialidades ... 274
II.2.2 Camino de acceso a la planta (y puente) ... 275
 II.2.2.1 Preparación del sitio y construcción para el camino de acceso y puente. .. 279
 II.2.2.1.1 Camino de acceso .. 279
II.2.2.1.2 Puente de acceso .. 287
II.2.3 Interconexión eléctrica .. 291
II.2.3.1 Descripción del proceso de construcción de la línea de evacuación, con el desglose de las estructuras de soporte ... 295
II.2.3.1.1 Construcción de la línea de evacuación .. 295
II.2.3.1.2 Construcción de subestación eléctrica de maniobra ... 323
II.2.4 Concepto Arquitectónico General ... 336
II.3 OPERACIÓN Y MANTENIMIENTO ... 341
II.3.1 Procedimientos de Operación .. 341
II.3.1.1 Control de entradas y salidas, vigilancia y circulación de vehículos 341
II.3.1.1.1 Vigilancia ... 350
II.3.1.1.2 Circulación de vehículos ... 351
II.3.1.1.3 Horario de recepción y aceptación de residuos ... 351
II.3.1.1.4 Tipología y origen de los camiones en el control de entrada 352
II.3.1.2 Procedimiento de descarga al foso ... 352
II.3.1.3 Gestión del foso .. 353
II.3.1.4 Alimentación de residuos .. 354
II.3.1.5 Cálculo del Poder Calorífico Inferior (PCI) .. 354
II.3.1.6 Operación de la planta de tratamiento térmico .. 355
II.3.1.6.1 Inspección y control de la planta ... 355
II.3.1.6.2 Sala de control .. 357
II.3.1.6.3 Equipos móviles de operación .. 357
II.3.1.7 Gestión de residuos, productos, subproductos y energía .. 357
II.3.1.7.1 Gestión de residuos: cenizas volantes y residuos de la depuración de gases 357
II.3.1.7.2 Gestión de productos: reactivos, combustibles y aditivos 358
II.3.1.7.3 Gestión de subproductos ... 359
II.3.1.7.4 Gestión de la energía generada y/o consumida .. 359
II.3.1.7.5 Gestión de otros residuos ... 360
II.3.2 Plan de mantenimiento y sustitución de equipos .. 360
 II.3.2.1 Mantenimiento con las instalaciones de la Planta parada (parcial o totalmente) .. 360
 II.3.2.2 Mantenimiento con las instalaciones de la Planta funcionando (parcial o totalmente) .. 361
II.3.2.3 Mantenimiento de los equipos electromecánicos ... 362
 II.3.2.3.1 Mantenimiento reglamentario y administrativo 362
 II.3.2.3.2 Mantenimiento preventivo y conservación .. 365
 II.3.2.3.3 Mantenimiento predictivo ... 367
 II.3.2.3.4 Mantenimiento correctivo ... 368
 II.3.2.3.5 Mantenimiento de equipos singulares ... 368
 II.3.2.3.6 Gran Mantenimiento ... 371
 II.3.2.3.7 Programa de limpieza ... 373
 II.3.2.3.8 Plan de sustitución (reposición) de equipos de la planta 373
II.4 DESMANTELAMIENTO Y ABANDONO DE LAS INSTALACIONES 391
II.5 REQUERIMIENTO DE PERSONAL E INSUMOS .. 391
 II.5.1 Requerimiento durante la construcción ... 391
 II.5.1.1 Personal .. 391
 II.5.1.2 Insumos .. 392
 II.5.1.2.1 Maquinaria y equipo empleado durante la construcción 392
 II.5.1.2.1.1 Maquinaria pesada .. 392
 II.5.1.2.1.2 Maquinaria semipesada ... 396
 II.5.1.2.1.3 Maquinaria ligera .. 400
 II.5.1.2.1.4 Vehículos de obra .. 401
 II.5.1.2.2 Requerimiento en la operación y mantenimiento .. 402
II.5.3 Personal .. 405
 II.5.3.1 Personal de servicios generales ... 405
 II.5.3.2 Personal de producción .. 405
 II.5.3.3 Personal de mantenimiento .. 407
 II.5.3.4 Descripción de los puestos de trabajo ... 410
II.5.4 Insumos .. 421
 II.5.4.1 Maquinaria ... 421
 II.5.4.2 Consumo de combustibles ... 422
 II.5.4.3 Consumibles ... 423
II.6 RESIDUOS ... 423
 II.6.1 Estimación del número de camiones de entrada/salida a la planta 423
 II.6.1.1 Entradas y salidas de residuos y materias primas a la planta 423
 II.6.1.2 Estimación del número de camiones de entrada/salida a la planta 424
 II.6.2 Sólidos .. 426
 II.6.2.1 Sistema de disposición final de escorias .. 426
 II.6.2.2 Sistema de disposición final de cenizas .. 430
 II.6.3 Aguas ... 432
 II.6.3.1 Planta de Tratamiento de Aguas Residuales 434
 II.6.3.2 Conexión a Cauce Público excedente Pluviales Limpias 434
 II.6.3.3 Efluentes generados .. 434
 II.6.4 Emisiones .. 437
 II.6.4.1 Asociadas a la planta ... 437
 II.6.4.1.1 Emisiones de CO₂ .. 437
 II.6.4.1.2 Emisiones de CH₄ ... 439
 II.6.4.1.3 Emisiones de N₂O .. 440
 II.6.4.1.4 Emisiones totales de CO₂ asociadas a la Planta 440
 II.6.4.2 Flujo neto de emisiones GEI asociados a la Planta 441
II.6.4.3 Emisiones de GEI asociadas al vertido de residuos.......................... 442

II.6.4.4 Balance de emisiones con aprovechamiento térmico de RSU y disposición en relleno sanitario... 443
ÍNDICE DE TABLAS

Tabla II-1. Superficies útiles y por construir de la planta .. 8
Tabla II-2. Superficies útiles y por construir del camino de acceso, incluyendo un puente .. 15
Tabla II-3. Superficies útiles y por construir de la línea de evacuación eléctrica y subestación de maniobra .. 17
Tabla II-4. Resumen de las superficies totales a ocupar por el desarrollo del proyecto .. 19
Tabla II-5. Cuadro con Coordenadas del Predio donde se proyecta la Planta 40
Tabla II-6. Coordenadas del eje del camino de acceso y puente al proyecto 41
Tabla II-7. Coordenadas de las Torres y eje de la línea de evacuación eléctrica 42
Tabla II-8. Ubicación de la subestación de maniobras .. 43
Tabla II-9. Duración del proyecto ... 44
Tabla II-10. Hoja de datos del sistema de pesaje de vehículos ... 54
Tabla II-11. Tiempo total por etapas en la entrega y descarga de residuos 55
Tabla II-12. Temperaturas de funcionamiento del ciclo de aprovechamiento térmico 111
Tabla II-13. Características de las unidades de tratamiento .. 111
Tabla II-14. Valores límite de emisiones en punto de emisión a la atmósfera (media diaria), según Directiva Europea IED 2010/75 EU, y las emisiones esperadas a la salida de la chimenea .. 156

CAPÍTULO II

IX
Tabla II-15. Características de las unidades de tratamiento de gases. 158
Tabla II-16. Características del sistema de análisis en continuo de emisiones. 162
Tabla II-17. Contaminantes y concentraciones consideradas que serán emitidas
durante la operación de la planta de aprovechamiento de poder calorífico. 165
Tabla II-18. Límites máximo permisibles de emisiones de incineradores de residuos
establecidos en la NOM-098-SEMARNAT y las emisiones máxima simuladas a
emitirse por la operación de la planta de aprovechamiento de poder calorífico... 166
Tabla II-19. Calidad de agua industrial para que ingrese a la planta....................... 217
Tabla II-20. Calidad de agua que generará la Planta de Agua Desmineralizada. 218
Tabla II-21. Calidad del aire de instrumentos 1-2-1, según ISO 8573-1.................... 221
Tabla II-22. Calidad de aire de servicios 2-4-2, según ISO 8573-1......................... 222
Tabla II-23. Relación del diámetro de tubería con el ancho y profundidad de zanja. .. 240
Tabla II-24. Dimensiones para las capas de relleno de zanja por diámetro de tubería.
.. 241
Tabla II-25. Características del material que pasa la malla 40............................... 269
Tabla II-26. Características del camino de acceso y puente. 275
Tabla II-27. Estructuras según su uso, (Retención o Suspensión) y su área de
desplante. .. 305
Tabla II-28. Cuadro de Valores de la Norma NRF-014-CFE-2004.......................... 308
Tabla II-29. Estimación del personal de operación. ... 408
Tabla II-30. Caudal por corriente (m³/h, punto de operación - capacidad de trabajo de
diseño (LP1)).. 433
Tabla II-31. Composición de residuos de la Ciudad de México................................. 438
Tabla II-32. Resumen de las emisiones totales de CO₂ asociadas a la planta.......... 440
Tabla II-33. Resumen balance de emisiones con aprovechamiento térmico de RSU y disposición en relleno sanitaria (Ahorro de emisiones GEI)................................. 443
ÍNDICE DE FIGURAS

Figura II—1. Esquema de bloques del proceso de valorización energética de RSU……3
Figura II—2. Áreas y/o componentes del proyecto...4
Figura II—3. Obras y equipamiento de la Planta y camino de acceso.6
Figura II—4. Ubicación del trazo de la Línea de evacuación eléctrica y la subestación eléctrica...7
Figura II—5. Camino de acceso. ...16
Figura II—6. Ubicación de la línea de evacuación eléctrica, las torres y la subestación de maniobra. ...18
Figura II—7. Vista y sección de la planta- Sección AA y BB.21
Figura II—8. Vista y sección de la planta- Sección CC. ..22
Figura II—9. Implantación Sección Longitudinal de la Sección B-B y C-C..............23
Figura II—10. Vaux Le Pesnil, Francia...24
Figura II—11. Oslo, Noruega ...25
Figura II—12. Guangzhou Likeng, China. ..25
Figura II—13. Ejemplo de otras Plantas en el mundo. ..26
Figura II—14. Ejemplo del volumen que representaría verter durante un mes, 13 mil toneladas de residuos sólidos urbanos que genera diariamente la CDMX sobre el Estadio Azteca...27
Figura II—15. Residuos Sólidos Urbanos que se generan diariamente.29

CAPÍTULO II
Figura II—16. Propuesta del Gobierno de la Ciudad de México para el aprovechamiento de los Residuos Sólidos Urbanos. ... 30

Figura II—17. Balance típico de lo que sucede con una tonelada de RSU una vez que se procesa en una Planta de aprovechamiento del poder calorífico de los RSU para la Generación de Energía. ... 31

Figura II—18. Ubicación de Sitio Alternativo 1. ... 32

Figura II—19. Ubicación de Sitio Alternativo 2. ... 33

Figura II—20. Alternativa 3, Seleccionada. ... 36

Figura II—21. Ubicación de la Planta. ... 39

Figura II—22. Programa General de Trabajo. ... 45

Figura II—23. Esquema ilustrativo de los Componente de la Planta. 47

Figura II—24. Esquema del área de recepción y almacenamiento de residuos 48

Figura II—25. Ubicación del area de recepción y almacenamiento en el proyecto. 49

Figura II—26. Esquema del sistema para funcionamiento de grúas. 62

Figura II—27. Silla del operador de las grúas. ... 63

Figura II—28. Esquema del área de combustión. .. 64

Figura II—29. Ubicación del área de combustión y caldera de recuperación en el proyecto. .. 65

Figura II—30. Diagrama de combustión previsto para una línea de horno-caldera. 67

Figura II—31. Tolva de alimentación con conducto de alimentación 71

Figura II—32. Alimentador (modelo de 3 vías). ... 72

Figura II—33. Elemento e hileras de bloques de la parrilla. ... 75
Figura II—34. Bloque enfriado por aire. ... 76
Figura II—35. Esquema del Sistema de aire secundario. 80
Figura II—36. Estación hidráulica. .. 82
Figura II—37. Extractor de escoria tipo cinta de placas. 84
Figura II—38. Boquillas de inyección de aire secundario. 86
Figura II—39. Disposición de boquilla típica (lado del foso de residuos) 87
Figura II—40. Separador magnético de correa superior. 88
Figura II—41. Transporte de escorias. .. 89
Figura II—42. Zona de almacenamiento de escorias. ... 90
Figura II—43. Sistema de control de combustión CCS+ para una parrilla de 5 zonas sin gas de combustión recirculado ... 92
Figura II—44. Capacidad de control del CCS de HZI en Lausana (Suiza) 93
Figura II—45. Balance General de Masas. .. 97
Figura II—46. Caldera de vapor. ... 101
Figura II—47. Estación de toma de muestras. ... 102
Figura II—48. Sistema de limpieza por agua del paso de radiación 104
Figura II—49. Dispositivo de golpeo neumático. ... 105
Figura II—50. Sopladores de hollín. ... 107
Figura II—51. Revestimiento refractario en la cámara de combustión y en el primer paso de la caldera .. 109
Figura II—52. Esquema de las áreas para generación de energía 116
Figura II—53. Ubicación del área de recuperación de energía en el proyecto 117

CAPÍTULO II
Figura II—54. Esquema del sistema de tratamiento, expulsión de gases y control de emisiones. ... 139

Figura II—55. Ubicación del área de tratamiento de gases de combustión en el proyecto. ... 140

Figura II—56. Principio del Xerosorp® de HZI. ... 143

Figura II—57. Transporte neumático al silo de residuos. ... 145

Figura II—58. Alimentador de tornillo múltiple. ... 147

Figura II—59. Ventilador de aire de transporte para los aditivos. ... 148

Figura II—60. Función principal de la limpieza del filtro de mangas y de chorro pulsante en línea. ... 150

Figura II—61. Principio de posicionamiento de las boquillas de inyección. 153

Figura II—62. Resultado de la simulación a 5 años para la concentración y dispersión de CO, promedio de 8 h, a emitirse por la operación de la planta. 168

Figura II—63. Resultado de la simulación a 5 años para la concentración y dispersión de SO₂, promedio de 24 h, a emitirse por la operación de la planta. 169

Figura II—64. Resultado de la simulación a 5 años para la concentración y dispersión de NO₂, promedio de 1 h, a emitirse por la operación de la planta. 170

Figura II—65. Resultado de la simulación a 5 años para la concentración y dispersión de Hg, promedio de 24 h, a emitirse por la operación de la planta. 171

Figura II—66. Resultado de la simulación a 5 años para la concentración y dispersión de HCl, promedio de 24 h, a emitirse por la operación de la planta. 172

Figura II—67. Resultado de la simulación a 5 años para la concentración y dispersión de Cd, promedio de 24 h, a emitirse por la operación de la planta. 173
Figura II—68. Resultado de la simulación a 5 años para la concentración y dispersión de metales, promedio de 24 h, a emitirse por la operación de la planta. 174

Figura II—69. Esquema del manejo de residuos. ... 175

Figura II—70. Ubicación del área de Manejo de Residuos en el proyecto. 176

Figura II—71. Silos de almacenamiento de residuos. ... 178

Figura II—72. Ubicación de los Sistema Auxiliares en el proyecto............................... 179

Figura II—73. Silos de almacenamiento de residuos. ... 182

Figura II—74. Ubicación del Sistema Eléctrico en el proyecto. .. 187

Figura II—75. Ubicación de las oficinas, estacionamientos, instalaciones, vialidades y otros en el proyecto... 208

Figura II—76. Perfil de la rampa... 210

Figura II—77. Circulación de vehículo al interior de la Planta. .. 211

Figura II—78. Ejemplo de la PTAR prefabricada (Fuente: Rotoplas © México) 219

Figura II—79. Planta de tratamiento de aguas residuales prefabricada. Fuente Rotoplas © México... 220

Figura II—80. Arquitectura del sistema de control de la planta. 228

Figura II—81. Visualización típica de una IHM... 234

Figura II—82. Ubicación de la acometida de red de agua potable................................. 238

Figura II—83. Detalle de zanja.. 241

Figura II—84. Ejemplo del tipo de instalación a realizar... 243

Figura II—85. Vialidades de acceso a la Planta... 245

Figura II—86. Detalle de Cerca Perimetral.. 250
Aprovechamiento del poder calorífico de los residuos sólidos urbanos para la generación de energía eléctrica

Figura II—87. Ubicación de áreas con cimentación y su vista en planta y corte. 253
Figura II—88. Detalle de pavimento en zona de tránsito ligero y de maniobra. 254
Figura II—89. Armado y cimbrado de pilote. 256
Figura II—90. Colado y pilote producido. 256
Figura II—91. Perforación Previa. 257
Figura II—92. Ubicación de Pilotes. 258
Figura II—93. Izaje e introducción de pilote. 259
Figura II—94. Hincado y unión de sección de pilote. 260
Figura II—95. Hincado de Pilotes. 262
Figura II—96. Cimentación superficial y armado de zapatas. 264
Figura II—97. Zapatas coladas en sitio. 265
Figura II—98. Malla y granulometría. 268
Figura II—99. Sección tipo del camino. 276
Figura II—100. Ubicación del Camino de Acceso y puente en el proyecto. 277
Figura II—101. Elementos que integran el camino de acceso. 278
Figura II—102. Ejemplo de la colocación de las geomallas. 280
Figura II—103. Colocación de la capa subbase. 282
Figura II—104. Ejemplo del proceso de compactación de la capa subbase. 283
Figura II—105. Ejemplo de la colocación de la base estabilizadora. 285
Figura II—106. Perfil del puente. 289
Figura II—107. Puente de acceso a la planta. 290

CAPÍTULO II

XVII
Figura II—108. Ubicación de la línea de evacuación. ... 294
Figura II—109. Línea de evacuación, las Torres y la subestación de maniobras con
respecto a la línea existente Aurora-Chicoloapan... 296
Figura II—110. Línea de evacuación de la torre 0 a la 5... 297
Figura II—111. Línea de evacuación de la torre 6 a la 10... 298
Figura II—112. Línea de evacuación de la torre 11 a la 15... 299
Figura II—113. Línea de evacuación de la torre 16 a la 20.. 300
Figura II—114. Línea de evacuación de la torre 21 a la 26, subestación de maniobras y
la línea de transmisión existente Aurora Chicoloapan... 301
Figura II—115. Silueta LAT Simple Circuito... 302
Figura II—116. Silueta LAT Doble Circuito... 303
Figura II—117. Ejemplo de la determinación del ancho del DDV................................. 307
Figura II—118. Detalle de pata de estructura... 310
Figura II—119. Arreglo general de la subestación de maniobras................................. 335
Figura II—120. Diseño arquitectónico "El Sarape"... 339
Figura II—121. Diseño arquitectónico "El Sarape" (vista aérea)...................................... 340
Figura II—122. Grúa torre 330 T. .. 393
Figura II—123. Grúa torre 150 T. .. 394
Figura II—124. Máquina de hincar pilotes... 395
Figura II—125. Dragadoras de gran volumen... 395
Figura II—126. Grúas autopropulsada.. 396
Figura II—127. Retroexcavadora de ruedas.. 397
Figura II—128. Bulldozer... 397
Figura II—129. Scraper o mototraila. ... 398
Figura II—130. Motoniveladora.. 398
Figura II—131. Apisonadoras.. 399
Figura II—132. Dumpers y mini dumpers....................................... 399
Figura II—133. Camiones revolvedores de concreto......................... 400
Figura II—134. Maquinaria para concreto: bombas, revolvedoras, vibradores........ 401
Figura II—135. Camión pluma y pick up.. 401
Figura II—136. Organigrama del personal.. 409
Figura II—137. Localización del RS Veolia Tlalnepantla, Estado de México. 427
Figura II—138. Ruta de Localización del RS Veolia Tulantepec, Estado de México... 429
Figura II—139. Localización del Centro de Tratamiento y Disposición Final Veolia

RIMSA en Mina, Nuevo León.. 431
Figura II—140. Diagrama de proceso de captación, tratamiento y reutilización de aguas. 436
FUNDAMENTO JURÍDICO

La integración de este Capítulo tiene como objetivo el dar cumplimiento a lo dispuesto por la Fracción II del Artículo 13 del Reglamento de la Ley General del Equilibrio Ecológico y la Protección al Ambiente en Materia de Evaluación del Impacto Ambiental, el cual establece que las Manifestaciones de Impacto Ambiental en su modalidad Regional deberán contener la siguiente información:

II. Descripción de las obras o actividades y, en su caso, de los programas o planes parciales de desarrollo;

De conformidad con lo anterior, en este apartado se establece de manera puntual y detallada la ubicación física del proyecto, sus colindancias o referencias, las características particulares del proyecto, las dimensiones, y cada uno de los elementos que lo integran, de igual forma se oferta información cartográfica que destaca las condiciones fisiográficas y la expresión gráfica espacial del proyecto respecto de los principales atributos del ambiente.

Asimismo, se presenta información del uso actual del suelo y las superficies de afectación por uso y por concepto, de igual forma se describe de manera concreta y objetiva las principales actividades que integran las diferentes etapas del proyecto en su fase: Preparación del Sitio, Etapa de Construcción, Operación y Mantenimiento.
II. DESCRIPCIÓN DE LAS OBRAS O ACTIVIDADES Y, EN SU CASO, DE LOS PROGRAMAS O PLANES PARciaLES DE DESARROLLO

II.1 INFORMACIÓN GENERAL DEL PROYECTO

II.1.1 Naturaleza del Proyecto

El proyecto consiste en la preparación del sitio, construcción, operación y mantenimiento de una Planta de Aprovechamiento del Poder Calorífico de Residuos Sólidos Urbanos de la Ciudad de México para la Generación de Energía Eléctrica. Aproximadamente se aprovecharán 4,500 toneladas diarias de Residuos Sólidos Urbanos (RSU) para generar anualmente hasta 965,000 MWh. Esta energía será exportada a la red eléctrica y entregada al Sistema de Transporte Colectivo (STC), Metro, una vez cubiertas las necesidades eléctricas de la Planta.

Desde el punto de vista operativo, la Planta de Aprovechamiento estará dividida en las siguientes áreas y/o componentes:

1. Recepción y almacenamiento de residuos.
2. Combustión y caldera.
3. Recuperación de energía.
4. Tratamiento de gases de combustión.
5. Manejo de residuos.

Dentro de estas áreas o componentes se integrarán las siguientes obras o equipamiento:

7. Sistema Eléctrico.
8. Oficinas, estacionamientos, instalaciones y otros.
CAPÍTULO II

Figura II—1. Esquema de bloques del proceso de valorización energética de RSU.
Figura II—2. Áreas y/o componentes del proyecto.
La Planta permitirá a la Ciudad de México reducir los requerimientos de espacio en sitios de disposición final y generar beneficios para la sociedad, a partir de la adopción de una alternativa tecnológica para el aprovechamiento de residuos mediante la recuperación de energía derivada del tratamiento a éstos, posicionando así a la capital del país como pionera en el sector a nivel nacional y en todo Latinoamérica.

II.1.2 Dimensiones del Proyecto

La construcción y operación de la Planta de Aprovechamiento del Poder Calorífico de los Residuos Sólidos Urbanos para la Generación de Energía Eléctrica, se pretende construir en una superficie de 13.2 hectáreas aproximadamente, más un camino de acceso con un puente al predio de 2.3 km y una línea de evacuación eléctrica de 8.1 km con subestación de maniobra de 2.25 ha, es decir, todo el proyecto ocupará una superficie total de 43.98 hectáreas.

En la siguiente figura se muestran las obras y equipamiento que tendrá cada una de las áreas y componentes del proyecto, así como el camino de acceso a la planta y la línea de evacuación, torres y la subestación de maniobra.
CAPÍTULO II

Figura II—3. Obras y equipamiento de la Planta y camino de acceso.
Figura II—4. Ubicación del trazo de la Línea de evacuación eléctrica y la subestación eléctrica.
II.1.2.1 Superficies útiles y por construir en Planta

Sobre la superficie de los 132,037.26 m² (13.20 ha) se tendrá la siguiente distribución conforme a las estapas y/o componentes que integran a la Planta, se especifica el valor del equipamiento que este tendrá dentro de las etapas y/o componentes:

<table>
<thead>
<tr>
<th>ÁREAS Y/O COMPONENTES</th>
<th>Superficie total en la etapa m²</th>
<th>Equipamiento</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recepción y Pesaje</td>
<td>711</td>
<td>Balanza de Vehículos</td>
<td>4 básculas de 80 t de capacidad cada una, con dimensiones de 24 x 3.05 m, aprox.</td>
</tr>
<tr>
<td>Caseta de control de acceso</td>
<td></td>
<td></td>
<td>1 caseta de control</td>
</tr>
<tr>
<td>Plataforma de maniobra y descarga</td>
<td>8,914.05</td>
<td>Balsa de decantación (Bajo área de descarga de residuos)</td>
<td>60 m²</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Balsa de neutralización (Bajo área de descarga de residuos)</td>
<td>60 m²</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bombas de contraincendios (Bajo área de descarga de residuos)</td>
<td>107.25 m²</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Compresores de aire (Bajo área de descarga de residuos)</td>
<td>330 m²</td>
</tr>
<tr>
<td>ÁREAS Y/O COMPONENTES</td>
<td>Superficie total en la etapa m²</td>
<td>Equipamiento</td>
<td>Valor</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------------------------------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>Almacenamiento y alimentación de residuos</td>
<td></td>
<td>Descarga de Camiones, incluye el Área de maniobra para el almacenamiento de Residuos</td>
<td>Plataforma con dos pisos y 20 puertas de descarga.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Planta de agua desmineralizada (Bajo área de descarga de residuos)</td>
<td>938 m², con una capacidad de 28m³/h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Taller/Almacén</td>
<td>1,600 m²</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Foso de residuos</td>
<td>27,600 m³</td>
</tr>
<tr>
<td>Grúas</td>
<td></td>
<td></td>
<td>3 grúas (1 de reserva) con una capacidad de 111.6 t/h.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Área de mantenimiento de grúas de residuos</td>
<td>57.76 m²</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hueco para mantenimiento de grúas de residuos</td>
<td>57.76 m²</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sala de Control</td>
<td>275 m²</td>
</tr>
<tr>
<td>COMBUSTION Y CALDERA</td>
<td>Horno de parrilla</td>
<td>6,950.00</td>
<td>Tolva/Alimentador de la caldera</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sistema de tratamiento térmico</td>
<td>186.57 m²</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sistema de Aire Primario</td>
<td>Sistemas y equipamiento</td>
</tr>
</tbody>
</table>

CAPÍTULO II
<table>
<thead>
<tr>
<th>ÁREAS Y/O COMPONENTES</th>
<th>Superficie total en la etapa m^2</th>
<th>Equipamiento</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sistema de Aire Secundario</td>
<td>incluido dentro del área de Combustión y Caldera</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Estación Hidráulica</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Extractor de escorias tipo placas</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Extracción de cenizas de parrilla</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flujo Óptimo de la cámara de combustión secundaria con inyección tipo remolino</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Extracción del horno de las escorias y su manejo</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Acopio de escorias</td>
<td>2 naves cubiertas y abiertas de 14 x 52.5 metros con una altura de almacenamiento prevista de hasta 3 metros o lo que es equivalente 2,205 m3 cada área</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cinta Transportadora</td>
<td>406.32 m2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cámara de combustión de caldera</td>
<td>1,346.03 m2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Caldera</td>
<td>4 calderas, una para cada línea</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Escalera de Caldera</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Equipamiento de caldera</td>
<td>Sistemas y equipamiento incluido dentro del área de Combustión y Caldera</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Puente de calderas</td>
<td></td>
</tr>
</tbody>
</table>

CAPÍTULO II
RECUPERACIÓN DE ENERGÍA

<table>
<thead>
<tr>
<th>ÁREAS Y/O COMPONENTES</th>
<th>Superficie total en la etapa m²</th>
<th>Equipamiento</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edificio Eléctrico</td>
<td>6,658.06</td>
<td>Turbina</td>
<td>edificio de estructura metálica, tendrá unas dimensiones aproximadas de 27.10 x 33.60m, y tendrá una altura de 20.00 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Generador</td>
<td>Tensión de las terminales 16.5 kV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Motor virador</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Virador manual</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Válvulas de vapor</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sistema de aceite</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sistema de vapor de sellos</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sistema de drenaje</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conexión de turbina al ducto del aerocondensador</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control turbina de vapor</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sistema de protección</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Monitoreo de temperatura</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control maestro de la turbina</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Válvulas de control de la turbina</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vibraciones</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Generador eléctrico de la turbina de vapor</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Refrigeración Auxiliar</td>
<td>110.59 m²</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aerocondensador</td>
<td>4010 m²</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Equipamiento incluido dentro de las áreas de Recuperación de Energía.</td>
<td></td>
</tr>
<tr>
<td>ÁREAS Y/O COMPONENTES</td>
<td>Superficie total en la etapa m²</td>
<td>Equipamiento</td>
<td>Valor</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------------------------------</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>Desgasificador, bombas de agua de alimentación y otros elementos del ciclo</td>
<td></td>
<td>Precalentador de baja presión</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Desgasificador</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bombas de agua de alimentación</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sistema de condensado</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sistema principal de condensado</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Purga de la turbina de vapor</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Condensado de precalentadores de aire</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sistema de agua de alimentación</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sistema bypass de la turbina de vapor</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eficiencia de transformación Energética</td>
<td></td>
</tr>
<tr>
<td>TRATAMIENTO DE GASES DE COMBUSTION</td>
<td>5,573.00</td>
<td>Filtro de tratamiento de gases</td>
<td>1,312 m²</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Separación de partículas mediante filtro de mangas</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conductos de combustión</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Suministro de reactivos</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reducción no catalítica selectiva SNCR</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ventilador de tiro</td>
<td></td>
</tr>
</tbody>
</table>

Equipo incluido dentro de las áreas de Recuperación de Energía.
ÁREAS Y/O COMPONENTES

<table>
<thead>
<tr>
<th></th>
<th>Superficie total en la etapa m²</th>
<th>Equipamiento</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medición de emisiones</td>
<td></td>
<td></td>
<td>18.61 m²</td>
</tr>
<tr>
<td>Chimenea</td>
<td></td>
<td>4 chimeneas de 45 m de altura ocupando una superficie total de 153.47 m²</td>
<td></td>
</tr>
<tr>
<td>Reactor de tratamiento de gases</td>
<td></td>
<td></td>
<td>822.55 m²</td>
</tr>
<tr>
<td>Silenciador</td>
<td></td>
<td></td>
<td>561.48 m²</td>
</tr>
<tr>
<td>MANEJO DE RESIDUOS</td>
<td>113.54</td>
<td>Silos de residuos</td>
<td>113.54 m²</td>
</tr>
<tr>
<td>SISTEMAS AUXILIARES</td>
<td>72.12</td>
<td>Silo de carbón activado</td>
<td>21.04 m²</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Silo de hidróxido de calcio</td>
<td>8.81 m²</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tanque de amoniaco</td>
<td>42.25 m²</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Suministro de gas inerte</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dispositivos de mantenimiento</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Superficies incluidas dentro de los sistemas auxiliares</td>
<td></td>
</tr>
<tr>
<td>SISTEMA ELÉCTRICO</td>
<td>1,614.93</td>
<td>Subestación</td>
<td>1,473 m²</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transformer Auxiliar</td>
<td>34.54 m²</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transformer de alta tensión</td>
<td>55.10 m²</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Generador Diésel de Emergencias</td>
<td>21 m²</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sistema eléctrico de baja tensión</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sistema de auxiliares de media tensión</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Variador de frecuencia</td>
<td></td>
</tr>
<tr>
<td>OFICINAS, ESTACIONAMIENTOS INSTALACIONES Y OTROS</td>
<td>73,669.68</td>
<td>Edificio de administración</td>
<td>1,150 m², con dos niveles.</td>
</tr>
</tbody>
</table>
ÁREAS Y/O COMPONENTES

<table>
<thead>
<tr>
<th>ÁREAS Y/O COMPONENTES</th>
<th>Superficie total en la etapa m²</th>
<th>Equipamiento</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estacionamiento de camiones</td>
<td></td>
<td></td>
<td>5,253 m²</td>
</tr>
<tr>
<td>Estacionamiento de coches y autobuses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vialidades internas</td>
<td></td>
<td></td>
<td>17,739 m²</td>
</tr>
<tr>
<td>Rampa</td>
<td></td>
<td></td>
<td>2,375.35 m²</td>
</tr>
<tr>
<td>Área reservada para ampliación</td>
<td></td>
<td></td>
<td>19,144.92 m²</td>
</tr>
<tr>
<td>Área reservada para Escorias</td>
<td></td>
<td></td>
<td>18,405.47 m²</td>
</tr>
<tr>
<td>Foso de agua pluviales limpias</td>
<td></td>
<td></td>
<td>95.04 m²</td>
</tr>
<tr>
<td>Foso de agua pluviales sucias</td>
<td></td>
<td></td>
<td>95.04 m²</td>
</tr>
<tr>
<td>Reserva Espacio Adicional</td>
<td></td>
<td></td>
<td>8,305.86 m²</td>
</tr>
<tr>
<td>Tanque de agua bruta</td>
<td></td>
<td></td>
<td>175.88 m²</td>
</tr>
<tr>
<td>Tanque de agua de servicio y contraincendios</td>
<td></td>
<td></td>
<td>156.32 m²</td>
</tr>
<tr>
<td>Tanque de agua desmineralizada</td>
<td></td>
<td></td>
<td>63.33 m²</td>
</tr>
<tr>
<td>Tanque de agua para cenizas</td>
<td></td>
<td></td>
<td>38.30 m²</td>
</tr>
<tr>
<td>Tanque de agua potable</td>
<td></td>
<td></td>
<td>9.58 m²</td>
</tr>
<tr>
<td>Tanque diésel</td>
<td></td>
<td></td>
<td>capacidad de 50 m³</td>
</tr>
</tbody>
</table>

Área libre/maniobra 27,760.88
TOTAL (m²) 132,037.26
TOTAL (ha) 13.2
II.1.2.2 Superficies útiles y por construir en camino de acceso

Para accesar a la planta, se ha proyectado la construcción de un camino de acceso, el cual contempla la construcción de un punete, y el cual tendrá en total una longitud de 2.3 km, un ancho de calzada de 12 m y ocupará una superficie de 2.89 ha, con la siguiente distribución:

Tabla II-2. Superficies útiles y por construir del camino de acceso, incluyendo un puente.

<table>
<thead>
<tr>
<th>Camino Total (con puente)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitud (km)</td>
<td>2.3</td>
</tr>
<tr>
<td>Superficie Total</td>
<td></td>
</tr>
<tr>
<td></td>
<td>m²</td>
</tr>
<tr>
<td></td>
<td>28,907.36</td>
</tr>
</tbody>
</table>

Dentro del Camino Total se Incluye:

<table>
<thead>
<tr>
<th>Camino</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitud (m)</td>
</tr>
<tr>
<td>Superficie</td>
</tr>
<tr>
<td>Ancho de calzada (m)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Puente</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitud (m)</td>
</tr>
<tr>
<td>Ancho de calzada (m)</td>
</tr>
<tr>
<td>Zapatas (4)</td>
</tr>
<tr>
<td>Superficie</td>
</tr>
</tbody>
</table>

A continuación se muestran los planos de ingeniería básica con vistas y secciones del camino de acceso contemplado para comunicar la infraestructura que se pretende, así como para la movilidad de los residuos sujetos a manejo:
Figura II—5. Camino de acceso.
II.1.2.3 Superficies útiles y por construir de la línea de evacuación eléctrica y subestación de maniobra

Uno de los componentes importantes del proyecto lo constituye la construcción de la línea de evacuación eléctrica, para la conducción de la energía generada, la cual tendrá una longitud de 8.1 km, con 27 torres y una subestación de maniobra de 2.25 ha, ocupando una superficie total de 28.1 ha, de las cuales 0.21 ha (2199 m²) están dentro de la superficie de las 13.2 ha de la planta.

<table>
<thead>
<tr>
<th>Línea de evacuación eléctrica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitud (km)</td>
</tr>
<tr>
<td>8.1</td>
</tr>
<tr>
<td>DDV (o servidumbre de paso)</td>
</tr>
<tr>
<td>32 m</td>
</tr>
<tr>
<td>Superficie Total</td>
</tr>
<tr>
<td>m²</td>
</tr>
<tr>
<td>258,528.40</td>
</tr>
<tr>
<td>ha*</td>
</tr>
<tr>
<td>25.85</td>
</tr>
</tbody>
</table>

*De las cuales 0.21 ha están dentro de la superficie de las 13.2 ha de la planta.

<table>
<thead>
<tr>
<th>Torres</th>
</tr>
</thead>
<tbody>
<tr>
<td>m²</td>
</tr>
<tr>
<td>5,991</td>
</tr>
<tr>
<td>ha</td>
</tr>
<tr>
<td>0.599</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subestación de maniobra</th>
</tr>
</thead>
<tbody>
<tr>
<td>m²</td>
</tr>
<tr>
<td>22,500</td>
</tr>
<tr>
<td>ha</td>
</tr>
<tr>
<td>2.25</td>
</tr>
</tbody>
</table>

A continuación se muestra la ubicación de la línea de evacuación, las torres y la subestación de maniobras.
Figura II—6. Ubicación de la línea de evacuación eléctrica, las torres y la subestación de maniobra.
Considerando las obras que integrarán la planta, a continuación a manera de resumen se incluye las superficies totales a ocupar para el desarrollo del proyecto:

Tabla II-4. Resumen de las superficies totales a ocupar por el desarrollo del proyecto.

<table>
<thead>
<tr>
<th>ÁREAS Y/O COMPONENTES</th>
<th>Superficie total en la etapa (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RECEPCIÓN Y ALMACENAMIENTO DE RESIDUOS</td>
<td></td>
</tr>
<tr>
<td>Recepción y Pesaje</td>
<td>711</td>
</tr>
<tr>
<td>Plataforma de maniobra y descarga</td>
<td></td>
</tr>
<tr>
<td>Almacenamiento y alimentación de residuos</td>
<td>8,914.05</td>
</tr>
<tr>
<td>Grúas</td>
<td></td>
</tr>
<tr>
<td>RECIPIENCION Y ALMACENAMIENTO DE RESIDUOS</td>
<td></td>
</tr>
<tr>
<td>Horno de parrilla</td>
<td>6,950.00</td>
</tr>
<tr>
<td>Caldera de recuperación</td>
<td></td>
</tr>
<tr>
<td>Accesorios</td>
<td></td>
</tr>
<tr>
<td>COMBUSTION Y CALDERA</td>
<td></td>
</tr>
<tr>
<td>Edificio Eléctrico</td>
<td>6,658.06</td>
</tr>
<tr>
<td>Desgasificador, bombas de agua de alimentación y otros elementos del ciclo</td>
<td></td>
</tr>
<tr>
<td>RECUPERACIÓN DE ENERGÍA</td>
<td></td>
</tr>
<tr>
<td>TRATAMIENTO DE GASES DE COMBUSTION</td>
<td>5,573.00</td>
</tr>
<tr>
<td>MANEJO DE RESIDUOS</td>
<td>113.54</td>
</tr>
<tr>
<td>SISTEMAS AUXILIARES</td>
<td>72.12</td>
</tr>
<tr>
<td>SISTEMA ELÉCTRICO</td>
<td>1,614.93</td>
</tr>
<tr>
<td>OFICINAS, ESTACIONAMIENTOS INSTALACIONES Y OTROS</td>
<td>73,669.68</td>
</tr>
<tr>
<td>Área libre/maniobra</td>
<td>27,760.88</td>
</tr>
<tr>
<td>TOTAL (m²)</td>
<td>132,037.26</td>
</tr>
<tr>
<td>TOTAL (ha)</td>
<td>13.2</td>
</tr>
</tbody>
</table>
Camino Total (con puente)

<table>
<thead>
<tr>
<th></th>
<th>m²</th>
<th>ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitud (km)</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>Superficie Total</td>
<td></td>
<td>28,907.36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.89</td>
</tr>
</tbody>
</table>

Dentro del Camino Total se incluye:

<table>
<thead>
<tr>
<th></th>
<th>m²</th>
<th>ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camino</td>
<td></td>
<td>25,655.95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.56</td>
</tr>
<tr>
<td>Superficie</td>
<td>25,655.95</td>
<td>2.56</td>
</tr>
<tr>
<td>Ancho de calzada (m)</td>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>m²</th>
<th>ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Puente</td>
<td></td>
<td>3,251.41</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.33</td>
</tr>
<tr>
<td>Longitud (m)</td>
<td>325.18</td>
<td></td>
</tr>
<tr>
<td>Ancho de calzada (m)</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Zapatas (4)</td>
<td>614.4</td>
<td>0.0614</td>
</tr>
<tr>
<td>Superficie</td>
<td>3,251.41</td>
<td>0.33</td>
</tr>
</tbody>
</table>

Línea de evacuación

<table>
<thead>
<tr>
<th></th>
<th>m²</th>
<th>ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitud (km)</td>
<td>8.1</td>
<td></td>
</tr>
<tr>
<td>DDV (o servidumbre)</td>
<td>32 m</td>
<td></td>
</tr>
<tr>
<td>Superficie Total</td>
<td>258,528.40</td>
<td>25.85</td>
</tr>
</tbody>
</table>

*De las cuales 0.21 ha están dentro de la superficie de las 13.2 ha de la planta.

Torres

<table>
<thead>
<tr>
<th></th>
<th>m²</th>
<th>ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superficie</td>
<td>5,991</td>
<td>0.599</td>
</tr>
<tr>
<td>Número de Torres</td>
<td>27</td>
<td></td>
</tr>
</tbody>
</table>

Subestación de maniobra

<table>
<thead>
<tr>
<th></th>
<th>m²</th>
<th>ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superficie</td>
<td>22,500</td>
<td>2.25</td>
</tr>
</tbody>
</table>

Superficie total del proyecto

Superficie total del proyecto: **43.98 ha**

A continuación se presenta el diseño arquitectónico de la Planta.
Figura II—7. Vista y sección de la planta- Sección AA y BB.
Figura II—8. Vista y sección de la planta- Sección CC.
CAPÍTULO II

Figura II—9. Implantación Sección Longitudinal de la Sección B-B y C-C.
II.1.3 Antecedentes

A nivel mundial existen más de 2,000 plantas termovalorizadoras instaladas y operando (en su mayoría en Asia y Europa) con las características similares a la que se pretende llevar a cabo, objeto de la presente MIA-R, considerando que la presente está diseñada como de última generación en eficiencia tecnológica y de proceso en materia del manejo de residuos, generación de energía y sistema de depuración de gases, de éstas el 25 % se encuentra en Europa y se ubican principalmente en el centro e inmediaciones de ciudades como Madrid, Marsella y Zúrich y se caracterizan como proyectos con armonía arquitectónica y de operación.

![Figura II—10. Vaux Le Pesnil, Francia.](image-url)
CAPÍTULO II

Figura II—11. Oslo, Noruega

Figura II—13. Ejemplo de otras Plantas en el mundo.
II.1.4 Justificación y objetivos

II.1.4.1 Justificación general

La generación de residuos en la Ciudad de México se estima en el orden de las 13 mil toneladas diariamente, lo cual equivale a llenar en un mes el Estadio Azteca de piso a techo.

Figura II—14. Ejemplo del volumen que representaría verter durante un mes, 13 mil toneladas de residuos sólidos urbanos que genera diariamente la CDMX sobre el Estadio Azteca.

De 1985 a 2011 se utilizó el relleno sanitario Bordo Poniente, del cual actualmente se encuentran clausuradas sus cuatro etapas como medida implementada para reducir el impacto ambiental que generan los residuos, situación que también constituye una
oportunidad para encontrar nuevas alternativas y estrategias de manejo moderno de residuos.

Actualmente la Ciudad de México dispone sus residuos en distintos sitios en el Estado de México y Morelos, condición que ocasiona una dependencia operativa a la capital del país en todas las etapas del manejo de residuos; a dichas entidades se envían un promedio de 8,600 toneladas, generando los impactos derivados de la operación de rellenos sanitarios.

Adicionalmente a las emisiones e impactos ocasionados por dicha actividad, es necesario adicionar la generación de emisiones a la atmósfera derivado del consumo de combustibles fósiles por el empleo de una flotilla de camiones para el traslado de los residuos a las entidades ya referidas.

Existen iniciativas por parte de Gobierno de la Ciudad de México para implementar la separación de residuos desde las fuentes de generación, sin embargo, la cantidad, tipo, frecuencia y condiciones de generación de residuos supera la capacidad operativa del sistema de limpieza tanto público, como privado.

Otras 3,900 toneladas son aprovechadas en diferentes procesos, ya sea como recuperación para reciclaje, tratamiento a través de composteo, como combustible alternativo, o se recuperan en plantas de selección como subproducto de reciclaje. Los residuos que no son recolectados por el servicio público de limpieza ascienden a 500 toneladas aproximadamente, y se debe principalmente a que no son entregados al servicio, son comercializados como subproductos o son arrojados en las vías públicas.
Por todo lo anterior, el Gobierno de la Ciudad de México pretende aprovechar 11,300 toneladas de las casi 13,000 toneladas que se producen diariamente de la siguiente forma, en donde se puede observar que con la implementación de la Planta de Aprovechamiento del Poder Calorífico de los Residuos Sólidos Urbanos para la Generación de Energía Eléctrica, se contempla usar 4,500 toneladas por día para la generación de energía eléctrica:
Con esto, se puede esperar que cada tonelada de RSU procesada por la Planta, evita una Ton de CO₂ equivalente. Es decir, se necesitan 5 árboles durante 30 años para procesar mediante fotosíntesis 1 ton de CO₂ equivalente. El impacto de la planta equivale a sembrar 28,800,000 árboles. (Dependiendo del tipo de árbol y la densidad, pero esta cantidad de árboles equivaldría a tener en la Ciudad de México un 60% forestado con bosque de coníferas)¹.

Además, esta tonelada (1000 kg ó 3m³) de RSU se convierte en:

¹ EPA, Nationwide Economic Benefits of Waste to Energy Sector PHd Eileen Brettler, ERC Directory
Figura II—17. Balance típico de lo que sucede con una tonelada de RSU una vez que se procesa en una Planta de aprovechamiento del poder calorífico de los RSU para la Generación de Energía.

II.1.4.2 Justificación de Seleccion del Sitio

Para la selección del sitio de pretendida ubicación del proyecto, se llevó a cabo una evaluación de sitios alternativos, entre los cuales se citan los siguientes:

- **Espacio en terminal Tláhuac del sistema de transporte colectivo**

Es un predio dentro de la Delegación Tláhuac en la Ciudad de México, ubicado en las inmediaciones de la estación terminal Tláhuac de la Línea 12 del Sistema de
Transporte Colectivo, con una superficie aproximada de 18 hectáreas y del cual se identificaron los siguientes aspectos:

- **Positivos**
 - El proyecto es viable.

- **Negativos**
 - Tipo de terreno.
 - Impacto social/político.

Figura II—18. Ubicación de Sitio Alternativo 1.
- Centro de comosta de la Ciudad de México

Se trata de un predio con una superficie mayor a las 36 hectáreas, ubicado en la zona de bordo poniente, dentro del municipio de Texcoco, Estado de México, y del cual se identificaron los siguientes aspectos:

Figura II—19. Ubicación de Sitio Alternativo 2.
• **Positivos**
 - Superficie de 36 ha disponibles.
 - Rutas logísticas establecidas.
 - Sin población cercana.
 - Predio con historia de manejo RSU.

• **Negativos**
 - Tipo de terreno.
 - Cercanía a los aeropuertos.

• **Ventajas**
 - Zona impactada ambientalmente.
 - Disminuye el impacto social.
 - Bajo impacto vial.
 - Superficie suficiente para ambos proyectos.
 - Disminución en costos de transporte respecto a rellenos sanitarios.
 - Gastos menores por obras inducidas de ambos proyectos.

• **Desventajas**
 - Condiciones de hundimiento de la zona.
o Pasivo ambiental de las etapas I, II, III y IV.

o Conos de aproximación de rutas aéreas del nuevo aeropuerto.

Derivado de la valoración anterior se definió que el sitio de ubicación de la planta debería reunir las condiciones ambientales menos relevantes a efecto de prevenir impactos ambientales sobre componentes bióticos y abióticos, con cercanía al sitio valorado como alternativa número 2, ya que cuenta con las mismas ventajas y aspectos positivos, estableciéndose en una zona que ambientalmente no considera impactos ambientales significativos, además de que el tipo de suelo que se presenta se trata de sedimentos provenientes del dragado del Lago Churubusco, predominando las texturas arcillosas con alto contenido de sales, por lo cual se trata de un predio que ha sido modificado en sus condiciones ambientales originales sirviendo como área de depósito de material producto de dragado, la cual se presenta en el siguiente mapa.
Figura II—20. Alternativa 3, Seleccionada.
II.1.4.3 Objetivo

La construcción y operación de una Planta para el Aprovechamiento del Poder Calorífico de Residuos Sólidos Urbanos de la Ciudad de México para la Generación y entrega de energía eléctrica, con capacidad para el tratamiento de 4,500 toneladas de residuos sólidos urbanos por día y una generación de hasta 965 MWh anualmente para su entrega al Sistema de Transporte Colectivo, en una superficie de 13.2 hectáreas aproximadamente, un camino de acceso al predio de 2.3 km, así como su línea de evacuación de 8.1 km, que incluye 27 torres y subestación de maniobras de 2.25 ha, permitirá resolver el problema que enfrenta la Ciudad de México derivado de la generación y manejo de residuos.

Con esto el proyecto busca:

- Resolver la problemática de la disposición ecológica y eficiente de los RSU generados en la Ciudad de México.
- Disponer de los RSU en lugar de almacenarlos en un relleno sanitario.
- Reducir la huella de carbón de los gases de efecto invernadero generados por los medios utilizados actualmente.
- Extraer el valor térmico contenido en los RSU.
- Como subproducto del procesamiento de los RSU a través de esta tecnología se obtendrá la generación de energía para la CDMX.

De acuerdo a lo anterior, el proyecto se desarrollará bajo la siguiente premisa:
Dar un tratamiento a los residuos de forma eficaz con el empleo de alta tecnología y bajo impacto ambiental, con las siguientes características:

- Combustión controlada de residuos que no pueden ser reciclados.
- Aprovechamiento del calor generado para producir energía eléctrica y térmica.
- Emisiones totalmente controladas mediante el empleo de filtros físicos y químicos.
- Generación de escorias y cenizas al final del proceso, a las que se dará un manejo integral.

II.1.5 Ubicación física

La Planta se ubicará dentro de la zona federal del Ex Lago de Texcoco, en los Municipios de Texcoco, Nezahualcóyotl y Chimalhuacán en el Estado de México y cerca de los límites de la Ciudad de México, cuya localización se presenta a continuación.
Las coordenadas que delimitan al predio donde se ubicará la planta de 13.2 hectáreas, el eje del camino y puente que se pretende desarrollar (2.3 km), de la línea de evacuación eléctrica (8.1 km), así como de la ubicación de las 27 torres y de la subestación de maniobras (2.25 ha), se muestran a continuación:

Tabla II-5. Cuadro con Coordenadas del Predio donde se proyecta la Planta.

<table>
<thead>
<tr>
<th>Vértice</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>497,739.05</td>
<td>2,148,883.52</td>
</tr>
<tr>
<td>2</td>
<td>497,549.71</td>
<td>2,148,774.27</td>
</tr>
<tr>
<td>3</td>
<td>497,522.93</td>
<td>2,148,787.85</td>
</tr>
<tr>
<td>4</td>
<td>497,495.93</td>
<td>2,148,801.01</td>
</tr>
<tr>
<td>5</td>
<td>497,468.73</td>
<td>2,148,813.72</td>
</tr>
<tr>
<td>6</td>
<td>497,441.32</td>
<td>2,148,826.00</td>
</tr>
<tr>
<td>7</td>
<td>497,378.76</td>
<td>2,148,848.85</td>
</tr>
<tr>
<td>8</td>
<td>497,374.73</td>
<td>2,148,850.69</td>
</tr>
<tr>
<td>9</td>
<td>497,371.04</td>
<td>2,148,853.15</td>
</tr>
<tr>
<td>10</td>
<td>497,367.78</td>
<td>2,148,856.16</td>
</tr>
<tr>
<td>11</td>
<td>497,365.04</td>
<td>2,148,859.65</td>
</tr>
<tr>
<td>12</td>
<td>497,362.89</td>
<td>2,148,863.52</td>
</tr>
<tr>
<td>13</td>
<td>497,336.88</td>
<td>2,148,920.53</td>
</tr>
<tr>
<td>14</td>
<td>497,327.53</td>
<td>2,148,941.70</td>
</tr>
<tr>
<td>15</td>
<td>497,310.72</td>
<td>2,148,986.04</td>
</tr>
<tr>
<td>16</td>
<td>497,277.62</td>
<td>2,149,062.68</td>
</tr>
<tr>
<td>17</td>
<td>497,272.23</td>
<td>2,149,078.84</td>
</tr>
<tr>
<td>18</td>
<td>497,272.68</td>
<td>2,149,082.10</td>
</tr>
<tr>
<td>19</td>
<td>497,273.64</td>
<td>2,149,085.24</td>
</tr>
<tr>
<td>20</td>
<td>497,275.09</td>
<td>2,149,088.20</td>
</tr>
<tr>
<td>21</td>
<td>497,276.98</td>
<td>2,149,090.89</td>
</tr>
<tr>
<td>22</td>
<td>497,279.27</td>
<td>2,149,093.25</td>
</tr>
<tr>
<td>23</td>
<td>497,281.91</td>
<td>2,149,095.22</td>
</tr>
<tr>
<td>24</td>
<td>497,305.43</td>
<td>2,149,111.01</td>
</tr>
<tr>
<td>25</td>
<td>497,342.35</td>
<td>2,149,132.63</td>
</tr>
<tr>
<td>26</td>
<td>497,436.93</td>
<td>2,149,188.30</td>
</tr>
</tbody>
</table>
Tabla II-6. Coordenadas del eje del camino de acceso y puente al proyecto.

<table>
<thead>
<tr>
<th>Vértice</th>
<th>X</th>
<th>Y</th>
<th>Vértice</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>496,764.89</td>
<td>2,151,032.77</td>
<td>42</td>
<td>497,622.01</td>
<td>2,149,797.14</td>
</tr>
<tr>
<td>2</td>
<td>496,771.94</td>
<td>2,151,036.07</td>
<td>43</td>
<td>497,677.26</td>
<td>2,149,705.59</td>
</tr>
<tr>
<td>3</td>
<td>496,779.21</td>
<td>2,151,038.81</td>
<td>44</td>
<td>497,677.29</td>
<td>2,149,705.56</td>
</tr>
<tr>
<td>4</td>
<td>496,786.67</td>
<td>2,151,041.00</td>
<td>45</td>
<td>497,691.46</td>
<td>2,149,682.07</td>
</tr>
<tr>
<td>5</td>
<td>496,794.28</td>
<td>2,151,042.61</td>
<td>46</td>
<td>497,694.74</td>
<td>2,149,676.63</td>
</tr>
<tr>
<td>6</td>
<td>496,801.90</td>
<td>2,151,043.63</td>
<td>47</td>
<td>497,712.20</td>
<td>2,149,647.71</td>
</tr>
<tr>
<td>7</td>
<td>496,808.09</td>
<td>2,151,044.03</td>
<td>48</td>
<td>497,712.29</td>
<td>2,149,647.56</td>
</tr>
<tr>
<td>8</td>
<td>496,812.01</td>
<td>2,151,044.09</td>
<td>49</td>
<td>497,725.65</td>
<td>2,149,625.42</td>
</tr>
<tr>
<td>9</td>
<td>496,817.73</td>
<td>2,151,043.91</td>
<td>50</td>
<td>497,735.66</td>
<td>2,149,608.84</td>
</tr>
<tr>
<td>10</td>
<td>496,823.14</td>
<td>2,151,043.45</td>
<td>51</td>
<td>497,735.65</td>
<td>2,149,608.87</td>
</tr>
<tr>
<td>11</td>
<td>496,823.14</td>
<td>2,151,043.45</td>
<td>52</td>
<td>497,755.45</td>
<td>2,149,576.06</td>
</tr>
<tr>
<td>12</td>
<td>496,831.96</td>
<td>2,151,042.06</td>
<td>53</td>
<td>497,777.15</td>
<td>2,149,540.11</td>
</tr>
<tr>
<td>13</td>
<td>496,840.62</td>
<td>2,151,039.91</td>
<td>54</td>
<td>497,807.03</td>
<td>2,149,490.60</td>
</tr>
<tr>
<td>14</td>
<td>496,849.06</td>
<td>2,151,037.01</td>
<td>55</td>
<td>497,811.96</td>
<td>2,149,482.44</td>
</tr>
<tr>
<td>15</td>
<td>496,857.22</td>
<td>2,151,033.38</td>
<td>56</td>
<td>497,824.36</td>
<td>2,149,461.89</td>
</tr>
<tr>
<td>16</td>
<td>496,865.03</td>
<td>2,151,029.06</td>
<td>57</td>
<td>497,826.50</td>
<td>2,149,458.08</td>
</tr>
<tr>
<td>17</td>
<td>496,872.43</td>
<td>2,151,024.07</td>
<td>58</td>
<td>497,830.13</td>
<td>2,149,449.87</td>
</tr>
<tr>
<td>18</td>
<td>496,878.48</td>
<td>2,151,019.24</td>
<td>59</td>
<td>497,832.41</td>
<td>2,149,442.39</td>
</tr>
<tr>
<td>19</td>
<td>496,883.97</td>
<td>2,151,014.14</td>
<td>60</td>
<td>497,833.47</td>
<td>2,149,437.28</td>
</tr>
<tr>
<td>20</td>
<td>496,889.07</td>
<td>2,151,008.65</td>
<td>61</td>
<td>497,834.33</td>
<td>2,149,429.34</td>
</tr>
<tr>
<td>21</td>
<td>496,893.75</td>
<td>2,151,002.80</td>
<td>62</td>
<td>497,834.31</td>
<td>2,149,421.63</td>
</tr>
<tr>
<td>22</td>
<td>496,899.19</td>
<td>2,150,994.68</td>
<td>63</td>
<td>497,833.86</td>
<td>2,149,416.84</td>
</tr>
<tr>
<td>23</td>
<td>496,906.78</td>
<td>2,150,982.12</td>
<td>64</td>
<td>497,833.09</td>
<td>2,149,412.09</td>
</tr>
<tr>
<td>24</td>
<td>496,945.47</td>
<td>2,150,918.02</td>
<td>65</td>
<td>497,831.97</td>
<td>2,149,407.33</td>
</tr>
</tbody>
</table>
APROVECHAMIENTO DEL PODER CALORÍFICO DE LOS RESIDUOS SÓLIDOS URBANOS PARA LA GENERACIÓN DE ENERGÍA ELÉCTRICA

CAPÍTULO II

Tabla II-7. Coordenadas de las Torres y eje de la línea de evacuación eléctrica.

<table>
<thead>
<tr>
<th>Torre</th>
<th>X</th>
<th>Y</th>
<th>Torre</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0-R</td>
<td>497,511.258</td>
<td>2,148,824.848</td>
<td>T14-S</td>
<td>500,982.787</td>
<td>2,150,228.648</td>
</tr>
<tr>
<td>T1-R</td>
<td>497,701.660</td>
<td>2,148,683.920</td>
<td>T15-S</td>
<td>501,301.476</td>
<td>2,150,352.424</td>
</tr>
<tr>
<td>T2-R</td>
<td>497,910.810</td>
<td>2,148,830.430</td>
<td>T16-S</td>
<td>501,622.668</td>
<td>2,150,477.173</td>
</tr>
<tr>
<td>T3-R</td>
<td>497,909.010</td>
<td>2,149,131.010</td>
<td>T17-S</td>
<td>501,944.693</td>
<td>2,150,602.245</td>
</tr>
<tr>
<td>T4-R</td>
<td>497,907.050</td>
<td>2,149,501.165</td>
<td>T18-S</td>
<td>502,264.565</td>
<td>2,150,726.480</td>
</tr>
<tr>
<td>T5-S</td>
<td>498,236.865</td>
<td>2,149,691.005</td>
<td>T19-S</td>
<td>502,570.633</td>
<td>2,150,845.354</td>
</tr>
<tr>
<td>T6-S</td>
<td>498,537.849</td>
<td>2,149,864.249</td>
<td>T20-S</td>
<td>502,888.404</td>
<td>2,150,968.774</td>
</tr>
<tr>
<td>T7-S</td>
<td>498,800.313</td>
<td>2,150,015.322</td>
<td>T21-S</td>
<td>503,228.908</td>
<td>2,151,101.023</td>
</tr>
<tr>
<td>T8-R</td>
<td>499,118.190</td>
<td>2,150,198.290</td>
<td>T22-S</td>
<td>503,497.693</td>
<td>2,151,205.417</td>
</tr>
</tbody>
</table>
CAPÍTULO II

II.1.6 Inversión requerida

El costo de ejecución del material del proyecto es aproximadamente 550 millones de USD (considerando un tipo de cambio 19.75 MXN$/USD y de 1.06 EUR/USD).
II.1.7 Programa general de trabajo

La Planta consta de una sola etapa y de acuerdo a la planificación de las actividades, a partir del tercer trimestre de 2017 iniciarían los trabajos para la preparación del terreno, y una vez lograda la optimización del proceso previsto para el tercer trimestre de 2020, se haría la entrega final para el inicio del servicio y operación por un periodo de 50 años.

Tabla II-9. Duración del proyecto.

<table>
<thead>
<tr>
<th>Concepto</th>
<th>Tiempo estimado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obtención de permisos y licencias, realización de estudios previos, elaboración del proyecto ejecutivo y programas de obra</td>
<td>4 meses</td>
</tr>
<tr>
<td>Preparación del sitio y Construcción</td>
<td>36 meses (3 años)</td>
</tr>
<tr>
<td>Operación</td>
<td>50 años (sólo para términos de la vigencia de la autorización en materia de impacto ambiental, ya que se considera un tiempo indefinido)</td>
</tr>
</tbody>
</table>
II.2 CARACTERÍSTICAS PARTICULARES DEL PROYECTO

II.2.1 Planta para el Aprovechamiento del Poder Calorífico de los Residuos Sólidos Urbanos

Este apartado describe de manera general las obras y actividades que se realizarán en la Planta como parte del proceso para el tratamiento de los residuos.

Como antes mencionado, las características principales de esta Planta de Aprovechamiento se dividen en las siguientes áreas y/o componentes, los cuales se pueden observar en la siguiente figura.

1. Recepción y almacenamiento de residuos.
2. Combustión y caldera.
3. Recuperación de energía.
4. Tratamiento de gases de combustión.
5. Manejo de residuos.
Figura II—23. Esquema ilustrativo de los Componente de la Planta.

Dentro de estas áreas o componentes se encuentran incluidas las siguientes obras o equipamiento:

<table>
<thead>
<tr>
<th>Recepción y almacenamiento de residuos</th>
<th>Combustión y caldera</th>
<th>Tratamiento de gases de combustión</th>
<th>Recuperación de energía</th>
<th>Manejo de residuos</th>
</tr>
</thead>
</table>
1. Sistemas Auxiliares.
2. Sistema Eléctrico.
3. Oficinas, estacionamientos, instalaciones y otros.

II.2.1.1 Descripción general de obras y actividades

II.2.1.1.1 Recepción y almacenamiento de residuos

Una vez superado el filtro de acceso a la Planta mediante los Controles de Acceso (Caseta y balanzas), que se describen a continuación, aquí inicia el proceso de tratamiento que recibirán los residuos.

![Esquema del área de recepción y almacenamiento de residuos.](image-url)

Figura II—24. Esquema del área de recepción y almacenamiento de residuos.
CAPÍTULO II

49

Figura II—25. Ubicación del área de recepción y almacenamiento en el proyecto.
II.2.1.1.1 Recepción, pesaje y control de residuos

Caseta de Control de Accesos

La caseta se ubicará en el polígono de la planta en la Zona Federal del Lago de Texcoco y se conforma de una Zona de control, Edificio de Operación, Cuarto de Máquinas con patio de maniobras, Sala de Tableros Eléctricos, módulo de Vigilancia-Sanitario, Paso a Cubierto, y Estacionamiento.

Constará de una Zona de Control con un total de 4 carriles.

Sistema de control de Accesos

El Sistema de Control de Accesos es el responsable de regular, evitar y/o restringir los accesos de personas y vehículos a la Planta y a las diferentes zonas dentro de la misma. El sistema asignará los permisos necesarios tanto para el personal de la Planta como para los visitantes de acuerdo a diferentes perfiles de acceso establecidos previamente. Se contará con doscientas cincuenta (250) tarjetas de acceso (cifra habitual teniendo en cuenta los camiones que va a acceder) a la planta que serán programadas con diferentes perfiles de acceso preestablecidos.

Adicionalmente a lo anterior, el sistema permite conocer y monitorear los diferentes flujos de entrada y salida del personal de la Planta.

El sistema considerado para esta Planta se basa en la tecnología RFID (Radio Frequency Identification en sus siglas en inglés), utilizando tarjetas plásticas para la identificación. El acceso a los diferentes lugares se realiza mediante dos lectores de tarjetas, uno en el lado de entrada y otro en el lado de salida, mediante los cuales regulan los accesos de entrada o de salida en las diferentes localizaciones.
Asimismo, se considera un control de personas y vehículos en la entrada principal de la planta mediante tornos para personas y puertas de apertura automática para los vehículos que se integrará con el Sistema de Control de Accesos. Igualmente está considerada también una caseta de control de seguridad a la entrada principal de la Planta para la verificación o asignación de permisos, tanto a personas como a vehículos.

El sistema de bloqueo de puertas se compone de una placa electromagnética de lectura de tarjetas y un pulsador de apertura o antibloqueo de puerta (instalado solo en la parte interior de la estancia).

Estos lectores y pulsadores están ubicados en las estancias o ubicaciones a las que el acceso debería estar restringido, tales como el edificio de servicios generales, laboratorio, sala de control, edificios eléctricos, taller y almacén.

Detección de Radioactividad

Para evitar contaminación radioactiva del personal, así como del proceso de incineración y emisión de partículas radiactivas, se contempla la instalación de detectores de radioactividad de tipo pórtico en la zona de entrada de camiones. Todos los camiones que entren a la planta deberán pasar por estos arcos detectores.

En el caso que alguno de los camiones que llegan a la Planta presente trazas significativas de radioactividad más allá de los límites permitidos por la legislación mexicana, los arcos detectores generarán una alarma para que el personal de Planta proceda según los protocolos para la gestión de estos residuos contaminados.

Los arcos detectores se disponen a ambos lados del camino para el paso de los camiones, un pórtico por cada carril de paso.
Básculas

La instalación dispondrá de cuatro básculas, preparadas para pesar hasta 80 t de peso. El sistema de básculas permitirá la identificación y trazabilidad automática de los camiones tanto a la entrada como a la salida de los mismos a través de cámaras de identificación, de teclados manuales, impresoras de etiquetas y de dispositivos infrarrojos o similares, permitiendo que el pesaje, identificación y facturación de los vehículos se realice de forma que el trasiego de camiones sea lo más fluido posible.

El funcionamiento para el control del peso de residuos de cada camión consiste en:

- A la llegada del camión unas barreras obligarán a que el vehículo se coloque correctamente en la báscula. La báscula identifica el camión de forma automática y realiza el pesaje completo del vehículo, añadiendo además una serie de datos para la trazabilidad tanto de la carga como del vehículo.
- Una vez realizado el pesaje se permite la salida en dirección a la zona de descarga del camión.
- Cuando el vehículo ha realizado su descarga volverá a pasar por los carriles de salida en las cuales las barreras dispondrán de nuevo el camión correctamente en las básculas y realizará el pesaje del vehículo ya vacío y le permitirá su salida.

Toda la información de los pesajes realizados quedará almacenada en los archivos históricos que incorpora el sistema de pesaje. Asimismo, el sistema de básculas estará conectado mediante bus de comunicación con el Sistema de Control central de la...
Planta, con lo cual toda la información de los pesajes también queda disponible a niveles jerárquicos de supervisión de la Planta.

II.2.1.1.2 Plataforma de descarga de camiones

Una vez pesados, los vehículos accederán por un vía hasta la plataforma de maniobra y descarga. La plataforma tendrá unas dimensiones de 135 x 40.5 metros, con una superficie de aproximadamente 5,400 m².

Se trata de un edificio de 2 niveles; un nivel bajo sin cerramiento lateral (donde se albergarán sistemas propios de la planta como salas de bombeos, bombas contra incendios, el sistema de aire comprimido, balsas de decantación, de neutralización la planta de agua desmineralizada), y un primer nivel donde se desarrollará la descarga de los camiones y donde se encuentra también el taller/almacén y sala de control. El edificio contará con 20 puertas de descarga por las cuales los camiones accederán a verter los residuos al foso.

Como se indica, el primer nivel será la plataforma de descarga de camiones, la cual estará totalmente cerrada, contemplando los siguientes acabados:

- Paredes laterales: Compuestas por muro block de concreto armado hasta los 2.5 metros (incluido aplanado y pintado) y por encima panel aislante en fachadas tipo sándwich.
- Techo: Panel aislante tipo sándwich.

La plataforma de descarga dispone de puertas de entrada y salida de apertura rápida de 6 m de altura. Las puertas de acceso serán puertas de tipo apertura rápida.
El acceso al primer nivel será por medio de una rampa que permitirá a los camiones acceder desde el nivel de piso hasta los 8 metros de altura donde se ubicará esta plataforma.

En su interior, el edificio contará con 20 posiciones de descarga, desde las cuales, los camiones podrán verter los residuos al foso ubicado anexo al edificio. También dispondrá de semáforo para cada posición de descarga.

 Así pues, una vez el vehículo con residuos entra en la plataforma de descarga, se dirigirá a cualquier posición de descarga en la que el semáforo esté iluminado en verde. Algunas de las posiciones, pueden estar con el semáforo correspondiente iluminado en rojo. Esto dependerá en gran medida del modo de gestión del foso de residuos. En aquellas zonas del foso donde el puente grúa esté realizando labores de mezcla o carga, o bien el nivel de residuo se acerque al nivel de la posición de descarga, no será posible realizar la descarga de camiones.

Tabla II-10. Hoja de datos del sistema de pesaje de vehículos.

<table>
<thead>
<tr>
<th>Datos de operación, diseño y características generales</th>
<th>Unidad</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Número de básculas de pesada</td>
<td>Uds.</td>
<td>4 (2 Entrada / 2 Salida)</td>
</tr>
<tr>
<td>Tipo de báscula</td>
<td>-</td>
<td>Fosa Acero</td>
</tr>
<tr>
<td>Dimensiones de plataforma de pesada (longitud y anchura)</td>
<td>m x m</td>
<td>24 m x 3.05 m (1)</td>
</tr>
<tr>
<td>Rango de pesada</td>
<td>t</td>
<td>80 (1)</td>
</tr>
<tr>
<td>Movimiento horizontal de la plataforma en cada dirección</td>
<td>mm</td>
<td>Menor a 5 mm</td>
</tr>
<tr>
<td>Rango temperaturas de trabajo</td>
<td>°C</td>
<td>-10 a 40 °C</td>
</tr>
</tbody>
</table>
APROVECHAMIENTO DEL PODER CALORÍFICO DE LOS RESIDUOS SÓLIDOS URBANOS PARA LA GENERACIÓN DE ENERGÍA ELÉCTRICA

CAPÍTULO II

<table>
<thead>
<tr>
<th>Datos de operación, diseño y características generales</th>
<th>Unidad</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Espesor chapa plataforma pesada</td>
<td>mm</td>
<td>6 mm</td>
</tr>
<tr>
<td>Tiempo de pesada vehículo</td>
<td>seg</td>
<td>20 seg</td>
</tr>
</tbody>
</table>

Células de carga

<table>
<thead>
<tr>
<th>Tipo</th>
<th></th>
<th>Rocker Pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Número de celdas por plataforma de pesada</td>
<td>Uds.</td>
<td>8 celdas de 25 ton.</td>
</tr>
<tr>
<td>Precisión</td>
<td>%</td>
<td>0.05% de carga máxima</td>
</tr>
</tbody>
</table>

Accesorios

<table>
<thead>
<tr>
<th>Sistema identificación vehículos</th>
<th></th>
<th>Ingresar placas del vehículo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barreras</td>
<td>Uds.</td>
<td>NO</td>
</tr>
<tr>
<td>Impresor de tickets</td>
<td>Uds.</td>
<td>Epson TMU-295</td>
</tr>
<tr>
<td>Programa de gestión de pesada (Software) y equipos de gestión (PC, impresora,…)</td>
<td>-</td>
<td>Indicador de pesaje W-Controller</td>
</tr>
</tbody>
</table>

(1) El rango de pesada y las dimensiones finales de las básculas quedarán sujetas a las medidas reales y a los pesos máximos de los camiones durante el desarrollo del proyecto.

Los tiempos de entrega / descarga y salida de camiones, son los siguientes:

Tabla II-11. Tiempo total por etapas en la entrega y descarga de residuos.

<table>
<thead>
<tr>
<th>Etapa</th>
<th>Tiempo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etapa 1: Registro y pesaje en Báscula</td>
<td>3 minutos</td>
</tr>
<tr>
<td>Etapa 2: Manejo hasta la plataforma de descarga (350 m)</td>
<td>1 minuto</td>
</tr>
<tr>
<td>Etapa 3: Maniobra dentro de la plataforma de descarga</td>
<td>2 minutos</td>
</tr>
<tr>
<td>Etapa 4: Descarga de los residuos</td>
<td>15 minutos</td>
</tr>
</tbody>
</table>
APROVECHAMIENTO DEL PODER CALORÍFICO DE LOS RESIDUOS SÓLIDOS URBANOS PARA LA GENERACIÓN DE ENERGÍA ELÉCTRICA

CAPÍTULO II

<table>
<thead>
<tr>
<th>Etapa</th>
<th>Tiempo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etapa 5: Manejo de regreso a la báscula (350 m)</td>
<td>1 minuto</td>
</tr>
<tr>
<td>Etapa 6: Pesaje en Báscula</td>
<td>3 minutos</td>
</tr>
<tr>
<td>Tiempo total para un ciclo:</td>
<td>25 minutos</td>
</tr>
</tbody>
</table>

Para el cálculo de los tiempos anteriores se han establecido los siguientes parámetros:

- Tiempo de pesaje (dato estándar de proveedores de básculas): 3 minutos
- Tiempo de descarga en base a experiencia en multitud de plantas: 15 minutos
- Velocidad dentro de la planta: 20 km/h

Debido a que la planta cuenta con 2 básculas de pesaje a la entrada (así como 2 básculas de salida):

- Cada 3 minutos 2 camiones pueden acceder a la planta.
- Por tanto, en 1 hora 40 camiones pueden acceder a la planta.

Al existir 20 posiciones de descarga disponibles al foso se tiene que:

- En 1 hora 2.4 camiones pueden descargar en cada posición de descarga (25 minutos por ciclo).

Esto significa que como la plataforma de descarga está limitada a 20 posiciones de descarga y dado que como se indica en 1 hora hasta 2.4 camiones pueden descargar por posición esto hace hasta 48 camiones, superando la capacidad de recibir establecida en 35 camiones/hora para llegar a las 700 toneladas/hora.
II.2.1.1.3 Almacenamiento y alimentación de residuos

- **Foso de almacenamiento**

Los camiones descargan los residuos en un foso dividido en dos vanos o cavidades con una capacidad de 27,600 m³, con una capacidad para 2.4 días de almacenamiento, incluyendo el apilamiento contra el muro (lado hornos-caldera y laterales).

El foso de residuos estará dotado de un sistema de drenaje y su correspondiente bomba sumergible para la extracción de los lixiviados producidos durante el almacenamiento. Éstos se recogerán en el cárcamo de bombeo donde serán bombeados e inyectados a los hornos y líneas de tratamiento con lo cual se eliminarán en el proceso de incineración. Esta solución se emplea en todas las plantas del mundo sin tener consecuencia alguna.

A ambos lados del foso se dispone de dos plataformas, al mismo nivel que la plataforma de maniobra, determinada área de maniobra para el almacenamiento de residuos.

A continuación, se presentan los cálculos del foso, donde se puede observar que el foso es capaz de almacenar el equivalente a 2.4 días del flujo de entrada de residuos, incluyendo el apilamiento contra el muro.
A continuación, se presenta el cálculo de los tiempos de manejo de residuos dentro del foso.
DATOS GENERALES

<table>
<thead>
<tr>
<th>Tamaño de la planta</th>
<th>Dimensión del foso de residuos</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Número de líneas</td>
<td>- Altura - toma de alimentación</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>24,0 m</td>
</tr>
<tr>
<td>- Residuos por Línea</td>
<td>- Altura - bahía de descargo</td>
</tr>
<tr>
<td></td>
<td>LP1</td>
</tr>
<tr>
<td></td>
<td>7,0 m</td>
</tr>
<tr>
<td>=> Residuo por planta</td>
<td>212,0 t/h</td>
</tr>
<tr>
<td></td>
<td>Ancho</td>
</tr>
<tr>
<td></td>
<td>120,0 m</td>
</tr>
<tr>
<td></td>
<td>Profundidad</td>
</tr>
<tr>
<td></td>
<td>25,0 m</td>
</tr>
<tr>
<td>Número de grúas en operación</td>
<td>106,0 t/h</td>
</tr>
<tr>
<td>=> Residuo total LP1 por grúa</td>
<td>106,0 t/h</td>
</tr>
</tbody>
</table>

NÚMERO DE GRÚAS EN MODO DE ESPERA

| Número de grúas en modo de espera | 1 |

ENTRADA PARA EL CÁLCULO DEL CICLO DE LA GRÚA DE RESIDUOS

<table>
<thead>
<tr>
<th>Enviado de residuos</th>
<th>24h 7 Días</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiempo:</td>
<td>168 h/semana</td>
</tr>
</tbody>
</table>

MANEJO DE RESIDUOS

<table>
<thead>
<tr>
<th>alimentación</th>
<th>despejando</th>
<th>mezclando</th>
</tr>
</thead>
<tbody>
<tr>
<td>106,0</td>
<td>106,0</td>
<td>0,0</td>
</tr>
</tbody>
</table>

PIFÍAS PARA IR

- Subida/bajada en piso de residuos	14,0
- Reducción antes de abrir	2,0
- Grúa	15,0
- Carro de Grúa	10,0

MODO DE CONTROL

- Modo de control de la grúa: Operación semiautomática
- Manejo sincronizado permitido: Sí

INFORMACIÓN ESPECÍFICA DE LA GRÚA

<table>
<thead>
<tr>
<th>Pulpo</th>
<th>Tipo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grúa hidráulica Poligrapa</td>
</tr>
<tr>
<td>Volumen</td>
<td>16,0 m3</td>
</tr>
<tr>
<td>=> Dimension del pulpo abierto</td>
<td>ca. 6,5 m</td>
</tr>
<tr>
<td>- Factor de compactación</td>
<td>85%</td>
</tr>
<tr>
<td>=> Grado de llenado</td>
<td>(Estándar: AUTOMÁTICO 85%, MANUAL)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Velocidad de Grúa</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Elevación</td>
</tr>
<tr>
<td>- Descenso</td>
</tr>
<tr>
<td>- Grúa</td>
</tr>
<tr>
<td>- Carro de grúa</td>
</tr>
</tbody>
</table>

TIEMPO COMPLEMENTARIO

- Cierre de Poligrapa con residuos	36 s
- Apertura del pulpo con residuos	12 s
- Pesaje del pulpo con peso	5 s
- Tiempo sin producto	5 s

CÁLCULO: TIEMPO TOTAL DEL CICLO

<table>
<thead>
<tr>
<th>Especificación de residuo</th>
<th>Residuo</th>
<th>Total de alimentación</th>
<th>despejando</th>
<th>mezclando</th>
</tr>
</thead>
<tbody>
<tr>
<td>Densidad</td>
<td>0,40</td>
<td>0,60</td>
<td>0,60</td>
<td>0,60 t/m³</td>
</tr>
<tr>
<td>=> densidad en pulpo</td>
<td>0,60</td>
<td>0,60</td>
<td>0,60</td>
<td></td>
</tr>
<tr>
<td>=> peso en pulpo</td>
<td>8,2</td>
<td>8,2</td>
<td>8,2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Objetivo de tiempo para el punto de diseño</th>
</tr>
</thead>
<tbody>
<tr>
<td>max</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modo de operación</th>
<th>16,0 m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Operación</td>
<td>Semiautomática</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tiempos</th>
</tr>
</thead>
<tbody>
<tr>
<td>- alimentación de la tolva</td>
</tr>
<tr>
<td>- despejando</td>
</tr>
<tr>
<td>- mezclando</td>
</tr>
</tbody>
</table>

TIEMPO TOTAL

| 54,6 min |
APROVECHAMIENTO DEL PODER CALORÍFICO DE LOS RESIDUOS SÓLIDOS URBANOS PARA LA GENERACIÓN DE ENERGÍA ELÉCTRICA

CAPÍTULO II

Calculación de los ciclos

<table>
<thead>
<tr>
<th>Alimentación (Tolvas de alimentación)</th>
<th>Tiempo</th>
<th>Distancia</th>
<th>Velocidad de la grúa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>c. veloc.</td>
<td>Total</td>
</tr>
<tr>
<td>- Elevación en el foso</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Grúa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Carro de la grúa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Descenso sobre la tolva</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tiempo de solapamiento de la grúa, carro, equipo de elevación (Kw)</td>
<td>13,2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Elevación sobre la tolva	4,9	0,0	4,9	2,0	0,0	2,0	80	0,33
Grúa	16,6	5,9	10,7	15,0	7,9	7,1	80	0,25
Carro de la grúa	13,2	3,9	9,3	10,0	4,6	5,4	70	0,25
Descenso sobre el foso	14,5	6,5	8,1	14,0	8,6	5,4	80	0,33

Tiempo total (ida y vuelta)	73					
- Cierre del pulpo con residuo	36,0					
- Apertura del pulpo con residuo	12,0					
- Peso del pulpo con peso	5,0					
Tiempo sin producto	0,0					
Tiempo total del ciclo	128					

<table>
<thead>
<tr>
<th>Despejando</th>
<th>Tiempo</th>
<th>Distancia</th>
<th>Velocidad de la grúa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>c. veloc.</td>
<td>Total</td>
</tr>
<tr>
<td>- Elevación en el foso</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Grúa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Carro de la grúa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Descenso antes de abrir</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tiempo de solapamiento de la grúa, carro, equipo de elevación (Kw)</td>
<td>15,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elevación después de abrir</td>
<td>4,9</td>
<td>0,0</td>
<td>4,9</td>
</tr>
<tr>
<td>Grúa</td>
<td>16,6</td>
<td>5,9</td>
<td>10,7</td>
</tr>
<tr>
<td>Carro de la grúa</td>
<td>15,8</td>
<td>6,5</td>
<td>9,3</td>
</tr>
<tr>
<td>Descenso sobre el foso</td>
<td>16,8</td>
<td>8,7</td>
<td>8,1</td>
</tr>
</tbody>
</table>

Tiempo total (ida y vuelta)	77,9					
- Cierre del pulpo con residuo	36,0					
- Apertura del pulpo con residuo	12,0					
- Peso del pulpo con peso	5,0					
Tiempo sin producto	0,0					
Tiempo Total del ciclo	125,9					

<table>
<thead>
<tr>
<th>Mezclando</th>
<th>Tiempo</th>
<th>Distancia</th>
<th>Velocidad de la grúa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>c. veloc.</td>
<td>Total</td>
</tr>
<tr>
<td>- Elevación</td>
<td>13,8</td>
<td>6,8</td>
<td>7,1</td>
</tr>
<tr>
<td>- Grúa</td>
<td>27,8</td>
<td>17,2</td>
<td>10,7</td>
</tr>
<tr>
<td>- Carro de la grúa</td>
<td>6,0</td>
<td>0,0</td>
<td>6,0</td>
</tr>
<tr>
<td>- Descenso sobre el foso</td>
<td>13,0</td>
<td>5,0</td>
<td>8,1</td>
</tr>
</tbody>
</table>

Tiempo total (ida y vuelta)	94,6					
- Cierre del pulpo con residuo	36,0					
- Apertura del pulpo con residuo	12,0					
- Peso del pulpo con peso	5,0					
Tiempo sin producto	0,0					
Tiempo Total del ciclo	142,6					
- **Alimentación de residuos y grúa de residuos**

Los residuos vertidos por los camiones en el foso desde la plataforma de maniobra y descarga son manipulados mediante las grúas, los cuales descargan a las tolvas de alimentación.

En el interior del edificio del foso de residuos se instalarán tres grúas y cuatro pulpos uno de ellos en reserva, dotados con cuchara especial tipo pulpo para residuos urbanos. Estas grúas cumplirán la función de alimentar los residuos a las tolvas de alimentación de los hornos (líneas de incineración), mantener las bahías de descarga libres de residuos y apilar los residuos en el foso, así como de homogenizar las diferentes fracciones de residuos que se descarguen en el foso, para alcanzar un valor calorífico uniforme y así contribuir al buen funcionamiento de la planta.

Las grúas serán idénticas, del tipo carro abierto y estarán preparadas para funcionar 365 días/año, 24 horas/día. Cada área del foso contará con una grúa, y en el área entre ambos fosos quedará la tercera grúa en reserva, (determinado Hueco para mantenimiento de grúas de residuos). En una hora de funcionamiento cada grúa estará capacitada para poder alimentar 106 t de residuos, durante 54.6 minutos efectivos de carga por hora. Se ha considerado una capacidad de pulpo de 16 m³.

La grúa estará controlada de forma remota desde las sillas de los operadores de grúa, ubicadas en la sala de control. Asimismo, estarán equipadas con un sistema de medición de carga que registra el ritmo de carga de residuos al incinerador, y calcula de manera automática el peso total acumulado de residuos alimentado a la tolva de alimentación.

Las grúas de residuos están equipadas con dispositivos de control y monitoreo que evitan el desplazamiento más allá de los extremos del foso y evitan la entrada de la grúa en zonas de colisión. También están equipadas con sistemas anticolisión, a fin de evitar la colisión de dos grúas durante la operación simultánea.
Asimismo, las grúas estarán preparadas para funcionar, al menos, en modo manual y en semiautomático (una vez cargado y cerrado el pulpo en manual, el ciclo de elevación, traslación, aproximación hasta la tolva y pesada se realizará de forma automática, quedando la descarga en tolva a libre elección del operador). El modo automático (posicionamiento, descenso, carga, cierre de pulpo, elevación, traslación, aproximación hasta tolva, pesada y descarga) si se implementa, ofrece la posibilidad de optimizar el costo de pago a personal en la posición de operador de grúa.

El funcionamiento de la grúa en zonas peligrosas, como enfrente de la cabina del operador quedará inhabilitado por dispositivos de seguridad que limitan el acceso a esa área. Adicionalmente, las zonas peligrosas están programadas en el software de control que controla los modos manual, semiautomático y automático.
Silla de operador de grúa

Se suministrarán tres sillas para los operadores, una para cada una de las tres grúas de residuos previstas. Cada grúa puede ser operada desde cualquier silla del operador de grúa, siendo por tanto sillas intercambiables. La silla de operación de la grúa estará diseñada ergonómicamente, adecuada para trabajos pesados y estará equipada con funciones de ajuste versátiles, así como con dispositivos de amortiguamiento. Todas las palancas de control serán de diseño robusto y se colocarán según las prácticas ergonómicas actuales.

El panel de control de la silla puede ser preparado para una serie de botones adicionales para el control y el monitoreo de varios equipos externos, es decir, la compuerta de la tolva de alimentación, los semáforos de la bahía de descarga, etc.

Figura II—27. Silla del operador de las grúas.
II.2.1.1.2 Combustión y caldera de recuperación

La Planta estará integrada por cuatro líneas idénticas de aprovechamiento térmico de RSU; cada línea consta de los siguientes elementos que a continuación se enlistan:

- Horno de parrilla, que incluye:
 - Tolva, conducto y alimentador de residuos.
 - Quemadores auxiliares.
 - Ventiladores de aire de combustión, primario y secundario.
 - Preca lentadores de aire.
 - Extractor de escorias. Grupos hidráulicos para el accionamiento de la parrilla y del extractor de escorias.
- Caldera de recuperación.
- Accesorios, tuberías e instrumentación.

Figura II—29. Ubicación del área de combustión y caldera de recuperación en el proyecto.
II.2.1.2.1 Horno de parrilla

El horno es de tipo parrilla refrigerada por aire; el diseño de cada línea permite tratar un total de 46.855 t/h por línea (187.42 t/h en total para planta), equivalente a aproximadamente 4,500 t/d, y una carga térmica máxima contínua de 120 MW o 30 MW por línea; siendo capaz de mantener consistentemente una elevada calidad de incineración, materializada en:

- Contenido muy bajo de inquemados en gases de combustión y en escorias.
- Bajas concentraciones de monóxido de carbono en gases de combustión.
- Temperaturas de gases de combustión por encima de 850°C durante más de dos segundos.
- Adaptabilidad a las condiciones cambiantes del combustible.

A continuación, se muestra el Diagrama de Combustión previsto para una línea de horno-caldera, el cual establece un Poder Calóficio Inferior (PCI), de diseño en torno a 2,204 kcal/kg (9,220 kJ/kg), equivalente a aproximadamente a las 4,500 ton/día, donde el punto LPN es la capacidad de trabajo nominal: 46.855 t/h a 9,220 kJ/kg; y el punto LP1 es la capacidad de trabajo de diseño: 53.006 t/h a 8,150 kJ/kg.
Asimismo, el diseño contempla medidas para impedir las adherencias de cenizas fundidas en las paredes del horno, distribuir correctamente los aires de combustión y recoger sin provocar obstrucciones los finos y los metales fundidos que se producen en la combustión.

El horno dispone de dos sistemas de suministro del aire necesario para la combustión: el primario y el secundario, los cuales tratan de asegurar unas condiciones de combustión óptimas, reguladas en todo momento por un sistema de control distribuido.

El aire primario se aspira del foso de residuos, mientras que el aire secundario se aspira del ambiente. De esta forma se mantiene el foso en depresión y se evita la emisión de olores al exterior.
Al objeto de cubrir situaciones de un bajo Poder Calorífico Inferior (PCI) del residuo a incinerar será necesario el precalentamiento del aire primario. Para ello se prevé la instalación de un precalentador de aire primario para conseguir una mayor flexibilidad ante las variaciones de las condiciones del combustible.

El diseño del horno permite un flujo regular de residuos y una homogeneización de estos, así como un reparto del aire de combustión uniforme en toda la superficie, obteniéndose un contenido muy bajo de inquemados (menos del 3%) en las escorias que se obtienen de la incineración.

La parrilla está constituida por pistas con control independiente de combustión. En su parte inferior disponen de tolvas para recogida de los materiales finos. Al acabar el proceso de incineración las parrillas descargan las escorias de combustión a un sistema de extracción y enfriamiento, el cual las vierte a una cinta transportadora.

- **Descripción funcional del horno de parilla**

La parrilla incinera los residuos, garantiza una combustión contínua y una adecuada calcinación de la escoria. Se trata de una parrilla inclinada hacia adelante con una pendiente de 18°. El tamaño de la parrilla está diseñado en base al diagrama de combustión (determinado por el rendimiento y el valor calorífico de los residuos). Ésta se compone de 5 vías con 6 zonas cada una.

- **Descripción del equipamiento del horno de parrilla**

La parrilla, incluidas las tolvas de ceniza inferiores, se fija a la estructura de la cámara de combustión al final del alimentador por medio de un montaje de pivote que le permite moverse. La parrilla se asienta en la estructura de soporte de la parrilla misma, de tal manera que le permite moverse en respuesta a la expansión térmica. Los
elementos de parrilla y las tolvas de cenizas se mueven con la parrilla a medida que se expande y se contrae.

Los módulos básicos de la parrilla son los elementos que se unen longitudinalmente para formar una vía. Cada elemento de la parrilla es accionado por dos cilindros hidráulicos conectados en serie. Cada elemento tiene dedicado un bloque de control hidráulico.

El número de carreras por hora realizado por las hileras de bloques de parrilla móviles, se puede regular continuamente, mientras que la velocidad de avance y la duración de la carrera de trabajo no pueden cambiarse. El ajuste del número de carreras cambia el intervalo de tiempo entre dos carreras consecutivas; esto se realiza por medio de un sistema de control de impulsos electrónicos.

Tolva de alimentación

Las tolvas de alimentación son de un diseño muy sólido mediante placas de desgaste sustituibles, de sección de pirámide invertida. Conduce los residuos hasta el conducto de carga permitiendo el descenso de los residuos, sin formar bóvedas.

El conducto de carga, donde se instala una clapeta de cierre o válvula de cierre, tiene la doble función de conducir los residuos hasta el alimentador del horno y de impedir la entrada de aire falso al horno.

La unión entre el conducto y el horno dispone de un alimentador de residuos hidráulico de carrera variable cuya misión es regular el flujo de residuos al horno de aprovechamiento térmico.
• Descripción funcional de la tolva

La tolva de alimentación conecta el foso de residuos con la cámara de combustión. Esto asegura que los residuos se entreguen continuamente a la parrilla y está diseñada de tal manera que se evita la formación de acumulaciones y además garantiza que:

• Durante la combustión, la columna de residuos en el conducto de alimentación es lo suficientemente alta como para evitar la introducción de aire falso en la cámara de combustión.
• Durante la parada de la línea de incineración de residuos, evita el flujo a contracorriente de los gases de combustión al foso de residuos, incluso si el nivel de residuos en el conducto de alimentación es bajo.

• Descripción del equipamiento de la tolva

La tolva de alimentación consta de una tolva, una compuerta, un conducto de alimentación, y un marco soporte.

Las compuertas de la tolva van instaladas en la parte inferior de la tolva misma, una para cada vía de la parrilla; éstas sellan la cámara de combustión respecto del foso de residuos. Los cilindros hidráulicos son alimentados por una estación hidráulica. Con el fin de vigilar la altura de los residuos, se encuentra instalado un medidor de nivel de bajo mantenimiento en el conducto de alimentación.

Sistema de enfriamiento de la tolva de alimentación

El sistema de enfriamiento de la tolva de alimentación enfriaría las partes del conducto de alimentación que están expuestas a estrés térmico extremo.
Alimentador de residuos

- Descripción funcional del alimentador

Desde la tolva de alimentación, los residuos caen sobre la mesa del alimentador horizontal, sobre la cual se deslizan los alimentadores (uno para cada vía de parrilla). Conforme los alimentadores se deslizan hacia atrás y hacia adelante, los residuos son empujados sobre la parrilla de incineración.
- Descripción del equipamiento del alimentador

El alimentador es accionado por el sistema hidráulico de forma que la carrera se pueda ajustar de forma contínua; así con cada carrera la misma cantidad volumétrica es empujada sobre la parrilla de incineración. Adicionalmente cada carrera de retorno se hace a la misma velocidad.

El ajuste contínuo de la carrera hacia adelante permite una medición uniforme y el ajuste inmediato del volumen requerido de los residuos. El número de carreras del alimentador se ajusta mediante el controlador del alimentador instalado en un gabinete de control ubicado en las inmediaciones de la zona de carga de residuos, desde donde puede operarse también manualmente.

Figura II—32. Alimentador (modelo de 3 vías).
Sistema de tratamiento térmico: parrilla enfriada por aire

- **Descripción funcional de la parrilla enfriadora por aire**

La parrilla incinera los residuos, garantiza una combustión contínua y una adecuada minimización de inquemados. Se trata de una parrilla inclinada hacia adelante con una inclinación de 18°. El tamaño de la parrilla está diseñado en base al diagrama de combustión (determinado por el rendimiento y el valor calorífico de los residuos).

La temperatura en la parrilla alcanza valores entre 1,000-2,000 °C.

La parrilla se compone de 5 vías con 6 zonas cada una.

- **Descripción del producto parrilla enfriadora por aire**

La parrilla, incluidas las tolvas de ceniza inferiores, se fija a la estructura de la cámara de combustión al final del alimentador por medio de un montaje de pivote que le permite moverse. La parrilla se asienta en la estructura de soporte de la parrilla que le permite moverse en respuesta a la expansión térmica. Los elementos de parrilla y las tolvas de ceniza se mueven con la parrilla a medida que se expande y se contrae.

Los módulos básicos de la parrilla son los elementos que unen longitudinalmente para formar una vía de la parrilla. Cada elemento de la parrilla es accionado por dos cilindros hidráulicos conectados en serie. Cada elemento tiene dedicado un bloque de control hidráulico.

El número de carreras por hora realizado por las hileras de bloques de parrilla móviles, se puede regular continuamente, mientras que la velocidad de avance y la duración de la carrera de trabajo no pueden cambiarse. El ajuste del número de carreras cambia el intervalo de tiempo entre dos carreras consecutivas; esto se realiza por medio de un sistema de control de impulsos electrónicos.
Elemento de la parrilla

Cada elemento de la parrilla tiene ocho hileras de bloques de parrilla, y cada hilera de bloques de parrilla móviles alterna con una hilera de bloques de parrilla fijos. Con la excepción de las placas laterales, los bloques fijos y móviles son idénticos, y son transportados por los tubos de retención de bloques.

Los tubos de retención de bloques para las hileras de bloques fijos, van apoyados en los soportes que se sujetan a su vez en la estructura de soporte fija del elemento de parrilla.

Los tubos de retención de bloques de las hileras de bloques móviles, están conectados a soportes que a su vez van fijos a los soportes de los carros de la parrilla que se mueven en la dirección del flujo de residuos. El carro de la parrilla, que permite que las hileras de parrilla móviles se muevan, está equipado con rodillos que se desplazan hacia adelante y hacia atrás sobre rieles inclinados.
Figura II—33. Elemento e hileras de bloques de la parrilla.
Bloque de la parrilla

Los bloques de la parrilla están hechos de acero fundido y de superficie maquinada. El aire primario fluye dentro de la capa de residuos a través de las aberturas en el extremo del bloque de parrilla.

El aire primario es guiado a través de los bloques; un buen control de la distribución del aire es posible gracias a las altas caídas de presión generadas a través de la parrilla en sí misma por la pequeña área de sección transversal de las aperturas.

Figura II—34. Bloque enfriado por aire.
Impulsor de parrilla

El carro de la parrilla con las hileras de bloques móviles del carro de parrilla está apoyado sobre la estructura de acero del elemento de parrilla y es movido por dos cilindros hidráulicos.

Sistema de control de impulso de la parrilla

El número ideal de las carreras de trabajo puede asignarse a cada elemento de parrilla por separado, en función del poder calorífico y del perfil de combustión.

Si hubiera un cambio en el poder calorífico y por lo tanto, en el perfil de combustión en la parrilla, la velocidad de carrera específica para los distintos elementos de parrilla se puede ajustar durante la operación a las nuevas condiciones de operación. El número de carreras de trabajo afecta no sólo la velocidad de producción y por lo tanto el volumen, sino también el efecto de ignición y, por lo tanto, el perfil de combustión.

Sistema de aire primario

- Descripción funcional del sistema de aire primario

Este sistema controla y suministra el aire primario de combustión a la parrilla. El aire primario es aspirado desde el foso de residuos y enviado por separado, a través del ventilador de aire primario, a la parte inferior de cada una de las zonas de la parrilla. El Sistema de Control De Combustión (CCS) proporciona un punto de ajuste a los controladores de flujo de aire primario de cada elemento de parrilla. Estos controladores actúan sobre la posición de las compuertas instaladas debajo de los elementos de parrilla.
A fin de mantener funcionando las compuertas regulables en su amplitud óptima, se suministra también un controlador de caudal de aire primario total que actúa sobre la velocidad del ventilador de aire.

En caso de que se reduzca el poder calorífico de los residuos, se incrementa el precalentamiento del aire. Por lo tanto, lo anterior garantiza que los productos de combustión sean correctamente quemados sin utilizar combustible auxiliar, o usando el mínimo necesario.

- **Descripción del sistema de aire primario**

El sistema se compone de todos los conductos de aire y los componentes desde la admisión de aire desde el foso de residuos hasta la parrilla.

Ventilador de aire primario

El ventilador de tipo radial y su unidad de control van montados juntos sobre una estructura de acero (placa base). El ventilador tiene una hélice balanceada estática y dinámicamente. Su cubierta está hecha de placa de acero con elementos de refuerzo externos. La velocidad del ventilador está controlada por un variador de frecuencia. El ventilador está equipado con aperturas para inspección y limpieza.

Precalentador de aire primario

Se encuentra instalado un precalentador de aire de dos etapas, calentado por vapor en el lado de presión del ventilador de aire primario. Al precalentador de aire se le suministran como medios de calentamiento: (vapor) desde el colector de vapor de baja presión, y vapor saturado de alta presión, desde el calderín de la caldera.
Como el aire primario contiene pequeñas cantidades de polvo, el área transversal abierta está ampliamente dimensionada y la disposición de los tubos se hace exclusivamente en línea. Se provee un número suficiente de aperturas para inspección y limpieza.

Se encuentra instalada una toma de aire adicional desde el recinto de calderas equipada con compuertas, que en caso de problemas en la toma en el foso (por ejemplo por ensuciamiento), pueden cambiar la fuente de aire primario al recinto de calderas en vez del foso.

Sistema de aire secundario

- **Descripción funcional del sistema de aire secundario**

Este sistema entrega y controla el aire de combustión secundario para quemar y mezclar los gases de combustión. Algunos de los componentes volátiles de los residuos no se queman directamente en la parrilla, sino que son liberados durante la exposición al calor y luego se queman conforme pasan a través de la cámara de combustión.

El aire secundario suministrado es parte del caudal total de aire necesario para la combustión completa. La inyección tangencial del aire secundario provoca un flujo en remolino en la cámara de combustión, lo que deriva en una buena mezcla de los gases de combustión y en una distribución uniforme del caudal en la dirección del flujo principal.
• **Descripción del sistema de aire secundario**

Este sistema se compone de los conductos de aire y de los componentes de la entrada a las boquillas de aire secundario en la cámara de combustión. El aire secundario se toma de la parte superior del recinto de calderas y se entrega a la cámara de combustión. Las compuertas, con ajuste local, están instaladas en las líneas de distribución a las boquillas de aire secundario, por lo que la correcta distribución de aire secundario podría predeterminarse durante la configuración inicial.

![Figura II—35.Esquema del Sistema de aire secundario.](image-url)
Ventilador de aire secundario

El ventilador de tipo radial y su unidad de control van montados juntos sobre una estructura de acero (placa base). El ventilador tiene una hélice equilibrada estática y dinámicamente. Su cubierta está hecha de placa de acero con elementos de refuerzo externos. La velocidad del ventilador está controlada por un variador de frecuencia. El ventilador está equipado con aperturas para inspección y limpieza.

Estación hidráulica

- Descripción funcional de la estación hidráulica

Se prevé instalar una estación hidráulica combinada para el alimentador de residuos, la parrilla y la compuerta de la tolva de alimentación. Las bombas y los elementos de control se colocan integradas sobre el depósito de aceite de la estación.

- Descripción del producto de la estación hidráulica

El aceite hidráulico es suministrado por una bomba hidráulica (con bucles que proporcionan redundancia para todos los grupos funcionales), con un sistema de control de flujo dependiente de la presión. Cada sistema tiene un bloque de control hidráulico separado con elementos de control eléctrico para realizar las funciones de la compuerta de la tolva de alimentación, el alimentador y la parrilla. Cada elemento de parrilla tiene un bloque de control independiente.

Un intercambiador de calor enfriado por agua va integrado en la línea de retorno del circuito hidráulico para enfriar el aceite hidráulico caliente.
Extractor de escorias tipo placas

- Extractor de escorias
Se trata de un equipo de accionamiento hidráulico o mecánico y está construido de una carcasa de chapa de acero con refuerzos suficientes y chapas de antidesgaste recambiables.
El extractor funciona en baño de agua, formando un cierre hidráulico con el horno; el nivel de agua se mantiene automáticamente, de modo que no se produzcan reboses y por lo tanto efluentes de aguas. Este equipo está diseñado de modo que el contenido de agua de las escorias que expulse sea el más pequeño posible. Asimismo, el extractor recibe los finos y metales fundidos eventualmente recogidos bajo el sistema de combustión. El equipo está separado del suelo a fin de facilitar la limpieza y dotado de trampilla hidráulica de evacuación de objetos voluminosos que obstruyan el paso.

La producción de escorias secas máxima esperada es de entorno a un 22 % en peso respecto a los Residuos de entrada. Estas escorias salen del extractor con un máximo de un 20 % de humedad y una densidad de entre 0.9 – 1.2 t/m3, de modo que la cantidad de producto húmedo por hora es de 10.43 t/h en carga nominal y 12.02 en diseño.

- **Descripción funcional del extractor de escorias**

La escoria cae a través de los conductos hasta el extractor de escoria tipo delantal y se enfriá en un baño de agua. El enfriamiento es parcialmente logrado por la evaporación de agua. El conducto de descarga de escoria y el extractor de escoria tipo cinta de placas, están conectados entre sí de forma hermética para proporcionar el aislamiento con respecto a la cámara de combustión. El circuito de control de nivel mantiene constante el nivel del agua. El agua del extractor de escoria se descarga en un depósito de aguas residuales.

El vapor de agua que se forma por evaporación en el extractor de escoria, sube parcialmente a la cámara de combustión a través del conducto de escoria.
• Descripción del equipamiento del extractor de escorias

El sistema de accionamiento utiliza un motor eléctrico y una transmisión de engranajes. La velocidad de descarga de la escoria puede ajustarse. El extractor de escoria en sí es un depósito hecho de placas de acero reforzado, con una construcción completamente soldada. Para reducir el desgaste, el depósito está revestido en el interior con placas antidesgaste. La cadena del transportador de placas es guiada sobre rodillos. El punto de inversión de dirección está configurado como un tensor de cadena, y está equipado con un sensor de desplazamiento.

A fin de reducir el desgaste, como en el extractor de escoria, el conducto de escoria también está revestido con placas de desgaste. La parte superior del conducto de escoria se apoya en la estructura de la parrilla.

Figura II—37. Extractor de escoria tipo cinta de placas.
Extracción de finos de parrilla

- Descripción funcional de la extracción de cenizas de parrilla

Este sistema elimina los finos de las zonas del alimentador y de la parrilla, y evita que el aire falso ingrese en la cámara de combustión a través de la parrilla.

La construcción de los bloques de parrilla de Hitachi Zosen Inova AG, minimiza el volumen de finos de parrilla. Debajo de cada elemento de parrilla y de cada alimentador, hay una tolva de finos de parrilla con una compuerta para recibir y descargar los finos de parrilla. El aire de transporte requerido se extrae del aire primario corriente arriba de la distribución, hasta los elementos individuales de la parrilla de cada zona. El sistema de transporte neumático lleva los finos de parrilla hasta el conducto de escoria.

Debe indicarse que las características de estos finos de parrilla son químicamente similares a las escorias siendo la única diferencia el tamaño de partícula y diferentes de las cenizas volantes recogidas en las tolvas de las calderas o en los residuos de depuración de gases.

La recogida de estos finos de parrilla y su mezcla con las escorias se realiza en todas las Plantas de Termovalorización ya que químicamente son similares.

Flujo óptimo en la cámara de combustión secundaria con inyección tipo remolino

- Descripción funcional

La geometría de la cámara de combustión secundaria está diseñada para optimizar las condiciones de flujo. Además, una mejora adicional es posible mediante la disposición de las boquillas de aire secundario que crean un remolino en la cámara de combustión
secundaria. Debido a este remolino, el flujo se homogeneiza con respecto de la temperatura, velocidad y concentración. Dicha configuración de flujo deriva en lo siguiente:

- Mejora del quemado de los gases de combustión.
- Perfil de temperatura uniforme en toda la cámara de postcombustión.
- Reducción de las concentraciones de CO de aprox. el 70 % (alrededor de 15 mg/Nm3).
- Se minimiza el riesgo de corrosión de las superficies de calentamiento sin protección, a través de una distribución uniforme de CO.
- Mejora el quemado de cenizas volantes.
- Reducción de la formación de dioxinas.

Este sistema se encuentra instalado como estándar en todas las plantas nuevas.

Figura II—38. Boquillas de inyección de aire secundario.
- Descripción del equipamiento de boquillas

Las boquillas de inyección de aire secundario están dispuestas de tal manera que se genera un remolino. El número de boquillas y sus ángulos se definen según los modelos numéricos de mecánica de fluidos y el conocimiento adquirido de la experiencia. Como un ejemplo, a continuación se muestra una posible configuración.

![Figura II—39. Disposición de boquilla típica (lado del foso de residuos)](image)

Extracción del horno de las escorias y su manejo

La configuración del sistema por línea consta de:

- 1 transportador vibrante.
- 1 separador de gruesos (grizzly).
- 1 cinta transportadora.
- 1 separación de metales ferrosos.
Estos equipos tienen el propósito de transportar las escorias desde el extractor de escoria, hasta el área de almacenamiento de escoria previsto.

Sobre el sistema de extracción de escoria se prevé realizar una extracción de gruesos mediante el separador previsto tipo grizzly y la separación de materiales ferrosos mediante un separador magnético.

![Separador magnético de correa superior](image.png)

Figura II—40. Separador magnético de correa superior.

- **Descripción funcional de sistema de extracción**

Los extractores de escoria transportan el material hasta el lado de la línea de incineración de residuos. Los gruesos resbalan sobre el separador integrado en un recipiente. Las fracciones de escoria más finas caen por el separador colocado en el extremo de los extractores en una cinta transportadora dispuesta transversalmente.

La cinta transportadora, acarrea la escoria final a la parte trasera de la planta de combustión y trae el material a una altura adecuada dentro de la zona de escoria, proporcionando suficiente volumen de apilamiento para 2 días.
Un separador de metal tipo “overband” se encuentra instalado encima de la cinta transportadora para extraer la fracción ferrosa de la escoria.

Figura II—41. Transporte de escorias.

Almacenamiento de escoria

Desde los extractores, la escoria incinerada se transportará a dos naves industriales de almacenamiento cubierta y cada una tendrá una capacidad de almacenamiento hasta de dos días. La escoria diariamente será extraída mediante cargadores frontales hasta los tracto camiones que transportarán el material a los sitios de disposición final.

Es importante señalar que la zona de almacenamiento estará protegida por una losa de concreto con canales que llevarán el agua de escorrentía del material (empleada en el
enfriamiento de escorias) al sistema de tratamiento de aguas, impidiendo de esta manera la existencia de escapes de material y líquidos en esta zona.

Cabe señalar que la escoria generada en la planta es considerada material inerte y se está estudiando la posibilidad de su uso como material de construcción.

Figura II—42. Zona de almacenamiento de escorias.

Sistema de control de la combustión (CCS)

- Descripción general del CCS

El sistema CCS previsto permite una operación segura y automática en gran medida, al punto de ajuste de flujo de vapor solicitado. Incluso con diferentes calidades de residuos, se asegura el cumplimiento de las condiciones de operación legales, tales como la temperatura de la cámara de combustión, la combustión completa de la
escoria y el contenido de oxígeno en los gases de combustión. Gracias a las intervenciones de control, se logran condiciones de combustión uniformes y, por lo tanto, se evita el estrés excesivo de los equipos, así como el ensuciamiento excesivo de la cámara de combustión.

Objetivos principales del CCS

- Controlar el flujo de vapor hasta el punto de ajuste predefinido.
- Mantener un constante flujo de aire de combustión en un punto de operación dado, dando lugar a condiciones óptimas para el sistema posterior de tratamiento de gases de combustión.
- Asegurar una combustión eficiente de los gases, manteniendo el contenido de oxígeno dentro de los valores esperados de trabajo (aproximadamente entre el 7-10 %) por medio del control simultáneo de la temperatura de combustión.
- Asegurar la posición del fuego necesaria en la parrilla para una eficiente combustión de los RSU y asegurando una presencia mínima de inquemados en las escorias (medidos como un contenido de Carbono Orgánico Total (COT) < 3 % en peso seco) así como una distribución uniforme de la temperatura en la cámara de combustión secundaria.

Estructura del CCS

El CCS es un circuito en paralelo compuesto de un control anticipado basado en los datos del diseño de la planta y del control de resultados PID multivariable. La parte del control anticipado predetermina la combustión al punto de operación deseado. Los controladores principales (flujo de vapor entre el 70 y el 100 % de la carga y contenido de O₂ entre el 7 y el 10 %) ajustan los valores básicos de funcionamiento, a fin de
estabilizar el proceso en el punto de operación. El control en cascada se usa para operar los subsistemas tales como el sistema de aire primario o la parrilla en el punto de ajuste exigido por el sistema de control de combustión.

El CCS está integrado en el sistema de control distribuido (DCS).

Figura II—43. Sistema de control de combustión CCS+ para una parrilla de 5 zonas sin gas de combustión recirculado.
Capacidad de control del CCS

Un ejemplo del rendimiento de control del CCS se ilustra en la siguiente figura. La administración eficaz del foso y de la mezcla de residuos, mejora la capacidad de control, de modo que pueden lograrse desviaciones estándar de hasta 1.5 %.

![Diagrama de rendimiento del control de datos HZI CCS de Lausana CH (1 min de media)](attachment:image)

Los cambios en los puntos de consigna se siguen eficazmente.

Figura II—44. Capacidad de control del CCS de HZI en Lausana (Suiza).

Un cambio en el punto de ajuste de flujo de vapor puede introducirse de manera instantánea y el CCS aumenta o disminuye suavemente el punto de ajuste del flujo de vapor interno, con una tasa máxima de variación de ~0.5 % por minuto.
En condiciones de funcionamiento normal, el contenido de O\textsubscript{2} en la salida de la caldera se mantiene dentro de una banda de ± 1.5 % del volumen alrededor del punto de ajuste.

- **Descripción funcional el CCS**

El cálculo del valor de funcionamiento básico del CCS utiliza el parámetro de diseño específico para la planta de combustión para calcular los valores de arranque adecuados para todas las variables de control, en función del punto de operación requerido en el diagrama de combustión. El punto de operación se define por el punto de ajuste de flujo de vapor predeterminado y el poder calorífico neto (PCN) esperado de los residuos. La aplicación de los valores básicos de funcionamiento para el alimentador, la parrilla y los flujos de volumen de aire de combustión, asegura que la combustión funcione de acuerdo con el diseño. Por lo tanto, se crean las condiciones de arranque óptimas para los controladores retroalimentados.

Control de estabilización (control PID multivariable)

El flujo de vapor vivo es la principal variable de control. El contenido de O\textsubscript{2} en los gases de combustión sirve como indicador rápido para la intensidad de la combustión, ya que se establece un constante flujo de aire de combustión total para el punto de operación distintivo. En el control de estabilización se utilizan ambas señales combinadas; los controladores principales funcionan en un circuito en paralelo. El retardo característico de la producción de vapor (3-5 min) puede ser compensado por la rápida reacción del contenido de O\textsubscript{2} para las condiciones de combustión modificadas (30 s).
Control de flujo de vapor vivo

Si el flujo de vapor vivo medido está por debajo del punto de ajuste, las velocidades de entrega del alimentador y de la parrilla se incrementan para elevar el rendimiento de los residuos. El caudal de aire primario se incrementa de forma simultánea. A fin de mantener el suministro de aire de combustión total constante, el caudal de aire secundario se reduce, respectivamente. La acción del CCS en el movimiento de la materia sólida, es más lento en comparación con la acción en el aire de combustión.

Por analogía, cuando el flujo de vapor vivo medido está por encima del punto de consigna, las intervenciones de control se invierten.

Intensidad de combustión de O₂

Si el contenido de O₂ medido está por debajo del punto de consigna, se reducen tanto la velocidad de entrega de la parrilla como el caudal de aire primario. Como consecuencia de mantener el suministro de aire de combustión total constante, el caudal de aire secundario se incrementa respectivamente.

Por analogía, cuando el contenido de O₂ medido está por encima del punto de consigna, las intervenciones de control se invierten.

Intervenciones del operador

El CCS permite al operador definir el punto de ajuste para el vapor vivo y ajustar la combustión al PCN esperado de residuos. En el caso de una modificación duradera de las propiedades de los residuos, la predeterminación de la amplitud del PCN puede utilizarse para ajustar todas las variables de control relevantes, según el diseño de la planta.
El ajuste de la posición del fuego permite al operador optimizar aún más el proceso de combustión de una manera intuitiva.

Mantenimiento de las condiciones de combustión

El CCS de HZI está diseñado de manera que la planta no funcione fuera de los límites admisibles de funcionamiento continuo, definidos por el diagrama de combustión (figura II-27). Lo anterior se garantiza por medio de los límites internos del programa, el ajuste de las estrategias de control y el seguimiento de los puntos de consigna.

Volúmenes de aire

En el balance de materia para la capacidad de trabajo nominal contenido en los planos y que se reproduce a continuación para el punto nominal se pueden consultar los volúmenes de aire primario y secundario usados en la combustión, así como los gases de combustión emitidos.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacidad de tratamiento nominal</td>
<td>187,420 kg/h</td>
</tr>
<tr>
<td>Aire primario (nominal)</td>
<td>125,399 Nm3/h</td>
</tr>
<tr>
<td>Aire secundario (nominal)</td>
<td>47,708 Nm3/h</td>
</tr>
<tr>
<td>Gases de combustión emitidos por chimenea (nominal)</td>
<td>219,076 Nm3/h</td>
</tr>
</tbody>
</table>
Figura II—45. Balance General de Masas.
II.2.1.1.2.2 Caldera de recuperación

Los gases resultantes del proceso de combustión en el horno son introducidos en una caldera de circulación natural, cuyo primer paso se integra en el horno, y donde tienen lugar los siguientes procesos:

 a. Recuperación del calor de los gases en forma de vapor sobrecalentado.
 b. Enfriamiento de los gases, hasta una temperatura de aprox. 135° C.
 c. Retención de parte de las cenizas volátiles.

En las paredes de las cámaras radiantes y en los haces convectivos (sobrecalentador, evaporador y economizador), se transfiere el calor de los gases al agua de la caldera, convirtiéndose en vapor.

Este vapor a condiciones nominales de 60 bar (a) y 420° C se extrae de la caldera mediante una tubería para llevarlo al colector principal de vapor para su posterior utilización. La extracción del vapor hacia el ciclo de energía se efectúa mediante una válvula motorizada, comandada desde la sala de mando.

La caldera es autoportante diseñada para ser implantada al exterior, su estructura permite la instalación de escaleras, plataformas y los accesos necesarios. La limpieza de las superficies convectivas de sobrecalentador, evaporador y del economizador se asegura mediante un mecanismo de golpeo.

Para la Planta se considera una caldera del tipo horizontal dada las ventajas importantes de la misma y que se exponen a continuación:

 • La limpieza en continuo mediante golpeo, optimiza igualmente el rendimiento del ciclo energético, siendo más eficaz que la de sopladores de vapor utilizados en calderas verticales.
Costos de inversión razonables ya que, con las características de vapor propuestas (420° C, 60 bar abs.) no es necesario recurrir a materiales especiales, permitiendo obtener sin embargo, unos rendimientos del ciclo energético acordes con los obtenidos en las Plantas Incineradoras más modernas.

Alta disponibilidad gracias a los amplios espaciados transversales entre tubos, sobrecalentadores convectivos a la entrada de los cuales la temperatura de los gases es inferior a 650° C. Menor desgaste de los tubos durante la limpieza gracias al sistema de golpeo. Minimización de los riesgos de corrosión gracias a las características del vapor especificadas.

Larga vida útil por los criterios de diseño especificados que, a su vez, minimizan las exigencias de calidad de los materiales.

Gran facilidad de mantenimiento gracias a la disposición horizontal de las superficies convectivas.

Otras ventajas adicionales que ofrece dicha caldera son:

- **Óptima recuperación de calor** al proponerse una temperatura de salida de los gases de combustión de unos 135 ºC.
- **Minimización del riesgo de incrustaciones** en las paredes de horno mediante la refrigeración de las mismas por tubos evaporadores que implica la integración de la caldera en la planta.
- **Mayor seguridad frente a ceros de tensión** que proporciona una caldera de circulación natural y menor consumo energético.
Descripción funcional de la caldera

La caldera convierte el calor de los gases de combustión en vapor sobrecalentado. Está diseñada como una caldera de circulación natural y se divide en 5 subsistemas principales:

i. El sistema economizador.
ii. El sistema del evaporador.
iii. El sistema del sobrecalentador.
iv. El calderín.
v. La purga de la caldera.

En el sistema economizador, el agua procedente del tanque de agua de alimentación se calienta a una temperatura cercana a la temperatura de ebullición. Esto se realiza a través de un proceso de convección mediante bancos de tubos.

Después de abandonar el sistema economizador, el agua se evapora en el sistema del evaporador. Esto se realiza mediante convección en bancos de tubos a través de radiación mediante paredes de membrana.

El calderín conecta los sistemas economizador y del evaporador. La mitad inferior del calderín se llena con agua y la mitad superior con vapor saturado. La caldera está diseñada de tal manera que el límite entre ambas fases (líquido/gas) está ubicado en medio del tambor.

Después abandonar el sistema del evaporador, el vapor saturado es calentado en un banco de tubos para alcanzar la temperatura de vapor requerida. Esta temperatura es controlada por inyección de agua mediante banco de tubos.
Una purga continua limita la cantidad de sales disueltas en el agua de la caldera, minimizando el riesgo de corrosión de la parte interior de los tubos de la caldera, por ejemplo, en el lado de agua vapor.

Figura II—46. Caldera de vapor.

- **Descripción funcional de la caldera**

La caldera de vapor consta de los siguientes 5 pasos:

1° paso de caldera de radiación vertical.
2° paso de caldera de radiación vertical.
3° paso de caldera de convección horizontal.
4° paso de caldera de convección vertical.
5° paso de caldera de convección vertical.
El calderín está situado por encima de 1° y 2° los pasos de la caldera. Está hecho de una fusión de acero estructural soldado y tiene dos bocas o puertas para permitir su inspección al interior.

Estación de toma de muestras

- **Descripción funcional de la estación**

En las plantas de energía es sumamente importante controlar la calidad de agua y vapor, que de otra forma, podría derivar en la corrosión de la parte interior de los tubos de la caldera o en otras fallas de función graves. La caldera está equipada con varias unidades de recogida de muestras y de enfriamiento. Todos los elementos de la instalación de toma de muestras que vayan a estar en contacto con las muestras de agua o vapor, estarán hechos de acero inoxidable.

![Estación de toma de muestras](image)

Figura II—47. Estación de toma de muestras.
• Descripción del equipamiento de la estación
La estación de toma de muestras manual o en línea, analiza las secuencias siguientes:
 • Condensado (pH calculado y conductividad).
 • Agua de caldera (pH y conductividad).
 • Vapor (conductividad).
 • Agua de alimentación (oxígeno, pH calculado y conductividad).

Sistema de limpieza de la caldera
Una caldera de incineración de residuos está inevitablemente expuesta a altas cargas de cenizas volantes. Por lo tanto, la eficacia de la superficie del intercambiador de calor se va reduciendo por el ensuciamiento durante el tiempo de operación. Por consiguiente, se suministra un sistema de limpieza en línea de las superficies de intercambio de calor por medio de ducha de agua, por dispositivo de golpeo neumático y por sopladores de hollín.

• Sistema de limpieza del paso de radiación
Un sistema de limpieza por agua del paso de radiación se encuentra instalado en el segundo paso de caldera. Este sistema permite una limpieza automática de las paredes de membrana por medio de agua inyectada, principalmente debido a la evaporación repentina del agua en las capas de polvo.
El sistema de limpieza por agua del paso de radiación puede introducirse en la caldera a través distintas boquillas de entrada situadas en la parte superior del segundo paso. El sistema debe moverse de una boquilla a otra manualmente con una grúa; el ciclo de limpieza en sí se monitorea desde la sala de control.

- **Dispositivo de golpeo para el paso de caldera de convección**

Para limpiar el banco de tubos en el paso horizontal, se utiliza un dispositivo de golpeo. Los cilindros accionados de forma neumática golpetean en los colectores del fondo de los haces. El golpeteo es transferido al colector por medio de un empujador y, desde allí, más adelante a los tubos. Debido al golpeteo, partes de la ceniza precipitada presentes en los tubos caen en las tolvas y se eliminan mediante el sistema de manejo.
de cenizas. El dispositivo de golpeo va instalado sobre un transportador de movimiento automático en ambos lados de la caldera.

Figura II—49. Dispositivo de golpeo neumático.

- **Sopladores de hollín**

Los sopladores de hollín, situados en los dos pasos economizadores verticales consiste en una lanza y un cabezal de boquilla en el extremo. Se mueven en dirección axial, más allá de las superficies de calentamiento que se van a limpiar. Las sopladores están protegidos por aire de sellado durante el modo de espera (stand-by). Uno de los sopladores de hollín se encuentra instalado corriente arriba y corriente abajo de cada paquete economizador, es decir, un total de 12 sopladores.
Como medio de soplado se utiliza vapor sobrecalentado, con una presión reducida a aproximada de 10 bars (g) corriente arriba del soplete o de las boquillas (presión ajustable).

- Sopladores de hollín entre los haces (8 piezas):
 - Sopladores giratorios
 - 8 boquillas (diámetro 16 mm) por soplador, distancia entre boquillas de aproximadamente 950 mm.
 - Desplazamiento de aproximadamente 1,000 mm (velocidad de 720 mm/min.).
 - Posición fuera de operación: llega a aproximadamente 7,000 mm en la caldera.
 - Rendimiento de vapor por soplador de aproximadamente 2 kg/s (10 bares g corriente arriba de la boquilla).

- Sopladores de hollín por encima de los haces más altos y por debajo de los haces más bajos (4 piezas):
 - Sopladores oscilantes (90° de oscilación).
 - 6x2 boquillas (13.5 mm de diámetro) por soplador, distancia entre pares de boquillas aproximadamente 1,200 mm, con un ángulo entre el eje de la boquilla (par) 90°.
 - Desplazamiento de aproximadamente 1,300 mm (velocidad de 720 mm/min.).
 - Posición fuera de la operación: llega a aproximadamente 6,700 mm dentro de la caldera.
 - Rendimiento de vapor por soplador de aproximadamente 2.2 kg/s (10 bares corriente arriba de la boquilla).
Los sopladores de hollín son accionados por un controlador de motor itinerante que, a través de engranajes reductores y de un tornillo de avance, conduce un carro a lo largo de un tubo guía de soporte. Un tubo de lanza, fijado al carro, impulsa un elemento a través de la caldera.

Figura II—50. Sopladores de hollín.

Sistemas de arranque y parada

El conjunto horno-caldera arrancará de forma manual siguiendo el protocolo indicado en el Manual de Operación del suministrador de los equipos (Hitachi Zosen Inova)
conforme a los procedimientos aplicados en las plantas suizas, el cual se describe a continuación:

- Se cargará el horno con un material combustible sólido (pe: restos de podas, madera).
- Se cargará una cantidad inicial en cada horno (estimativamente 150-200 kg de madera) se encenderá manualmente la masa presente en el horno, se procederá al arranque del sistema de aire de combustión y el ventilador de tiro y se seguirá alimentado el horno de forma automática desde las tolvas de alimentación durante las horas que establezca el procedimiento hasta llegar a la obtención de las temperaturas requeridas para introducir los residuos.
- Con podas/madera se necesitará aproximadamente 200-250 toneladas/línea para realizar la totalidad del proceso de arranque que suele durar en torno a 16 horas/línea.

Equipos de cámara de combustión y caldera

- **Descripción funcional de los equipos de cámara de combustión y caldera**

Los tubos de la cámara de combustión y del primer paso de la caldera estarán protegidos por un revestimiento refractario para:

- Facilitar el correcto encendido de los residuos.
- Mejorar la calcinación de los residuos en la parrilla.
- Proteger las superficies de calentamiento de la erosión.
- Proteger las superficies de calentamiento de las altas temperaturas de los gases de combustión (protección contra la corrosión).
- Proporcionar un elevado tiempo de permanencia de los gases en la zona de altas temperaturas para lograr una total combustión de los mismos.

Figura II—51. Revestimiento refractario en la cámara de combustión y en el primer paso de la caldera.
Acondicionamiento del agua de caldera

- **Descripción funcional del acondicionamiento del agua de caldera**

El agua de la caldera debe estar acondicionada por medio de productos químicos específicos a fin de minimizar el riesgo de corrosión de la parte interior de los tubos de la caldera (lado de agua y vapor).

- **Descripción del acondicionamiento del agua de caldera**

Se suministra un sistema de inyección de reactivo para facilitar el acondicionamiento del agua de la caldera. Se alimenta hidróxido de amonio NH₄OH continuamente en el tubo de agua de alimentación, entre el tanque de agua de alimentación y las bombas de agua de alimentación. El propósito de este producto químico es aumentar el pH y, por lo tanto, evitar la corrosión.

El fosfato trisódico Na₃PO₄ se alimenta de forma discontinua en el tubo de agua de alimentación, antes del economizador de la caldera, pero después de los tubos de unión de agua de pulverización.

Protección contra la corrosión

Como elementos de protección contra la corrosión se pueden citar los siguientes:

- Zona superior de la parrilla y primer paso de radiación de la caldera: Placas de refractario de Carburo de Silicio al 76 %.
- Zona inferior de la parrilla: concreto refractario Al₂O₃ al 38 %.
- Segundo paso de radicación de la caldera desde el techo de caldera hasta el punto de giro del primer al segundo paso: revestimiento de Inconel 625.
- Evaporador de muro intermedio en ambos lados: revestimiento de Inconel 625.
• Evaporador en bandera en ambos lados: revestimiento de Inconel 625.
• Colectores y tubos de rejilla entre primer y segundo paso de radicación de la caldera: revestimiento de Inconel 625.

Temperaturas de funcionamiento

Las temperaturas de funcionamiento de todo el ciclo de termovalorización de la planta se muestra en el balance de masas (Figura II-44. Balance general de masas) para 1 línea y que se resume a continuación:

Tabla II-12. Temperaturas de funcionamiento del ciclo de aprovechamiento térmico.

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Temperatura de funcionamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parrilla de combustión</td>
<td>Entre 1,110 y 1,200 ºC</td>
</tr>
<tr>
<td>Salida de caldera</td>
<td>130 - 135 ºC</td>
</tr>
<tr>
<td>Emisión por chimenea</td>
<td>125 - 130 ºC</td>
</tr>
</tbody>
</table>

II.2.1.1.2.3 Unidades de tratamiento térmico de residuos

Tabla II-13. Características de las unidades de tratamiento.

<table>
<thead>
<tr>
<th>Datos de operación y diseño:</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generales</td>
<td></td>
</tr>
<tr>
<td>Número de líneas de tratamiento térmico</td>
<td>Uds.</td>
</tr>
<tr>
<td>Disponibilidad mínima anual (por línea)</td>
<td>h/año</td>
</tr>
<tr>
<td></td>
<td>documento de garantía</td>
</tr>
</tbody>
</table>
Datos de operación y diseño:

<table>
<thead>
<tr>
<th></th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga mecánica horaria continuo por línea (PCI promedio)</td>
<td>t/h 46.9 (LPN)</td>
</tr>
<tr>
<td>Carga mecánica horaria máxima en continuo por línea</td>
<td>t/h 53</td>
</tr>
<tr>
<td>Carga térmica máxima en continuo por línea</td>
<td>MW 120</td>
</tr>
<tr>
<td>Sobrecarga temporal (mecánica y térmica) admisible</td>
<td>% 10</td>
</tr>
<tr>
<td>Carga mecánica diaria en continuo (total líneas)</td>
<td>t/día 4’500 (LPN)</td>
</tr>
<tr>
<td>Poder calorífico inferior residuos. Promedio/rango admisible (min/máx.)</td>
<td>kJ/kg / kJ/kg 7’000 / 11’720</td>
</tr>
<tr>
<td>Poder calorífico inferior de residuos mínimo sin uso combustible auxiliar</td>
<td>kJ/kg 7’000</td>
</tr>
</tbody>
</table>

Sistema de alimentación (por línea)

- Dimensiones tolva/alimentador de carga de residuos (superior e inferior) m x m Superior: 6.7 x 16.7 Inferior: 1.2 x 14.7
- Volumen dentro de la tolva / conducto de alimentación m³ / m³ 360 / 88.6
- Material tolva y espesor - / mm S 235 JR /10mm
- Alimentador. Nº de empujadores / Materiales 5 / S 235 JR y un poco de acero resistente al calor

Sistema de tratamiento térmico

- Tipo - Reja móvil delantera
- Dimensiones / Superficie m x m / m² 12.25 x 15.23 / 186.57
- Número de secciones longitudinales Uds. 6
- Número de pistas Uds. 5
- Pendiente (inclinación) grados 18
- Carga térmica por unidad de superficie kW/m² 653
- Carga mecánica por unidad de superficie kg/(m² x h) 255
- Sistema de refrigeración / número de zonas Uds. Parrilla refrigerada por aire (no hay zonas refrigeradas por agua)

Quemadores auxiliares (por línea)
APROVECHAMIENTO DEL PODER CALORÍFICO DE LOS RESIDUOS SÓLIDOS URBANOS PARA LA GENERACIÓN DE ENERGÍA ELÉCTRICA

Datos de operación y diseño:

<table>
<thead>
<tr>
<th></th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Combustible auxiliar</td>
<td>tipo quemador de fuel</td>
</tr>
<tr>
<td>- Número de quemadores</td>
<td>Uds. 2</td>
</tr>
<tr>
<td>- Potencia térmica de diseño por unidad</td>
<td>MW 40</td>
</tr>
<tr>
<td>- Consumo combustible por quemador</td>
<td>kg/h Nm3/h 3,372</td>
</tr>
</tbody>
</table>

Sistema recogida finos bajo parrilla/extracción escorias

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>- Sistema recogida finos (tipo)</td>
<td>Neumática</td>
</tr>
<tr>
<td>- Sistema extracción escorias (tipo)</td>
<td>Desecoriador de bandas vía húmeda</td>
</tr>
<tr>
<td>- Número extractores escorias por línea</td>
<td>Uds. 1</td>
</tr>
<tr>
<td>- Capacidad de diseño extractor escorias</td>
<td>t/h 21.5</td>
</tr>
<tr>
<td>- Contenido agua máximo en escorias a salida extractor de escorias / Consumo agua extractor escorias (100%MCR)</td>
<td>% / kg/h 19 3’100</td>
</tr>
</tbody>
</table>

Sistema de aire de combustión (por línea)

<table>
<thead>
<tr>
<th>Conductos de aire. Material y espesor</th>
<th>-/mm</th>
<th>S235 / 4</th>
</tr>
</thead>
</table>

Ventilador de aire primario (por línea)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>- Caudal nominal</td>
<td>Nm³/h 125'399</td>
</tr>
<tr>
<td>- Presión estática de diseño ventilador</td>
<td>mbar 45</td>
</tr>
<tr>
<td>- Potencia instalada por unidad</td>
<td>kW 450</td>
</tr>
</tbody>
</table>

Ventilador de aire secundario (por línea)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>- Caudal nominal</td>
<td>m³/h 47'708</td>
</tr>
<tr>
<td>- Presión estática de diseño ventilador</td>
<td>mbar 45</td>
</tr>
<tr>
<td>- Potencia instalada por unidad</td>
<td>kW 250</td>
</tr>
</tbody>
</table>

Precalentamiento aire primario

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>- Caudal de aire a precalentamiento (100%MCR)</td>
<td>Kg/s 17.1</td>
</tr>
<tr>
<td>- Temperatura de diseño de precalentamiento de aire (in/out)</td>
<td>ºC 22 / 145</td>
</tr>
<tr>
<td>- Potencia térmica precalentador</td>
<td>kW 5,620</td>
</tr>
<tr>
<td>- Consumo de vapor / presión vapor</td>
<td>Kg/h / bar a 8,229 / 8</td>
</tr>
</tbody>
</table>

Precalentamiento aire secundario
Datos de operación y diseño:

<table>
<thead>
<tr>
<th></th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Caudal de aire a precalentamiento (100%MCR)</td>
<td>Kg/s</td>
</tr>
<tr>
<td>- Temperatura de diseño de precalentamiento de aire (in/out)</td>
<td>ºC</td>
</tr>
<tr>
<td>- Potencia térmica precalentador</td>
<td>kW</td>
</tr>
<tr>
<td>- Consumo de vapor / presión vapor</td>
<td>Kg/h / bar a</td>
</tr>
</tbody>
</table>

Calderas de recuperación (datos por línea)

<table>
<thead>
<tr>
<th></th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacidad térmica de diseño en continuo</td>
<td>MWt</td>
</tr>
<tr>
<td>Número de pasos radiantes / convectivos</td>
<td>Uds.</td>
</tr>
<tr>
<td>Presión del vapor producido</td>
<td>bar(a)</td>
</tr>
<tr>
<td>Temperatura del vapor producido</td>
<td>ºC</td>
</tr>
<tr>
<td>Producción de vapor 100% MCR (tras 8.000 h operación)</td>
<td>t/h</td>
</tr>
<tr>
<td>Producción de vapor 100% MCR (tras 1.500 h operación)</td>
<td>t/h</td>
</tr>
<tr>
<td>Temperatura del agua de alimentación</td>
<td>ºC</td>
</tr>
<tr>
<td>Caudal de diseño de gases de combustión (C.N. húmedos)</td>
<td>Nm³/h</td>
</tr>
<tr>
<td>Temperatura gases combustión salida caldera (tras 8.000 h operación)</td>
<td>ºC</td>
</tr>
<tr>
<td>Eficiencia caldera (tras 1.500 h / 8.000h) @ LPN Acc. FDBR GL 7: (\eta = \frac{Q_N}{(Q_N + Q_{V,ges})})</td>
<td>[%] / [%]</td>
</tr>
<tr>
<td>Superficie: Paredes membrana de agua (verticales y horiz.) / banco/s evaporador/es / banco/s sobrecalentadores / banco/s economizadores</td>
<td>m²</td>
</tr>
<tr>
<td>Paredes membrana de agua (verticales y horiz.) / banco/s evaporador/es / banco/s sobrecalentadores / banco/s economizadores</td>
<td></td>
</tr>
<tr>
<td>Refractario (material y superficie)</td>
<td>- / m²</td>
</tr>
</tbody>
</table>
Datos de operación y diseño:

Cladding (revestimiento: material y superficie)	- / m²	Ver figura II-48 (dibujo refractario de la caldera) Inconel 625 / 551
Tubos. Material, Diámetros y espesores: paredes membrana verticales / paredes membrana horizontales / evaporadores / sobrecalentadores / economizadores	- / mm/mm	Para más detalles, consulte la especificación de la caldera
Volumen Calderín	m³	265 (Volumen de operación: 122)
Sistema de limpieza (pasos radiantes / convectivos)	Tipo	Limpieza de la ducha / sacudidor neumáticos / Soplador de hollín
Recogida y transporte de cenizas volantes. Tipo y capacidad	Tipo / kg/h	Transportador de cadena a través / 400

Sistema reducción NOx (SNCR)

Agente reductor. Tipo y consumo por línea (100%MCR)	Tipo / kg/h	Agua de amoníaco 24.5% / 58 (@LPN)
Número de niveles de inyección / boquillas por nivel	Uds./ Uds.	3 / 18
Concentración NOx (gas sucio / gas limpio). Gas seco	mg/Nm³	271 / 200
Volumen tanque almacenamiento agente reductor	m³	60

II.2.1.1.3 Recuperación de energía

El propósito del sistema es utilizar el vapor producido en las calderas en la generación de energía eléctrica mediante un ciclo térmico con extracción de parte del vapor expandido en turbina para suministro de calor. Además de la producción eléctrica, se aprovechan las extracciones de turbina para suministro de calor a diferentes
consumidores (precalentadores de aire, de condensados y desgasificador), finalmente se recuperan los condensados producidos para alimentar nuevamente las calderas de vapor en ciclo cerrado.

Figura II—52. Esquema de las áreas para generación de energía.
Figura II—53. Ubicación del área de recuperación de energía en el proyecto.
II.2.1.3.1 Turbogenerador de vapor

El diseño de la turbina se ha enfocado en un sistema que divide la turbina de vapor con descarga axial, según las entradas de vapor en solamente una etapa.

Todos los componentes son módulos estandarizados. La turbina de vapor es un diseño tándem de componentes con ejes individuales rígidamente acoplados.

El sistema de apoyo de la turbina está diseñado para soportar las fuerzas de reacción de tubería eliminando la necesidad de soportes en los puntos terminales de tuberías de vapor principal y recalentado.

El conjunto de eje y carcasa se expanden desde un punto fijo común axial, que será el pedestal del rodamiento o cojinete. La expansión de la carcasa exterior más cercana al generador se transmite a la carcasa más alejada por medio de pernos de empuje. Este arreglo minimiza las expansiones relativas entre las partes fijas y móviles de la turbina. La turbina prevista es de Alta Presión de flujo simple con álabes de alta presión.

El vapor entra en la carcasa cerca de su centro y fluye a través del cuerpo de alta presión hacia el pedestal de rodamiento anterior.

Un cojinete de empuje combinado se localiza en el pedestal de soporte. Este pedestal de soporte será el punto fijo para la carcasa exterior y la carcasa interior, por lo tanto, la expansión térmica de ambos, rotor y carcasas será en la misma dirección.

El sistema se compone principalmente de los siguientes componentes:

- Conexiones mediante válvulas de control principal así como de paro.
- Carcasa exterior.
- Carcasa Interior.
- Extracciones de turbina (4).
- Rotor.
• Soporte de la carcasa Interior.
• Pernos de empuje.
• Centrado de la carcasa interior.
• Admisión de vapor.
• Salida de vapor hacia el ducto del aerocondensador.
• Rotor.
• Ventilación.
• Pedestales de cojinetes.
• Cojinetes.
• Cojinetes auxiliares.

La última estación consiste en una salida hacia el ducto del aerocondensador. En los brazos soporte que se extienden a través de los soportes de los cojinetes, y que son conectados al bloque de cilindro de la turbina de aguas arriba, se roscan pernos de empuje. Los tornillos de empuje conectan la carcasa interior de baja presión al bloque de cilindro que le corresponda axialmente, en dirección hacia el lado del generador. La expansión térmica de los bloques de cilindros de la turbina es acumulativa. Se consiguen ligeros espacios axiales gracias a la expansión térmica del eje y la cubierta originados desde un punto común, el cojinete de sustentación y empuje.

El rotor está diseñado con un sistema de cojinetes para su soporte. Esta configuración es diseñada para minimizar el impacto de las distorsiones en la cimentación por las tensiones en los cojinetes y proporcionar un funcionamiento suave.

Todos los cojinetes serán lubricados por aceite. El cojinete frontal de la turbina de alta presión está diseñado como un rodamiento de doble cuña, con el suministro de aceite bilateral para sustentación constante del peso del rotor. Los otros cojinetes serán
cojinetes de película de aceite, estos cojinetes requieren menos aceite lubricante y generan sólo pequeñas pérdidas por fricción.

Motor virador

El motor virador se utiliza para girar el rotor a diferentes revoluciones por minuto durante el arranque o enfriamiento, de manera que se caliente uniformemente y se reduzca la posibilidad de distorsión.

Consistirá en un motor de corriente alterna, embrague de sobrevelocidad, actuador, engrane, componentes del sistema de lubricación, eje intermedio incluyendo cojinetes requeridos y partes unidas integradas en la unidad.

Durante la aceleración de la turbina, la sujeción del embrague giratorio saldrá y romperá la conexión. Para limitar el desgaste a altas velocidades, la fuerza centrífuga levantará los mecanismos de sujeción para proteger el rodamiento exterior.

Virador manual

Un virador manual consistente de un trinquete y un nivel localizado en un lugar de fácil acceso. Cuando el indicador de nivel, los trinquetes engranan en el anillo de engranaje de la brida de acoplamiento del rotor, lo que permite que el rotor gire lentamente.

Válvulas de vapor

Éstas serán válvulas de aislamiento montadas en las líneas de admisión de vapor principal de la turbina. La función de dichas válvulas será proteger la turbina e interrumpir el flujo en caso de disparo.
Las válvulas de control ajustan el flujo de vapor para cumplir las condiciones de carga requeridas. Las válvulas de corte y de control se montarán en un cuerpo común.

Se incluyen filtros integrales en el cuerpo de la válvula de corte de la línea de vapor principal, diseñados para mantener partículas extrañas fuera de la sección de admisión y álabe de la turbina.

El anillo metálico de sellado será instalado en la carcasa y diseñado para alto grado de resistencia a la fuga y excelente resistencia al desgaste.

Sistema de aceite

El sistema de aceite será utilizado para:

- Lubricación y refrigeración de los cojinetes.
- Accionamiento hidráulico de las válvulas de paro y control de turbina.

El sistema de suministro de aceite consiste en un tanque de aceite principal, bombas, válvulas y tuberías de interconexión. El sistema proporcionará el volumen requerido de aceite a todos los consumidores con la presión necesaria para el correcto funcionamiento y consistirá de las siguientes partes o equipos principales:

- Dos bombas principales de aceite de accionamiento eléctrico de Corriente Alterna (CA), una en operación y una de respaldo. También puede encontrarse una sola bomba accionada por acoplamiento con el rotor de la turbina. 100%.
- Bomba de emergencia de aceite de accionamiento eléctrico por corriente directa (CD). 100%
- Control de temperatura del aceite. 100%
- Sistema de extracción de vapor de aceite.
- Tanque de aceite principal.
- Filtros.
- Refrigeradores de aceite.

El aceite de control se encuentra separado del aceite de lubricación utilizando un sistema diferenciado, en el que se incluyen otro tanque y un sistema de bombeo específicos.

Sistema de vapor de sellos

La función del sistema de vapor de sellos es inhibir las pérdidas en los sellos del eje y por tanto la entrada de aire en la turbina de vapor o el condensador. Éste consistirá de las siguientes partes o equipos principales:

- Sistema de vapor de cierres.
- Sistema de extracción de vapor de cierres.

Sistema de drenaje

La condensación producida en la turbina de vapor en las válvulas asociadas y en los internos de las líneas de vapor será recogida por el sistema de drenajes. El sistema consistirá de las siguientes partes o equipos principales:

- Válvulas de control de drenajes.
- Tanque de drenajes.
- Ventilador.
Conexión de turbinas al ducto del aerocondensador

La turbina de vapor se unirá al ducto del aerocondensador mediante una junta de dilatación. El ducto del aerocondensador recibirá las corrientes de la salida de baja presión de turbina de vapor, del sistema de by-pass de vapor y los vapores del flasheo del pozo caliente (o hotwell), donde se recogen y se refrigeran los drenajes de vapor mediante aporte de agua.

Control turbina de vapor

El controlador digital de la turbina de vapor, controla el caudal de vapor que pasa a través de las válvulas de control hacia la turbina. Dependiendo de los requerimientos de operación, se controla la variable correspondiente:

- Velocidad.
- Válvula de admisión.
- Presión de vapor (alta o HP).

El sistema de control tiene las siguientes características:

- Arranca el generador de la turbina.
- Ajusta la velocidad de la turbina con la frecuencia de la red, mediante el sincronizador automático.
- Regula la carga del generador con el controlador de admisión.
- Activa el corte de válvulas de control de turbina mediante el controlador de presión límite.
- Transfiere el control desde control de admisión.
- Limita la sobrevelocidad de la turbina.
Sistema de protección

El sistema de protección de turbina consiste en:

- Protección de sobrevelocidad.
- Protección por disparo.

El sistema de protección de la turbina está diseñado para detener el generador de la turbina rápidamente, y evitar posibles daños cuando se han superado ciertos límites de operación, y que pudieran resultar peligrosos.

Para la protección por sobrevelocidad se toma la velocidad de la turbina mediante la ayuda de sensores de campo (sensores de velocidad). La monitorización de entrada y un módulo de alarma controlado por frecuencia son suministrados por cada interruptor magnético de campo. Lo primero que se requiere para realizar este disparo es interrumpir el suministro de vapor actuando sobre las válvulas de corte.

El sistema de disparo de la turbina está implementado en el controlador de la turbina de vapor, además incluye funciones de seguridad.

Monitoreo de temperatura

En el arranque, la turbina de alta presión está expuesta a temperaturas de vapor que son generalmente más altas que la de los componentes de la turbina. Mientras que las láminas de la turbina alcanzan más rápidamente la temperatura del vapor, la temperatura del eje varía más despacio. Por lo tanto se monitorean las temperaturas
para controlar las variaciones admisibles en la turbina y que cumple con el máximo margen que indica la IEC².

Control maestro de la turbina

Las características de este control maestro es llevar la turbina a un estado que permita una transición segura y fiable de la turbina de vapor, desde el estado de parada a operación en carga. Este control incluye un sistema auxiliar control arranque automático. Se arrancará de forma automática los siguientes sistemas:

- Control de arranque y paro automático.
- Control de presión y temperatura del circuito de vapor.
- Control hidráulico de alta presión.
- Control de aceite de lubricación.
- Control del motor virador.
- Control del generador y partes eléctricas.

El programa de arranque está completo tan pronto como el controlador de la turbina se ha cambiado a control de presión de entrada o control de carga.

La parada automática lleva al turbogenerador desde operación en carga a un estado definido, en el cual las válvulas de la turbina están completamente cerradas y el generador separado de la red.

Finalmente el sistema automático tiene la opción de pasar a modo manual.

² Comisión Electrotécnica Internacional, es la organización mundial líder que publica Normas Internacionales globalmente pertinentes para todas las tecnologías eléctricas, electrónicas y demás relacionadas. https://es.wikipedia.org
Válvulas de control de la turbina

El sistema hidráulico es usado para la operación de las válvulas de control y de parada. Para suministrar fluido de control se utiliza una unidad de suministro de aceite de hidráulico.

Vibraciones

Existe un sistema que supervisa las vibraciones y se mide también por referencia de fases.

El objetivo de la protección de vibraciones es asegurar la integridad de la turbina en caso de daño. Los datos de vibraciones suministran una información importante para la operación mecánica de la turbina.

Otros controles importantes dentro del sistema de control de la turbina de vapor son:

- Control de válvulas de drenaje y trampas de drenaje.
- Control de vapor de sellos del eje.

Generador eléctrico de la turbina de vapor

El generador cumplirá con la norma IEC60034\(^3\). El generador eléctrico, será diseñado para una capacidad igual o mayor al valor máximo de potencia generada por la turbina sobre el rango total de la temperatura ambiente especificada. El generador y las bobinas excitadoras tendrán aislamiento no higroscópico y de clase tipo “F”, pero

\(^{3}\) Norma internacional de la Comisión Electrotécnica Internacional para máquinas eléctricas rotativas. https://es.wikipedia.org
teniendo incrementos de temperatura, que no exceda la clase “B”, bajo cualquier condición de operación dentro de la capacidad de salida especificada.

La elevación de temperatura de los diferentes componentes así como el método de medición deben cumplir lo indicado en las normas IEEE Std C50.13-2005\(^4\) e IEC 60034-3\(^5\) o similares para el aislamiento clase B. La calidad del generador y accesorios estará de acuerdo a los requerimientos de ISO-9001, EN29001 o BS5750 parte 1 y otros estándares internacionales de calidad equivalentes.

Se aceptarán e implementarán los ajustes proporcionados por la Comisión de los relevadores de disparo por alta y baja frecuencia, dentro de los rangos permitidos de acuerdo con la información del fabricante del turbogenerador, los cuales no rebasarán los rangos establecidos en la tabla anterior y en base a las condiciones del Sistema Eléctrico Nacional.

El generador y transformador principal deben suministrar sus potencias nominales en el rango de voltaje nominal de ±5%.

- **Sistema de excitación del generador eléctrico**

El sistema de excitación está diseñado para el generador con conexión directa con el rotor devanado de campo por medio de anillos colectores y escobillas. Puentes de tiristores de potencia redundantes (N + 1) guiada por el controlador automático que regular la tensión de voltaje de la máquina y/o la corriente de excitación en modo manual.

\(^4\) Estándar para generadores síncronos de 50 Hz y 60 Hz con rotor cilíndrico nominal 10 MVA y superior. https://standards.ieee.org/findstds/standard/C50.13-2005.html

\(^5\) Máquinas eléctricas rotativas - Parte 3: Requisitos específicos para generadores síncronos impulsados por turbinas de vapor o turbinas de gas de combustión. https://webstore.iec.ch/publication/135
La energía para la excitación se suministra desde terminales del generador al transformador de excitación al puente rectificador y luego se transmite al anillo colector de generador del devanado del rotor. El sistema de excitación cumple con los requisitos de la IEC, EN\(^6\) (o similar).

- **Sistema de enfriamiento del generador eléctrico**

El generador es refrigerado por aire. Se proporciona refrigeración indirecta para el devanado del estator. El embobinado del rotor es directamente enfriado de forma radial. Bajo la consideración de los requisitos magnéticos, el núcleo del estator está equipado con un sistema de conductos de refrigeración radiales y actúa como un disipador de calor para el devanado del estator. Este sistema de refrigeración, junto con el sistema de enfriamiento directo para el devanado del rotor garantizar un nivel uniforme y baja temperatura a lo largo de la totalidad de las ranuras.

Todo el aire de refrigeración se hace circular por dos ventiladores de flujo axial dispuestos simétricamente.

El circuito generador de enfriamiento es de un diseño de bucle cerrado. El aire caliente del generador es vuelto a enfriar por medio de un enfriador de aire a agua (TEWAC - totalmente cerrado). Estos refrigeradores se encuentran debajo de una cubierta de refrigerador conectado a un lado de la cubierta del generador.

Aerocondensador y sus auxiliares

El aerocondensador, como antes dicho, está conectado a la turbina.

Ductos:
El vapor a baja presión se conducirá de la salida de la turbina de vapor al cabezal principal de distribución mediante tubería de acero. El vapor continuará su trayecto hasta cada uno de los cabezales localizados en la parte más alta del aerocondensador (lugar donde se generará el vacío) mediante “risers” y se distribuirá uniformemente en cada módulo de enfriamiento. Los tubos, piezas de transición, codos o cambios de dirección se construirán a base de placas o segmentos de tubo recto, todo el material será acero al carbón con recubrimiento exterior.

Estructura de Soporte:
La estructura de soporte del aerocondensador estará diseñada para soportar las tuberías de vapor, tuberías de condensado, haces de tubos aleteados, motores, reductores, ventiladores, plataformas, pasillos, escaleras, equipo auxiliar, rieles guía, soportes para grúas y polipastos, entre otros. Toda la estructura anclada y no anclada cumplirá con todos los aspectos constructivos marcados por las normas, códigos, recomendaciones y medidas locales para la construcción.
La plataforma de ventiladores estará provista de barandales de protección y un pasillo en toda su longitud diseñado para pasar libremente y soportar la pieza más pesada del equipo mecánico. El aerocondensador tendrá escaleras localizadas en los extremos de la misma, con alcance hasta la plataforma de ventiladores desde el nivel del piso.

Haces Tubulares Aleteados:
Los haces de tubos aleteados serán rígidos, de diseño modular para manejarse ensamblados por bloques. Los soportes de los tubos mantendrán rígida su posición sin que estos lleguen a flexionarse o comprimirse; el peso de los tubos se deberá de
transmitir de manera uniforme a la estructura. Las aletas serán del tipo extruido o bien soldadas de acero galvanizado o aluminio alrededor del tubo liso de acero al carbón galvanizado; estas cubrirán en su totalidad la superficie del tubo, garantizando una adecuada transferencia de calor.

Las aletas serán lo suficientemente resistentes para no tener deformaciones durante la instalación y mantenimiento. La limpieza de los haces tubulares será mediante un sistema semiautomático.

Celdas:

Las celdas estarán compuestas por la estructura de soporte principal y los siguientes equipos mínimos necesarios: ventiladores axiales, reductores de velocidad, motores eléctricos, acoplamientos, cubiertas de ventiladores, anillos de ventiladores y demás equipos y accesorios. Los equipos de las distintas celdas serán idénticos y sus equipos intercambiables. El arreglo permitirá la facilidad de tomar previsiones para poder moverlos, dar mantenimiento, cambiar piezas e inspección visual de todos los equipos.

Ventiladores:

El ventilador estará diseñado de acuerdo con las características aerodinámicas del circuito de aire y del nivel de ruido requerido por normatividad en el perímetro del predio. Las aspas del ventilador serán de ángulo variable de forma manual para permitir la regulación del flujo de aire hasta alcanzar el flujo requerido para el cual fue diseñado el aerocondensador, fijándose el ángulo en esta posición. El conjunto motor-reductor-ventilador cumplirá los límites de vibración establecidos, sin la necesidad de utilizar elementos para su rigidez y amortiguamiento.
Cubiertas del Ventilador:
Alrededor de las aspas del ventilador se instalará una cubierta (anillo del ventilador), que proporcionará protección al ventilador y servirá además para guiar el flujo de aire a través del equipo, disminuyendo el escape periférico de aire y evitando la recirculación de aire caliente. Tanto el anillo del ventilador como la malla de protección serán diseñados e instalados de acuerdo a lo especificado de tal manera que no se afecte el funcionamiento y la eficiencia del aerocondensador.

Instrumentación y Control:
La instrumentación en el Aerocondensador será como mínimo la siguiente: Monitoreo de las condiciones operativas de cada ventilador desde las estaciones de operación del SCD en el cuarto de control. Se incluirán mediciones analógicas de vibración de los ventiladores, así como de temperatura y corriente eléctrica de los motores; Indicadores de presión e indicadores de temperatura (tipo sistema lleno) incluyendo termopozo, instalados en los cabezales de llegada de vapor al aerocondensador.

Recubrimientos:
Todas las superficies exteriores de las unidades y accesorios suministrados, exceptuando las áreas pulidas y las aletas de los tubos, se suministrarán limpias y protegidas.
II.2.1.1.3.2 Desgasificador, bombas de agua de alimentación y otros elementos del ciclo

Precalentador de baja presión

Para optimizar la eficiencia del ciclo de vapor de agua, el condensado principal se precalienta antes de entrar en el depósito de agua de alimentación. Como medio de calentamiento, se utiliza vapor de purga a baja presión de la turbina de vapor. El vapor de purga se condensa en el precalentador de baja presión. Este condensado se bombea al conducto de condensado aguas abajo del tanque de alimentación de las bombas de condensado (bombas de precalentador de drenaje LP).

El nivel de condensado en el precalentador LP se mantiene constante. La bomba de condensado está protegida contra el funcionamiento en seco.

Con el fin de evitar el desbordamiento del precalentador y el reflujo del condensado en la turbina de vapor, el precalentador está equipado con un drenaje de emergencia, conectado al depósito de condensado principal, así como una válvula de cierre en la línea de vapor de purga. Además, el precalentador principal de condensado se pasará automáticamente por el lado del condensado principal.

Desgasificador

El sistema de agua de alimentación suministra al agua de alimentación los parámetros y el caudal adecuados a las calderas. Además, el contenido de O$_2$ y CO$_2$ en el agua de alimentación se reduce por desgasificación térmica. El sistema incluye el depósito de agua de alimentación con desgasificados y las bombas de agua de alimentación de la caldera.
El desgasificador es parte del tanque de agua de alimentación. Para eliminar O₂ y CO₂, el desgasificador debe calentarse. La fuente de calor se extrae de vapor de la cabecera LP1. El desaireador está controlado por presión. La presión corresponde a una temperatura de ebullición de aproximadamente 120°C, que es la temperatura del agua de alimentación suministrada a las calderas.

En resumen, el desgasificador es el tanque desaireador de alimentación de la caldera y tiene 3 funciones principales en una caldera:

- Extraer el oxígeno disuelto.
- Calentar el agua de alimentación: el agua de alimentación es calentada para que al entrar a la caldera no sea necesaria tanta energía para llegar a una temperatura de utilización.
- Almacenar agua de alimentación: la palabra lo indica, el desaireador es un tanque que está a continuación del tanque cisterna.

Bombas de agua de alimentación

Una vez el agua de alimentación se encuentra precalentada y desaireada, será bombeada a alta presión a las calderas mediante bombas centrífugas horizontales multietapas. Para garantizar el correcto funcionamiento de las bombas, el tanque desgasificador se colocará a la altura que brinde el Altura Neta Positiva de Succión (NPSH por sus siglas en inglés) requerida por el fabricante.

La función esencial de estos equipos es brindar la presión del vapor principal (del ciclo), la cual será por encima de los 80 bares absolutos. Las bombas estarán equipadas con variador de frecuencia para optimizar la eficiencia en el proceso de bombeo para cada modo de operación de la planta. Cada caldera contará con una (1) bomba con
APROVECHAMIENTO DEL PODER CALORÍFICO DE LOS RESIDUOS SÓLIDOS URBANOS PARA LA GENERACIÓN DE ENERGÍA ELÉCTRICA

CAPÍTULO II

capacidad del 100% y se tendrá una (1) bomba del 100% de capacidad como respaldo, en total serán 5 bombas.

Sistema de condensado

El sistema de condensado incluye el tanque de condensado principal, tres (3x50%) bombas de condensado principales, un precalentador de LP alimentado por el vapor de purga de baja presión y una bomba de drenaje. El condensado de los calentadores de aire primarios se recoge en depósitos separados en la caldera.

Sistema principal de condensado

El control de nivel del depósito de condensado principal se controla con dos válvulas de control con funcionamiento de rango dividido, la válvula de control de nivel y la válvula de control de recirculación.

Un control de bucle cerrado abre la válvula de control de nivel a nivel creciente en el tanque de condensado principal, la válvula de control de recirculación se cierra en consecuencia. En caso de un nivel decreciente, la válvula de control de nivel se cierra y la válvula de recirculación se abre. De este modo se asegura un caudal mínimo de las bombas de condensados principales y al condensador de vapor de eyector.

La función de las bombas de condensados principales es controlada por un transmisor de presión. Cuando la presión disminuye, la bomba de operación se conmuta a la bomba de reposo. La protección contra el funcionamiento en seco de las bombas y contra el llenado excesivo del depósito principal de condensado está asegurada por transmisores de nivel en el tanque de condensado principal. La calidad del condensado
se controla midiendo la conductividad eléctrica en la salida del tanque de condensado principal.

Purga de la de turbina de vapor

El drenaje de la tubería y el condensado de arranque se recogen en el tanque de evaporación de la turbina. El tanque de evaporación de la turbina funciona a presión ambiente. El condensado se conduce al depósito de agua de proceso para ser reutilizado.

Condensado de precalentadores de aire

Los calentadores de aire se suministran con vapor desde el cabezal de vapor. El condensado del precalentador de aire se suministra al tanque de agua de alimentación.

El flujo es controlado por un control de nivel del calentador de aire primario del tanque de condensado. Con el fin de proteger el sistema de condensación contra un avance de vapor, el nivel en el tanque se mantiene a un valor constante. Además, un interruptor de nivel bajo activa la válvula de control de vapor y la válvula de control de condensado para cerrar.

Sistema de agua de alimentación

Los siguientes condensados se entregan en el tanque de agua de alimentación:

- Condensado principal.
- Condensado de precalentadores de aire.
Las pérdidas de agua en el ciclo de vapor de agua serán reemplazadas por el agua desmineralizada de la planta de agua desmineralizada. El agua desmineralizada se suministra al depósito de agua de alimentación dependiendo del nivel de agua de alimentación en el tanque (control de lazo cerrado).

El depósito de agua de alimentación está equipado con los siguientes equipos:

- Control de presión.
- Válvula de seguridad de presión.
- Manómetros, termómetros.
- Control de nivel con las medidas de nivel adecuadas.
- Desagüe de emergencia (protección contra desbordamiento) con válvula accionada por motor.
- Conexión y equipamiento para la evacuación de gases y vapores no condensables (respiraderos).

En la salida del tanque de agua de alimentación se mide la calidad del agua de alimentación. Con el fin de minimizar la corrosión en el sistema de vapor de agua, el agua de alimentación se alcaliniza con hidróxido amónico (alcalinización volátil). El hidróxido amónico se dosifica según el flujo de agua desmineralizada al depósito de agua de alimentación y de acuerdo con el valor de pH del agua de alimentación. Las bombas de agua de alimentación de la caldera son del tipo centrífugo multietapa.

Una bomba de operación suministra el cabezal de alimentación de agua. Una bomba de reserva se encenderá automáticamente en caso de que la presión del agua de alimentación de la bomba de funcionamiento caiga por debajo del valor admisible. Todas las bombas son motorizadas eléctricamente con control de frecuencia. Un filtro
en la línea de succión de cada bomba protege las bombas. Cada filtro se controla mediante una medición de presión diferencial.

Sistema de bypass de la turbina de vapor

El ciclo de vapor de agua se suministra con una estación de bypass de turbina de vapor por cada línea de vapor vivo, es decir, una por cada caldera (total de 4). La estación de bypass de la turbina garantiza la incineración ininterrumpida de los residuos en caso de avería o mantenimiento de la turbina de vapor.

La estación de derivación reduce la presión y la temperatura del vapor generado con el fin de descargarlo al ducto del condensador enfriado por aire.

La presión en la entrada de la estación de derivación de la turbina se controla durante el funcionamiento. En el caso de un disparo de turbina (válvula de entrada de turbina de vapor de cierre rápido), la válvula de derivación se abre rápidamente y mantiene la presión en la línea de vapor activo y, por tanto, la presión constante de la caldera.

La reducción de presión y el sobrecalentamiento están diseñados como una válvula reductora de presión combinada con inyección de agua. El agua de inyección se toma de las bombas de condensado.

En la operación de derivación, la producción total de calor de las calderas es descargada al ducto de entrada al condensador enfriado por aire. Las válvulas de control para reducir la presión y el flujo de agua se accionan hidráulica o neumáticamente.

Si la presión o temperatura en el ACC excede los valores permitidos, la estación de bypass se cierra automáticamente para proteger el condensador enfriado por aire.
Eficiencia de transformación energética

La solución propuesta persigue el objetivo de maximizar la eficiencia y la generación eléctrica lo que se consigue con varios puntos clave:

- Parámetros de vapor vivo de 420ºC y 60 bar.
- Turbina de alta eficiencia.
- Baja presión de condensación.

En relación a la turbina se ha seleccionado una única turbina generando lo máximo posible en el punto de diseño. Esta opción balancea la inversión con la disponibilidad. Se ha considerado una turbina de alta disponibilidad lo que hace innecesario considerar un equipo de reserva y evita aumentar la inversión.

Se ha aumentado el rendimiento de la turbina optimizando la presión de condensación. Las extracciones se han seleccionado para cumplir los requerimientos de los precalentadores de aire y conseguir el menor impacto termodinámico en el ciclo.

Considerando que los precalentadores de aire deben alimentarse a una presión superior a 8 bares se ha considerado una extracción flotante de forma que en caso de que la extracción inferior no sea capaz de alcanzar dicha presión pueda optarse por la extracción superior.

En cuanto al ciclo regenerativo se ha optado por un sistema con un desgasificador y un precalentador de condensado en serie. El desgasificador tiene la opción de ser alimentado desde la extracción flotante de precalentadores o desde una extracción posterior a 3 bares aproximadamente. Por último, el precalentador de condensado siempre es alimentado desde la última extracción de la turbina. Esta configuración nos permite mejorar la eficiencia en el punto de diseño sin penalizar el resto de puntos de operación.
II.2.1.1.4 Tratamiento de gases de combustión

Este apartado muestra los elementos que integran el sistema de tratamiento, expulsión de gases y control de emisiones en la Planta.

Figura II—54. Esquema del sistema de tratamiento, expulsión de gases y control de emisiones.
Figura II—55. Ubicación del área de tratamiento de gases de combustión en el proyecto.
II.2.1.4.1 Justificación de los procesos y reactivos

El consumo de reactivos previstos para el cumplimiento de las garantías ambientales de emisión son:

- Hidróxido cálcico Ca(OH)$_2$ para la neutralización de los compuestos ácidos presentes en los gases de combustión (HCl, SO$_2$ y HF).
- Adsorbente (Carbón activo) para la adsorción de Hg, metales pesados, dioxinas y furanos.
- Solución amoniacal al 24.5 % para la depuración de los NOx.

II.2.1.4.2 Conductos de combustión

- Descripción funcional de los conductos de combustión

Los componentes individuales de tratamiento de gases de combustión están conectados entre sí por medio de conductos. Estos conductos proporcionan un paso para que los gases de combustión se trasladen entre los componentes (por ejemplo, entre la caldera y el Xerosorp y del filtro de mangas al ventilador de tiro).

- Descripción de los conductos de combustión

Se presta especial atención a la dinámica de caudal óptima: se diseñarán deflectores para evitar turbulencias. Los conductos están diseñados para evitar la pérdida excesiva de presión y evitar altas velocidades del gas y, por consiguiente, para reducir el consumo eléctrico. La temperatura de los gases de combustión en funcionamiento normal se mantendrá por encima del punto de rocío.
Durante el procedimiento de arranque y parada de la planta, la temperatura de los gases de combustión puede caer temporalmente por debajo del punto de rocío. El condensado producido en tales casos se drena en los puntos bajos o aguas arriba de las juntas para expansión.

Donde se requiera, se instalarán puertas de acceso para la inspección y el mantenimiento de los conductos de gases de combustión y de los componentes de la planta asociados a estos. Los conductos secos de gases de combustión son de lámina de acero con refuerzos, soportes, fijadores, dispositivos de suspensión (perchas), bridas, juntas y juntas de expansión, etc.

Los conductos de gases de combustión entre el ventilador de tiro y la chimenea, son operados bajo presión positiva y están diseñados de forma hermética contra fugas (particularmente las puertas y juntas de expansión). Se incluyen todos los puertos de instrumentos necesarios para las mediciones de gases de combustión en todo el sistema de conductos de gases de combustión.

II.2.1.1.4.3 Tratamiento de los gases de combustión en seco (cal XEROSORP®)

- Descripción funcional del tratamiento de los gases de combustión en seco

El proceso de tratamiento de los gases de combustión en seco está diseñado para eliminar todas las partículas de polvo, la mayoría de los contaminantes gaseosos ácidos por neutralización con hidróxido de calcio y los contaminantes orgánicos (PCDD/F), así como el mercurio y otros metales pesados por adsorción sobre carbón.

7 Las dioxinas son compuestos químicos que se producen a partir de procesos de combustión que implican al cloro. El término se aplica indistintamente a las policlorodibenzofuranos (PCDF) y las policlorodibenzodioxinas (PCDD). https://es.wikipedia.org
activado/coque de lignito. Los gases de combustión entran en contacto con los aditivos en un reactor; para alcanzar el mejor rendimiento y un mínimo consumo de aditivos, parte de los sólidos del filtro de mangas se recirculan de nuevo dentro del reactor.

Figura II—56. Principio del Xerosorp® de HZI.
Características principales

El proceso de tratamiento de los gases de combustión Xerosorp® se caracteriza por los siguientes rasgos:

- Menor consumo de aditivos, debido a la circulación de residuos, reduciendo costos por aditivos y residuos.
- Atenuación de los picos debido a la alta capacidad de residuos en el sistema de recirculación.
- Inyección seca de aditivos; sin inyección de agua y, por lo tanto, sin pérdida de energía y con una operación sencilla.
- Alto grado de eficiencia energética debido a una baja caída de presión total del sistema.
- Alta disponibilidad gracias a la simplicidad de la construcción y del diseño compacto.
- Bajos costos de operación y mantenimiento.
- Bajo requerimiento de mano de obra debido a un manejo muy sencillo.

Características de operación del proceso XEROSORP®

El proceso de tratamiento de gases de combustión en seco está diseñado para operar de un 60 a un 110 % de la carga. La recirculación inversa de sólidos al reactor se realiza mediante un sistema de transporte mecánico de gran capacidad. La recirculación de residuos resulta en una baja proporción estequiométrica y buena capacidad amortiguadora contra picos de contaminantes. El balance de masas en el sistema se controla por medio de la evacuación de los residuos a través de un transporte neumático.
Arranque

Antes del procedimiento de arranque, las mangas de los filtros se recubren con aditivos (denominado pre-revestimiento de las mangas de los filtros). Este procedimiento ayuda, por un lado, a una mejor protección de las mangas de los filtros y por el otro, para la separación de contaminantes durante el la puesta en marcha.

Recirculación de sólidos

Los sólidos que abandonan las tolvas de los filtros se recuperan con 2 transportadores de cadena debajo de las tolvas de los filtros y se llevan mediante un transportador de cadena común hacia 2 bandejas de recolección. Desde una bandeja de recolección, los sólidos se recirculan de regreso al reactor. Desde la otra bandeja de recolección, los residuos son transportados por un transporte neumático al silo de residuos.

Figura II—57. Transporte neumático al silo de residuos.
Reacciones químicas con el uso de hidróxido de calcio

Las siguientes reacciones químicas simplificadas con hidróxido de calcio atrapan los contaminantes gaseosos HCl, SO₂, SO₃ así como HF:

\[
\begin{align*}
\text{Ca(OH)}_2 + \text{H}_2\text{O} + \text{SO}_2 &= \text{CaSO}_3 + 2 \text{H}_2\text{O} \\
\text{Ca(OH)}_2 + \text{H}_2\text{O} + \text{SO}_3 &= \text{CaSO}_4 + 2 \text{H}_2\text{O} \\
\text{CaSO}_3 + \frac{1}{2} \text{O}_2 &= \text{CaSO}_4 \\
\text{Ca(OH)}_2 + \text{CO}_2 &= \text{CaCO}_3 + \text{H}_2\text{O} \\
\text{Ca(OH)}_2 + 2 \text{HCl} &= \text{CaCl}_2 + 2 \text{H}_2\text{O} \\
\text{Ca(OH)}_2 + 2 \text{HF} &= \text{CaF}_2 + 2 \text{H}_2\text{O}
\end{align*}
\]

II.2.1.1.4.4 Suministro de reactivos

- Descripción funcional del suministro de reactivos

Los reactivos son transportados desde los respectivos silos de aditivos hasta el sistema de tratamiento de gases de combustión.

- Descripción del suministro de reactivos

Suministro de cal

El hidróxido de calcio Ca(OH)₂ se introduce en el sistema desde el silo a través de un alimentador de tornillo múltiple. La unidad de dosificación mecánica (controlada por un variador de frecuencia) garantiza la dosificación óptima. La dosificación se realiza a través de una boquilla de soplado.
Mediante un ventilador de aire de transporte, el hidróxido de calcio es entregado desde allí hasta el punto de inyección en el reactor. La cantidad de hidróxido de calcio es controlada por el HCl y las emisiones de SO$_2$ que se miden en la chimenea.

Figura II—58. Alimentador de tornillo múltiple.

Suministro de carbón activado

El adsorbente se introduce en el sistema desde el silo a través de un alimentador de tornillo múltiple. La unidad de dosificación mecánica (controlada por un variador de frecuencia) garantiza la dosificación óptima.

La dosificación se realiza a través de una boquilla de soplado. Mediante un ventilador de aire de transporte, el carbón activado es entregado desde allí hasta el punto de inyección en el reactor. La cantidad de adsorbente es controlada según el flujo de gases de combustión.
II.2.1.4.5 Separación de partículas mediante filtro de mangas

- Descripción funcional del filtro de mangas

El filtro de mangas se utiliza para la separación de los sólidos de los gases de combustión. En el proceso de separación física, los sólidos se filtran en la superficie de un tejido permeable al gas. Debido al intenso contacto de los gases de combustión y de los adsorbentes en la capa filtrante, se mejora aún más la eliminación de contaminantes de los gases de combustión.
Descripción del filtro de mangas

Es un filtro de mangas fabricadas en tela que se distribuyen en múltiples cámaras y varios compartimentos, que consta de un sistema de limpieza de tipo “chorro pulsante”. Lo característico del diseño es que reduce el trabajo de soldadura y el tiempo de montaje en la obra: los compartimentos son ensamblados en gran medida en el taller, con un efecto positivo en la calidad final.

Cada cámara tiene una válvula de entrada y de salida con un único actuador; es posible la operación en modo “cámara n.- 1” en caso de un problema con una manga en condiciones de carga nominal.

El sistema de control del filtro tiene las siguientes características:

- Instalación sencilla con conexión de bus en el filtro (maestro y esclavos) y con el sistema de control distribuido (DCS).
- Detección temprana de ruptura de bolsa con sensor de polvo y software.
- Monitoreo de válvula de membrana con monitoreo de presión de limpieza.
- Software y componentes estándar.

Las mangas de los filtros se limpian automáticamente en relación con la caída de presión. En el caso de instalación en el exterior el filtro viene equipado con una cobertura en la parte superior que permitirá la extracción en condiciones secas de las mangas de las cámaras de filtración.

A fin de evitar una insuficiencia del punto de rocío y la incrustación de sólidos durante las fases de arranque y parada, así como durante las interrupciones operativas, las tolvas de los filtros de mangas se calientan con calentadores eléctricos. Para detectar las incrustaciones de materiales, las tolvas de los filtros están equipadas con mediciones de nivel y temperatura.
II.2.1.4.6 Reducción no catalítica selectiva SNCR

- Descripción funcional del proceso SNCR

En cada proceso de combustión se producen diversos óxidos de nitrógeno (NOx) perjudiciales. Sin embargo, pueden convertirse en sus elementos básicos: nitrógeno y agua, a través de un proceso denominado desnitrificación (DeNOx).

El proceso SNCR desarrollado por Hitachi Zosen Inova reduce las emisiones de óxidos de nitrógeno a niveles muy bajos con también bajas emisiones de amoníaco en chimenea.
El proceso de reducción DeNOx se basa en el principio de la no reducción catalítica de NOx en la fase gaseosa con amoníaco. El sistema está diseñado para 200 mg de NOx/m³ a 10 mg de emisiones de NH₃/m³ en chimenea.

La reducción se lleva a cabo dentro de un rango de temperatura de 850 a 950°C. Esta ventana de temperaturas está presente en la cámara de postcombustión de la cámara de combustión. En estas condiciones, se inyecta amoníaco acuoso en los gases de combustión. Las reacciones que se llevan a cabo pueden describirse brevemente como sigue:

Reacciones principales:

\[
4 \text{NO} + 2 \text{NH}_3 + \text{O}_2 \rightarrow 2 \text{N}_2 + 6 \text{H}_2\text{O} \\
2 \text{NO}_2 + 4 \text{NH}_3 + \text{O}_2 \rightarrow 3 \text{N}_2 + 6 \text{H}_2\text{O}
\]

Reacciones secundarias:

\[
4 \text{NH}_3 + 5 \text{O}_2 \rightarrow 4 \text{NO} + 6 \text{H}_2\text{O} \text{ a temperaturas superiores a los 1,000°C} \\
4 \text{NH}_3 + 3 \text{O}_2 \rightarrow 2 \text{N}_2 + 6 \text{H}_2\text{O}
\]

La estrecha ventana de temperatura de 850 a 950 °C es necesaria para separar correctamente los NOx. Como el perfil de temperatura en esta zona de caldera está sujeto a fluctuaciones, se requiere de varios puntos de inyección en la zona de radiación de la caldera.

Temperaturas superiores a los 1,000 °C, desencadenan las reacciones secundarias no deseadas según las fórmulas anteriores y son responsables de un mayor consumo de amoníaco. A temperaturas inferiores a 800 °C, el grado de eficiencia de la separación de NOx disminuye sensiblemente y una gran porción del amoníaco inyectado se
transporta al sistema de tratamiento de los gases de combustión sin haber sido utilizado.

- **Descripción del proceso SNCR**

Un 24.5 % de solución de amoníaco acuoso se inyecta en los gases de combustión en la zona de radiación de la caldera. El aire se utiliza como medio de transporte.

El primer paso de caldera se divide prácticamente en varios segmentos verticales. Cada segmento consta de un módulo de distribución y boquillas de inyección en varios niveles. La configuración de las boquillas hace posible lograr la plena cobertura de los medios de inyección en toda la sección transversal de la zona de radiación.

Junto a la adaptación óptima de la inyección de amoníaco, es crucial lograr un funcionamiento uniforme del proceso de incineración para una óptima separación de NOx por medio del proceso de SNCR.

El flujo total de amoníaco acuoso (controlado por la medición de emisiones de NOx) se distribuye igualmente a los módulos de distribución. El módulo de distribución dirige una mezcla de amoníaco acuoso y aire comprimido a los niveles de inyección, según la siguiente descripción:

- El amoníaco acuoso se dirige al nivel con la temperatura de gases de combustión óptima.
- Si la temperatura de los gases de combustión óptima está entre dos niveles de inyección, el amoníaco acuoso puede encauzarse a ambos niveles simultáneamente.
- Todos los niveles activos están cargados con aire a presión completa.
- Todos los niveles no activos son alimentados con aire a presión reducida para el enfriamiento de las boquillas.
Cuando un nivel está desactivado, la línea se purga con aire a presión total durante unos segundos.

Para mantener moderados los límites de NOx, se utilizan tres niveles de inyección y todos los distribuidores se controlan por medio de una medición de la temperatura en el techo del primer paso de caldera.

![Diagrama de inyección](image)

Figura II—61. Principio de posicionamiento de las boquillas de inyección.

Cada inyección consiste de dos boquillas con diferentes ángulos para lograr una buena cobertura en todo el segmento. La caída de presión en la punta de la boquilla deriva en
una buena dispersión de las gotitas de amoníaco acuoso. La alta velocidad de inyección impide el ensuciamiento de los inyectores.

II.2.1.1.4.7 Ventilador de tiro

- Descripción funcional del ventilador de tiro

El ventilador de tiro genera la depresión en la cámara de combustión y encauza los gases de combustión desde el horno a través del sistema de tratamiento de gases de combustión hasta la chimenea.

- Descripción del ventilador de tiro

La disposición y el diseño del ventilador es tal que todo el volumen de gases de combustión puede evacuarse a través de todo el rango de carga del diagrama de carga de combustión, incluso bajo fluctuaciones de carga.

La cantidad de gases de combustión que maneja el ventilador de tiro se regula por medio de un control de velocidad de variador de frecuencia como una función de la presión en la cámara de combustión.

El ventilador de tiro es una unidad radial con una hélice monofásica, estática y dinámicamente equilibrada, adecuada para un control de velocidad. Tanto el ventilador como el accionamiento van montados sobre una sola estructura de acero (placa base).

La cubierta del ventilador de tiro es una estructura de lámina de acero con refuerzos externos, equipada con aperturas de inspección y limpieza adecuadas.

II.2.1.1.4.8 Medición de emisiones (CEMS)
Descripción funcional del sistema de medición de emisiones

El sistema de medición de emisiones monitorea las propiedades de los gases de combustión y detecta la composición en el conducto de gases de combustión, tras la última etapa de limpieza de los gases de combustión o de la chimenea, respectivamente.

Los instrumentos se encuentran instalados directamente en el conducto de gases de combustión. Para la medición de la concentración de gases de combustión, se extrae un pequeño caudal de gases de combustión a través de una línea de extracción calentada y se transporta al sistema de medición instalado en un compartimento de medición de emisiones separado.

El sistema de medición de emisiones está diseñado para satisfacer las necesidades particulares del permiso de operación de la planta. Cumple con las directivas aplicables para la instalación y el seguro de calidad (EN 14181).

Todo parámetro medido será registrado en condiciones de proceso sin corregir, cada uno de los parámetros irá fechado y con hora con las condiciones adecuadas de gases de combustión, incluyendo la temperatura, la presión, el contenido de oxígeno y el contenido de humedad; y corregido según los niveles de confianza y de las condiciones de referencia contra las cuales se corregen todas las mediciones monitoreadas de forma contínua, para efectos de cumplimiento con los requisitos de la Directiva de Emisiones Industriales 2010/75/EU.

A continuación se presenta una tabla con los requisitos según la Directiva de Emisiones Industriales 2010/75/EU y las emisiones esperadas en la planta.

Tabla II-14. Valores límite de emisiones en punto de emisión a la atmósfera (media diaria), según Directiva Europea IED 2010/75 EU, y las emisiones esperadas a la salida de la chimenea.

<table>
<thead>
<tr>
<th>Parámetro *</th>
<th>Dato</th>
<th>Unidad</th>
<th>Emisiones esperadas a la salida de la chimenea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caudal</td>
<td>--</td>
<td>Nm³/h</td>
<td>240.440</td>
</tr>
<tr>
<td>Partículas totales</td>
<td>< 10</td>
<td>mg/Nm³</td>
<td>< 2</td>
</tr>
<tr>
<td>CO (Monóxido de carbono)</td>
<td>50</td>
<td>mg/Nm³</td>
<td>10</td>
</tr>
<tr>
<td>COT (Carbono orgánico total)</td>
<td>10</td>
<td>mg/Nm³</td>
<td>2</td>
</tr>
<tr>
<td>NOx (Óxidos de nitrógeno expresados como NO₂)</td>
<td>200</td>
<td>mg/Nm³</td>
<td>150****</td>
</tr>
<tr>
<td>HCl (Cloruro de hidrógeno)</td>
<td>10</td>
<td>mg/Nm³</td>
<td>9</td>
</tr>
<tr>
<td>SO₂ (Dióxido de azufre)</td>
<td>50</td>
<td>mg/Nm³</td>
<td>26</td>
</tr>
<tr>
<td>HF (Fluoruro de hidrógeno)</td>
<td>1</td>
<td>mg/Nm³</td>
<td>0.1</td>
</tr>
<tr>
<td>NH₃ (Amoniaco)</td>
<td>50</td>
<td>mg/Nm³</td>
<td>2</td>
</tr>
<tr>
<td>Metales pesados **</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hg (Mercurio)</td>
<td>< 0.05</td>
<td>mg/Nm³</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Cd (Cadmio)</td>
<td>< 0.05</td>
<td>mg/Nm³</td>
<td>< 0.02</td>
</tr>
<tr>
<td>Metales pesados (Sb+As+Pb+Cr+Co+Cu+Mn+Ni+Mn+Ni+V)</td>
<td>< 0.5</td>
<td>mg/Nm³</td>
<td>< 0.2</td>
</tr>
<tr>
<td>Dioxinas y furanos ***</td>
<td>< 0.1</td>
<td>mg/Nm³</td>
<td>< 0.05</td>
</tr>
</tbody>
</table>

* Medidos en condiciones normales (273.15 K, 101.3 kPa) y gas seco al 11 % de O₂.
** Metales pesados medidos a lo largo a lo largo de un período de muestreo de un mínimo de 30 minutos y un máximo de 8 horas.
*** Valor límite de emisión medio (ng/Nm³) medidas a lo largo de un período de muestreo de un mínimo de 6 horas y un máximo de 8 horas.
**** 135 = 90% de NO₂ - NOM-023-SSA1-1993.

- Descripción del Sistema de medición de emisiones

El sistema de medición de emisiones incluye los siguientes componentes:
• Sistema de toma de muestras con dispositivo de extracción, manguera, bomba con sistema de calefacción y auxiliares.
• Instrumentos para medir la temperatura, la presión y el caudal.
• Instrumento de medición de la materia particulada.
• MCA (analizador multicomponentes): sistema extractivo para la medición de la concentración de los componentes de los gases de combustión (H₂O, O₂, CO, HCl, SO₂, NOx, CO₂, NH₃).
• CEMS-PC: sistema de adquisición de datos por computadora; cálculo, estandarización y validación de los datos de emisión.
• Unidad de intercambio de datos.
• Tratamiento y transporte de gas de calibración con dispositivos de calibración automáticos y sistema de control.
• Ethernet o módem para mantenimiento remoto.
• Compartimiento del CEMS.

II.2.1.1.4.9 Chimenea

• Descripción funcional de las chimeneas
La chimenea expulsa los gases de combustión purgados después del sistema de tratamiento de gases de combustión, a la atmósfera. Las chimeneas consisten de 4 ductos de 45 m de altura cada una.

• Descripción de las chimeneas
Cada línea de incineración tiene su propia chimenea. La estructura cilíndrica de soporte está hecha de acero. Una escalera de seguridad externa proporciona acceso a la plataforma de trabajo para las actividades de mantenimiento. El escape interno de la chimenea es de acero. Las secciones individuales de tubos de la chimenea van unidas para formar un sello hermético.

 Debajo de la entrada de gases de combustión, se recolecta el vapor de agua condensado o el agua de lluvia en una placa inclinada en la base de la chimenea y se descarga a través de una línea de descarga de condensado.

II.2.1.4.10 Unidades de tratamiento de gases

A continuación se exponen las características de diseño que Hitachi Zosen INOVA tiene para este tipo de plantas.

<table>
<thead>
<tr>
<th>Tabla II-15. Características de las unidades de tratamiento de gases.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datos de operación y diseño:</td>
</tr>
<tr>
<td>Generales</td>
</tr>
<tr>
<td>Caudal de gases de entrada a 100% MCR horno-caldera (CN)</td>
</tr>
<tr>
<td>Temperatura gases de combustión de salida de caldera y salida de depuración de gases</td>
</tr>
<tr>
<td>Composición gases entrada (11% O$_2$, gas seco y Condiciones Normales, 100% MCR). A salida de caldera/salida de depuración de gases</td>
</tr>
<tr>
<td>- HCl</td>
</tr>
<tr>
<td>- HF</td>
</tr>
<tr>
<td>- SO$_2$</td>
</tr>
<tr>
<td>- NOx</td>
</tr>
<tr>
<td>- CO</td>
</tr>
<tr>
<td>- Partículas</td>
</tr>
<tr>
<td>- PCDD/F</td>
</tr>
<tr>
<td>- Hg</td>
</tr>
<tr>
<td>- Cd + Tl</td>
</tr>
</tbody>
</table>
Datos de operación y diseño:

<table>
<thead>
<tr>
<th></th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suma otros metales pesados</td>
<td>mg/Nm³ 10 / < 0.2</td>
</tr>
<tr>
<td>Contenido de O₂ en gases entrada referido a gas húmedo</td>
<td>% vol. 6</td>
</tr>
<tr>
<td>Contenido de humedad de salida del sistema de depuración de gases</td>
<td>% vol. 18.9</td>
</tr>
<tr>
<td>Potencia eléctrica instalada conjunto sistema tratamiento gases +filtro mangas + silos de almacenamiento</td>
<td>kW 7,063</td>
</tr>
</tbody>
</table>

Características gases combustión tratados (en chimenea)

<table>
<thead>
<tr>
<th></th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caudal de gases húmedos (100% MCR)</td>
<td>Nm³/h 219,076</td>
</tr>
<tr>
<td>Temperatura de salida gases de combustión (min / nominal / máx.)</td>
<td>ºC 132</td>
</tr>
<tr>
<td>Valores emisión atmósfera tras depuración gases (11% O₂, gas seco) según valores garantizados en Documento de Garantías</td>
<td>Si/No Si</td>
</tr>
</tbody>
</table>

Sistema de enfriamiento de gases – Absorbedor – Reactor

<table>
<thead>
<tr>
<th></th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo / Número de unidades por línea</td>
<td>- / Uds. 1</td>
</tr>
<tr>
<td>Reactivos</td>
<td>- Ca(OH)₂ / Carbón Activo</td>
</tr>
<tr>
<td>Temperatura de entrada de los gases</td>
<td>ºC 135</td>
</tr>
<tr>
<td>Temperatura de salida de los gases</td>
<td>ºC 132</td>
</tr>
<tr>
<td>Consumo total de agua/vapor a 100%MCR, caudal gases nominal</td>
<td>Kg/h -</td>
</tr>
<tr>
<td>Consumo total de reactivo a 100%MCR y caudal gases nominal</td>
<td>Kg/h 493/472</td>
</tr>
</tbody>
</table>

Reactor de contacto / absorbedor

- Tiempo de residencia de gases de combustión | s 1 - 2 |
- Pérdida de presión en gases de combustión | mbar 6 |
- Material / espesor reactor | - / mm 5 |

Instalación de lechada

<table>
<thead>
<tr>
<th></th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instalación de lechada</td>
<td>Si/No No</td>
</tr>
</tbody>
</table>

Atomizador/Dispositivo de inyección

- Tipo (rotativo / estático) | No aplica |
- Material (boquillas / disco rotativo) | No aplica |
Datos de operación y diseño:

<table>
<thead>
<tr>
<th>Filtro de mangas</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo / Número de unidades / Número de compartimentos por Ud.</td>
<td>- / Uds.</td>
</tr>
<tr>
<td>Caída de presión en gases a caudal 100% MCR (para N y para N-1 compartimentos en servicio)</td>
<td>mbar</td>
</tr>
<tr>
<td>Área de filtrado</td>
<td>m²</td>
</tr>
<tr>
<td>Material de las mangas filtrantes</td>
<td>Tipo</td>
</tr>
<tr>
<td>Longitud / Diámetro manga</td>
<td>mm / mm</td>
</tr>
<tr>
<td>Sistema de limpieza de mangas</td>
<td>Tipo</td>
</tr>
<tr>
<td>Sistema de recirculación de productos de reacción</td>
<td>(si/no) / tipo</td>
</tr>
<tr>
<td>Vida útil de servicio de las mangas cumpliendo simultáneamente los límites de emisión y la pérdida de carga</td>
<td>h</td>
</tr>
<tr>
<td>Incremento total de presión (descarga vs aspiración)</td>
<td>mbar</td>
</tr>
<tr>
<td>Tipo de control ventilador</td>
<td>-</td>
</tr>
<tr>
<td>N° de motores por ventilador / Potencia nominal por motor</td>
<td>Uds. / kW</td>
</tr>
<tr>
<td>Silenciador</td>
<td>Si/no</td>
</tr>
</tbody>
</table>

Ventilador de tiro

| Tipo / Número de unidades | - / Uds. |
| Incremento total de presión (descarga vs aspiración) | mbar |
| Presión en caldera controlada vía convertidor de frecuencia |
| N° de motores por ventilador / Potencia nominal por motor | Uds. / kW |
| Silenciador | Si/no |

Conductos y Chimenea

CAPÍTULO II
<table>
<thead>
<tr>
<th>Datos de operación y diseño:</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material / Espesor mínimo</td>
<td>- / mm</td>
</tr>
<tr>
<td>Velocidad de los gases, máxima</td>
<td>m/s</td>
</tr>
<tr>
<td>Número de unidades (chimenea)</td>
<td>Uds.</td>
</tr>
<tr>
<td>Altura chimenea (desde la base) / Diámetro interior</td>
<td>m / mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Almacenamiento y dosificación de reactivo</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Número de silos</td>
</tr>
<tr>
<td>- Capacidad unitaria de almacenamiento</td>
</tr>
<tr>
<td>- Diámetro interior / Altura</td>
</tr>
<tr>
<td>- Sistema rompibóvedas / Retención polvo / Detección de nivel silo/ Detección peso de reactivo</td>
</tr>
<tr>
<td>- Sistema de dosificación a líneas de tratamiento de gases</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Almacenamiento y dosificación de Carbón activo</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Número de silos</td>
</tr>
<tr>
<td>- Capacidad unitaria de almacenamiento</td>
</tr>
<tr>
<td>- Diámetro interior / Altura</td>
</tr>
<tr>
<td>- Sistema rompibóvedas / retención polvo / Detección de nivel silo/ Detección peso de reactivo / Sistema de detección de CO / Sistema de inyección de gas inerte</td>
</tr>
<tr>
<td>- Sistema de dosificación a líneas de tratamiento de gases</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Residuos de la tratamiento de gases</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Número de silos</td>
</tr>
<tr>
<td>- Capacidad unitaria de almacenamiento</td>
</tr>
</tbody>
</table>
CAPÍTULO II

TABLA II-16. Características del sistema de análisis en continuo de emisiones.

<table>
<thead>
<tr>
<th>Datos de operación y diseño:</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generales</td>
<td></td>
</tr>
<tr>
<td>Número de analizadores por línea</td>
<td>Uds.</td>
</tr>
<tr>
<td>Disponibilidad mínima anual</td>
<td>h/año</td>
</tr>
<tr>
<td>Análisis en continuo de las siguientes sustancias y parámetros:</td>
<td></td>
</tr>
<tr>
<td>- Partículas totales</td>
<td>Si/no</td>
</tr>
<tr>
<td>- Sustancias orgánicas en estado gaseoso y de vapor expresadas en carbono orgánico total (COT)</td>
<td>Si/no</td>
</tr>
<tr>
<td>- Fluoruro de hidrógeno (HF)</td>
<td>Si/no</td>
</tr>
<tr>
<td>- Cloruro de hidrógeno (HCl)</td>
<td>Si/no</td>
</tr>
<tr>
<td>- Mercurio y sus compuestos (Hg)</td>
<td>Si/no</td>
</tr>
<tr>
<td>- Dióxido de azufre (SO₂)</td>
<td>Si/no</td>
</tr>
<tr>
<td>- Monóxido de nitrógeno (NO) y dióxido de nitrógeno (NO₂), expresados como dióxido de nitrógeno</td>
<td>Si/no</td>
</tr>
<tr>
<td>- Monóxido de carbono (CO)</td>
<td>Si/no</td>
</tr>
<tr>
<td>- Amoniaco (NH₃)</td>
<td>Si/no</td>
</tr>
<tr>
<td>- Dióxido de carbono (CO₂)</td>
<td>Si/no</td>
</tr>
<tr>
<td>- Concentración de oxígeno (O₂)</td>
<td>Si/no</td>
</tr>
<tr>
<td>Datos de operación y diseño:</td>
<td>Valor</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>- Presión (sólo se requerirá un medidor específico de presión en caso de que el medidor de caudal no proporcione esta medición)</td>
<td>Si/no</td>
</tr>
<tr>
<td>- Temperatura</td>
<td>Si/no</td>
</tr>
<tr>
<td>- Caudal</td>
<td>Si/no</td>
</tr>
<tr>
<td>- Contenido de vapor de agua de los gases de escape</td>
<td>Si/no</td>
</tr>
</tbody>
</table>

Principio de medida para las diferentes sustancias

<table>
<thead>
<tr>
<th>Características de las tomas y conducciones de las muestras</th>
</tr>
</thead>
</table>

Materiales. Elementos en contacto con los gases

<table>
<thead>
<tr>
<th>Certificación de los analizadores de gases (EN/EPA,...)</th>
</tr>
</thead>
</table>

Rangos de medida

<table>
<thead>
<tr>
<th>Partículas totales</th>
<th>mg/Nm³</th>
<th>0-5000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sustancias orgánicas en estado gaseoso y de carbón orgánico total (COT) vapor expresadas en carbón orgánico total (COT)</td>
<td>mg/Nm³</td>
<td>0-30</td>
</tr>
<tr>
<td>Cloruro de hidrógeno (HCl)</td>
<td>mg/Nm³</td>
<td>0-150</td>
</tr>
<tr>
<td>Dióxido de azufre (SO₂)</td>
<td>mg/Nm³</td>
<td>0-300</td>
</tr>
<tr>
<td>Monóxido de nitrógeno (NO) y dióxido de nitrógeno (NO₂), expresados como dióxido de nitrógeno</td>
<td>mg/Nm³</td>
<td>0-500</td>
</tr>
<tr>
<td>Monóxido de carbono (CO)</td>
<td>mg/Nm³</td>
<td>0-100</td>
</tr>
<tr>
<td>Fluoruro de hidrógeno (HF)</td>
<td>mg/Nm³</td>
<td>----</td>
</tr>
<tr>
<td>Mercurio y sus compuestos (Hg)</td>
<td>mg/Nm³</td>
<td>----</td>
</tr>
<tr>
<td>Amoníaco (NH₃)</td>
<td>mg/Nm³</td>
<td>0-50</td>
</tr>
<tr>
<td>Oxígeno</td>
<td>% vol.</td>
<td>0-25</td>
</tr>
<tr>
<td>Datos de operación y diseño:</td>
<td>Valor</td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>Presión</td>
<td>mbar 8,000-1,400</td>
<td></td>
</tr>
<tr>
<td>Temperatura</td>
<td>ºC 0-300</td>
<td></td>
</tr>
<tr>
<td>Caudal</td>
<td>Nm³/h 0-300,000</td>
<td></td>
</tr>
<tr>
<td>Contenido de vapor de agua</td>
<td>% vol. 0-40</td>
<td></td>
</tr>
<tr>
<td>Dióxido de carbono (CO₂)</td>
<td>% vol. ----</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Otras características</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensiones sala cuadros analizadores</td>
<td>mm x mm Normalmente en contenedor situado cerca de la chimenea 3,000x9,000x3,000</td>
</tr>
</tbody>
</table>

II.2.1.4.12 Estimación de emisiones

Es importante mencionar que con respecto a las emisiones a generarse por la operación de la Planta, se utilizó el modelo de dispersión de aire multicapa no estacionario CALPUFF versión 5.8.5, que junto con los programas CALMET (modelo meteorológico de diagnóstico) y CALPOST (modelo post-procesador), modela la distribución espacial de los contaminantes hora a hora por un periodo de hasta 5 años continuos. El modelo se alimentó considerando información meteorológica y las condiciones topográficas y de uso de suelo de la región adyacente al predio del proyecto. Se consideró la información meteorológica histórica de los últimos 5 años obtenida a partir del modelo WRF (Weather Research & Forecasting) con una resolución de 1 km en un área de 50 km², tomando como centro el sitio del predio del proyecto. Los factores del clima considerados fueron: temperatura de bulbo seco, dirección y velocidad del viento, altura...

Durante el proceso de modelación se consideró que las cuatro chimeneas de la planta se encontraban en operación simultánea y bajo las mismas condiciones de emisión. Para ello, se usaron los valores promedio de salida por chimenea obtenido de plantas de termovalorización. Estos valores se apegan a las especificaciones de la DIRECTIVA 2010/75/UE DEL PARLAMENTO EUROPEO Y DEL CONSEJO de 24 de noviembre de 2010 sobre las emisiones industriales (prevención y control integrados de la contaminación). Éste, en su ANEXO VI, PARTE 3, indica todos los valores límite de emisión se calcularán a una temperatura de 273,15 °K (0 °C), una presión de 101,3 kPa (1 atm), y previa corrección del contenido en vapor de agua de los gases residuales. Además, se consideró un flujo volumétrico de 240,440 Nm3 h$^{-1}$, equivalente a 66.789 m3 s$^{-1}$, 11% de O$_2$, base seca, y 1 atm y °0 C. Los contaminantes base considerados y las concentraciones de emisión asumidas por la operación de la planta y en la modelación se presentan en la siguiente tabla.

<table>
<thead>
<tr>
<th>Contaminante*</th>
<th>Unidades</th>
<th>Concentración en chimenea**</th>
<th>Emisión (g s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partículas totales</td>
<td>mg Nm3·s$^{-1}$</td>
<td>< 2</td>
<td>0.134</td>
</tr>
<tr>
<td>CO</td>
<td>mg Nm3·s$^{-1}$</td>
<td>10</td>
<td>0.668</td>
</tr>
<tr>
<td>TOC</td>
<td>mg Nm3·s$^{-1}$</td>
<td>2</td>
<td>0.134</td>
</tr>
<tr>
<td>NO$_2$</td>
<td>mg Nm3·s$^{-1}$</td>
<td>135</td>
<td>10.018</td>
</tr>
<tr>
<td>HCl</td>
<td>mg Nm3·s$^{-1}$</td>
<td>9</td>
<td>0.601</td>
</tr>
</tbody>
</table>
Del análisis de simulación realizado resultó que, las emisiones de los diferentes contaminantes que generan en este tipo de plantas, los cuales están siempre bajo monitoreo, resultó que ninguno de ellos rebasaría los límites establecidos en la norma oficial mexicana NOM-098-SEMARNAT-2002, misma que establece las especificaciones de operación y los límites de emisiones de contaminantes producto de la incineración de residuos. Las emisiones esperadas por contaminante producto de la simulación y los límites máximos establecidos por la Norma se presentan en la siguiente tabla.

Tabla II-18. Límites máximo permisibles de emisiones de incineradores de residuos establecidos en la NOM-098-SEMARNAT y las emisiones máximas simuladas a emitirse por la operación de la planta de aprovechamiento de poder calorífico.

<table>
<thead>
<tr>
<th>Contaminante</th>
<th>Límite de emisión</th>
<th>Emisión máxima planta</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO, promedio 8 h</td>
<td>63 mg m⁻³⁻¹</td>
<td>13.0 µg m⁻³⁻¹</td>
</tr>
<tr>
<td>SO₂, promedio 24 h</td>
<td>80 mg m⁻³⁻¹</td>
<td>4.4 µg m⁻³⁻¹</td>
</tr>
</tbody>
</table>
Tabla de emisiones de contaminantes

<table>
<thead>
<tr>
<th>Contaminante</th>
<th>Límite de emisión</th>
<th>Emisión máxima planta</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO\textsubscript{x}, promedio 1 h</td>
<td>300 mg m3-1</td>
<td>688.0 µg m3-1</td>
</tr>
<tr>
<td>NO\textsubscript{2}, promedio 1 h</td>
<td>---</td>
<td>342.3 µg m3-1</td>
</tr>
<tr>
<td>HCl, promedio 24 h</td>
<td>15 mg m3-1</td>
<td>1.5 µg m3-1</td>
</tr>
<tr>
<td>Cd, promedio 24 h</td>
<td>0.07 mg m3-1</td>
<td>0.0033 µg m3-1</td>
</tr>
<tr>
<td>Hg, promedio 24 h</td>
<td>0.07 mg m3-1</td>
<td>0.0017 µg m3-1</td>
</tr>
<tr>
<td>Pb, Cr, Cu y Zn, promedio 24 h**</td>
<td>0.7 mg m3-1</td>
<td>0.033 µg m3-1</td>
</tr>
</tbody>
</table>

* La NOM-098-SEMARNAT-2002 considera las emisiones de NO\textsubscript{x} totales, pero en este caso se asumió que el 90% de los NO\textsubscript{x} corresponden a NO\textsubscript{2}.

** El resultado de emisiones máximas de la planta simulado engloba los metales Sb, Pb, Co, Mn, V, As, Cr, Cu y Ni.

Para mayor referencia en cuanto a esta estimación de emisiones, favor de referirse al Capítulo IV de la presente MIA-R.

En las siguientes imágenes se presentan los resultados de la concentración y dispersión de contaminantes producto del ejercicio de simulación llevado a cabo.
Figura II—62. Resultado de la simulación a 5 años para la concentración y dispersión de CO, promedio de 8 h, a emitirse por la operación de la planta.
Figura II—63. Resultado de la simulación a 5 años para la concentración y dispersión de SO$_2$, promedio de 24 h, a emitirse por la operación de la planta.
Figura II—64. Resultado de la simulación a 5 años para la concentración y dispersión de NO₂, promedio de 1 h, a emitirse por la operación de la planta.
Figura II–6. Resultado de la simulación a 5 años para la concentración y dispersión de Hg, promedio de 24 h, a emitirse por la operación de la planta.
Figura II—66. Resultado de la simulación a 5 años para la concentración y dispersión de HCl, promedio de 24 h, a emitirse por la operación de la planta.
Figura II—67. Resultado de la simulación a 5 años para la concentración y dispersión de Cd, promedio de 24 h, a emitirse por la operación de la planta.
CAPÍTULO II

Figura II—68. Resultado de la simulación a 5 años para la concentración y dispersión de metales, promedio de 24 h, a emitirse por la operación de la planta.
II.2.1.1.5 *Tratamiento de residuos*

A continuación se presenta el equipamiento para el componente de tratamiento de residuos.

Figura II—69. Esquema del manejo de residuos.
Figura II—70. Ubicación del área de Manejo de Residuos en el proyecto.
II.2.1.5.1 Descarga de economizadores

- **Descripción funcional de la descarga de economizadores**
 La ceniza de economizadores se descarga y transporta al silo de ceniza.

- **Descripción de la descarga de cenizas de los economizadores**
 La ceniza de economizadores es recogida por transportadores de cadena y transportada hasta los silos de almacenamiento por medio de un sistema de transporte neumático.

II.2.1.5.2 Silo de almacenamiento de residuos de la depuración de gases

- **Descripción funcional del silo de almacenamiento de residuos**
 El silo de almacenamiento de residuos es un almacenamiento provisional de residuos de tratamiento de gases de combustión. Se prevé la instalación de 2 silos.

- **Descripción del silo de almacenamiento de residuos**
 Los silos se ubican en una estructura de acero elevada y preparada para la carga directa en camiones.
 Un dispositivo de pesaje continuo y la medición de nivel analógica están instalados debajo del silo para supervisar el nivel de llenado del silo. Un interruptor de nivel binario se encuentra instalado para la protección de sobrellenado.
 Toda la carga de residuos se realiza localmente por el conductor del camión, utilizando una unidad de programación local. El silo está diseñado con un dispositivo especial de
descarga. La aplicación de la estación de carga en el camión silo se lleva a cabo localmente mediante un malacate motorizado. Un sistema de fluidificación en el cono del silo ayuda a la descarga de residuo.

Figura II—71. Silos de almacenamiento de residuos.

II.2.1.1.6 Sistemas auxiliares

A continuación se presenta el equipamiento que compone a los sistemas auxiliares.
Figura II—72. Ubicación de los Sistema Auxiliares en el proyecto.
II.2.1.6.1 Almacenamiento de aditivos sólidos

- **Descripción funcional del almacenamiento de aditivos sólidos**

 Recepción y almacenamiento de hidróxido de calcio.

- **Descripción del almacenamiento de hidróxido de calcio**

 El almacenamiento de hidróxido de calcio se realiza en silos herméticos al polvo. Se prevé la instalación de 2 silos.

 El producto es entregado por camiones tipo silo. La descarga en el sitio de los camiones se realiza de forma neumática por medio de aire de transporte, generado por el compresor instalado a bordo del vehículo. Durante el llenado del silo, el filtro de escape se limpia automáticamente por pulsos de aire comprimido.

 El llenado de un silo es autorizado desde la sala de control y puesto en marcha por el conductor del camión desde un panel de control local en las inmediaciones de la estación de descarga. Cuando el llenado está en marcha, la válvula de llenado se abre y se inicia la limpieza del filtro de escape.

 El silo va apoyado sobre una estructura de acero independiente que se coloca sobre células de pesaje.

 En la salida del fondo del silo, se encuentra instalada una válvula manual de corredera manual. La descarga del silo está asegurada por medio de un sistema neumático de descarga con aire comprimido.
II.2.1.1.6.2 Almacenamiento de adsorbente (carbón activo)

- Descripción funcional del almacenamiento de adsorbente

Se suministrará un silo para el almacenamiento del adsorbente (carbón activo). El adsorbente aplicado es carbón activado.

- Descripción del almacenamiento de adsorbente

El almacenamiento de adsorbente se hace en 1 silo para la planta. El adsorbente es entregado por camiones con silo. La descarga en el sitio se realiza de forma neumática mediante presión de aire transportador generado por el compresor instalado a bordo del vehículo. El filtro de escape se limpia automáticamente por medio de un controlador de presión diferencial. El aire de escape limpio es expulsado a la atmósfera.

El silo se controla por medio de las mediciones de temperatura instaladas en el fondo y en la parte superior del silo. En caso de una desviación de temperatura inusual, se provoca que el silo quede inerte con gas inerte. La condición de inerte la debe liberar manualmente el personal operativo.
II.2.1.6.3 Suministro de gas inerte

- Descripción funcional del sistema de gas inerte

El sistema de gas inerte ahoga los potenciales incendios de adsorbente en los silos de adsorbente, inundándolos con gas inerte.

Figura II—73. Silos de almacenamiento de residuos.
Descripción del sistema de gas inerte

Los potenciales incendios, en particular los fuegos encendidos en los silos, son detectados por mediciones de temperatura lo más rápido como sea posible y se combaten como primera medida, accionando manualmente la inundación de gas inerte de la zona afectada.

El sistema de almacenamiento de gas inerte está diseñado para garantizar que los habituales fuegos encendidos puedan extinguirse o postergarse hasta que la brigada de bomberos se encuentre en el sitio o que puedan ejecutarse las respectivas contramedidas, por ejemplo, el vaciado de silos hacia el incinerador.

El gas inerte que se utiliza es nitrógeno (N_2). En comparación con el uso del dióxido de carbono (CO_2), el riesgo de asfixia de personal es mucho menor debido al hecho de que el nitrógeno se mezcla de inmediato con el aire en un sistema abierto.

Las baterías de cilindros de gas a unos 200 bares de presión de cilindro están disponibles como almacenamiento de gas inerte. Las baterías de cilindros de gas, incluyendo válvulas, accesorios y manómetro, son suministrados por el cliente y pueden adquirirse en arrendamiento con un proveedor de nitrógeno.

El gas inerte se distribuye por medio de un sistema de tuberías, incluyendo las válvulas y accesorios necesarios a los respectivos consumidores.

II.2.1.6.4 Dispositivos de mantenimiento

Dispositivos de elevación para mantenimiento

- **Descripción funcional de los dispositivos de elevación**
Se utilizan varios dispositivos de elevación para la realización de los trabajos de mantenimiento en la planta.

- **Descripción del sistema de elevación**

Se instalan un número adecuado de equipos de elevación de cadena y eléctricos para el levantamiento de equipos por razones de mantenimiento. Se prevé la instalación de los equipos de elevación eléctricos donde el movimiento sea necesario al menos una vez al año, que el peso sea superior a los 200 kg y la altura de elevación sea superior a los 7 metros.

Se instalan previamente vigas encima del equipo pesado que tiene que ser elevado para trabajos de mantenimiento y donde el uso de montacargas móviles no sea factible. Dependiendo de los procedimientos de peso, de la accesibilidad y del mantenimiento, se instalan previamente también carros de grúa/monorrioles y equipos de elevación mecánicos.

Equipos de elevación móviles para mantenimiento

- **Descripción funcional de los equipos de elevación móviles**

Se utilizan varios equipos de elevación móviles para trabajos de mantenimiento en la planta.

- **Descripción de los equipos de elevación móviles**

Se suministra un número adecuado de equipos de elevación móviles para el levantamiento de equipos por razones de mantenimiento. Los polipastos móviles no se encuentran instalados de forma fija y pueden utilizarse en varias localidades dentro de la planta.
Dispositivo de mantenimiento en el foso de residuos

- Descripción funcional del mantenimiento en el foso de residuos
 En el foso de residuos, el dispositivo de mantenimiento se utiliza principalmente para trabajos de reparación y mantenimiento de las grúas de residuos.

- Descripción del mantenimiento en el foso de residuos
 Encima de cada posición de estacionamiento de la grúa, se suministra un adecuado dispositivo de mantenimiento para el levantamiento de equipos para fines de mantenimiento.

Desconexión de la grúa de la tolva de alimentación

- Descripción funcional de la desconexión de la grúa
 Dependiendo del material introducido en el conducto de la tolva de alimentación, esta puede sufrir estrechez y atascos.
 Para la extracción del material atascado en el conducto de la tolva de alimentación, se puede utilizar un pulpo de remoción.

- Descripción de la desconexión de la grúa de la tolva de alimentación
 Como grúa de remoción, se utiliza un tipo pequeño tipo concha o del tipo pulpo. El pulpo puede fijarse al elevador auxiliar de las grúas de residuos. En la carretilla de cada
grúa de residuos, se encuentra instalado un montacargas auxiliar. El pulpo de remoción se controla como los grandes pulpos de residuos del operador de la grúa de residuos o por medio de controles remotos por radio.

II.2.1.1.7 Sistema eléctrico

II.2.1.1.7.1 Sistema de distribución

El sistema de generación principal recibe energía mecánica de la turbina, realiza el proceso de conversión a energía eléctrica y la entrega al sistema de Subestación de alta tensión.

Este sistema está constituido por los siguientes componentes:

- Una (1) Subestación de Planta.
- Un (1) Generador de turbina de vapor.
- Un (1) Sistema de excitación estática para el generador de la turbina de vapor.
- Un (1) Sistema de control del turbogenerador de vapor.
- Sistema de enfriamiento y lubricación del turbogenerador de vapor.
- Un (1) juego de conductos de fases aisladas.
- Un (1) Interruptor de generación (para turbogenerador de vapor), transformadores de medida y protección, y equipo de protección contra sobretensiones transitorias.
- Tablero de Protecciones con sus correspondientes relevadores de protección.
- Sistema de extinción de incendio para el generador eléctrico, adecuado para cada sistema de enfriamiento empleado.
CAPÍTULO II

Figura II—74. Ubicación del Sistema Eléctrico en el proyecto.
II.2.1.1.7.2 Sistema de auxiliares de media tensión

El sistema de auxiliares de media tensión recibe energía del transformador de auxiliares, para alimentar los servicios propios de la planta y se conforma de los siguientes elementos:

- Tableros de media tensión (Metal Clad).
- Subestaciones unitarias.
- Bus de fase no segregada.
- Centros de control de motores.
- Sistema de alimentación ininterrumpida.

Adicionalmente el sistema de auxiliares de media tensión será alimentada por un Generador Diésel de Emergencia para garantizar el suministro de energía del tablero de media tensión en caso de falla de la alimentación normal (Transformador de Auxiliares). También tendrá capacidad de arrancar en caso de emergencia una línea de caldera de producción.

II.2.1.1.7.3 Sistema eléctrico de baja tensión

Descripción general del sistema eléctrico de baja tensión

Normas

Todos los equipos eléctricos, de instrumentación y de control cumplirán con las normas IEC vigentes en sus versiones más actuales y se prestará especial atención a lo siguiente:

- Las normas sanitarias y de seguridad ocupacional establecidas por la ley.
Las normas sanitarias y de seguridad ocupacional y las pautas emitidas por las asociaciones industriales responsables.

Los reglamentos locales, las pautas, normas, y normas IEC/EN.

La norma que rige el sistema de codificación de la estación de energía.

Instalación y montaje de equipos eléctricos en lugares peligrosos IEC 60079-0.

Requisitos de la directiva EMC 89/336/EOS.

Alcance de equipamiento.

Transformadores de distribución (tipo seco).

Centro de carga de baja tensión y centro de control de motores (MCC).

Accionamientos de velocidad variable (VSD)

Sistema de baterías de UPS y sistemas de baterías (480/240VCA).

Centros de carga locales y engranajes de control de sistemas autónomos, incluyendo el cableado entre los paneles y los consumidores, sensores, detectores de final de carrera, etc. con cableado y tubos protectores de cables, todas las fijaciones, marcos y otros soportes necesarios, incluyendo las charolas de cable del alimentador de la subestación.

Contacto de tierra interior.

Instalación y cableado del alcance a suministrar.

Transformadores de distribución

Los transformadores de distribución tipo seco se utilizan para alimentar los dispositivos de baja tensión de la planta de energía de residuos. Los transformadores están equipados con cambiadores de derivación de "descarga" y el equipo de protección necesario.
Todos los equipos serán diseñados para cumplir con las normas EN 60801, EN 61000, IEC y con las normas de compatibilidad electromagnética (EMC), y aplica también la norma EN 60076.

Todos los transformadores serán del tipo de baja pérdida. Los transformadores de distribución tipo seco se instalarán en casetas eléctricas y dentro del edificio, junto con la correspondiente distribución de LV, aunque separados por un muro o cerca.

- 12 unidades instaladas en casetas eléctricas que alimentarán a CSP 1/2/3/4, ventilador de tiro 1/2/3/4 y FGT 1/2/3/4.
- 2 unidades (inmersos en aceite) para alimentar los cuadros eléctricos de servicios comunes 1 y 2 instaladas en el edificio.

La potencia nominal en MVA de cada transformador MV/LV se define para que coincida con la suma de la carga simultánea máxima calculada en el tablero de distribución alimentado con subidas de temperatura que no superen los límites establecidos en las normas IEC 60076-11 (seco), incluyendo una capacidad sobrante de aprox. el 10 % de la carga nominal para uso futuro. Cada neutro de LV de los transformadores MV/LV quedará sólidamente puesto a tierra.

Sistema de baja tensión y CCM de 480V

La distribución en LV consta de varias secciones para aumentar la disponibilidad y confiabilidad de la planta:

- Sección del incinerador/caldera (CSP) de las líneas 1, 2, 3 y 4.
- Sección de gases de combustión (FGT) para las líneas 1, 2, 3 y 4.
- Común 1.
El equipo se instalará en casetas eléctricas y en interior del edificio junto con los transformadores de distribución tipo seco (donde sea necesario) y en aceite (donde sea necesario), variadores de frecuencia (donde sea necesario) y equipos de control.

Cada panel está separado de los otros por medio de separadores. Todos los alimentadores de salida a motor saliente son extraíbles, es decir, son módulos enchufables. Se prevé espacio para futura ampliación.

Para fines de seguridad, los conductos del tablero de distribución se encapsulan dentro de la pared multifunción que segrega las fases generando una zona libre de fallas, divide al tablero de distribución principal de los otros componentes y garantiza la IP31 también cuando se retiran los módulos.

- **Compartimentos funcionales**
 - Compartimento del equipo.
 - Compartimento del tablero de distribución.
 - Compartimento del cable (entrada del cable de la parte inferior de los gabinetes).

El espacio en el interior de los cubículos está dividido en secciones separadas según la norma EN 61439-1 o normativa mexicana equivalente. Las conexiones, tableros y las terminales estarán protegidas contra contacto directo con aislamiento o cubiertas protectoras.
Normas

Los centros de carga de LV cumplen con las normas y recomendaciones de IEC 61439-1, 2 DIN EN 60439-1, EN 60439 o sus equivalentes mexicanas.

- Regla general IEC/EN 60947-1.
- Contactores y arrancadores de motor IEC/EN 60947-4-1.
- Contactores y arrancadores de motor electromecánicos IEC/EN 60947-4-1.
- Contención de falla de arco IEC61641.
- Los niveles de arqueo serán de <40 cal/cm².

Diseño y medio ambiente

Se suministrará un tablero de tipo metal-clad aislado por aire, construido y probado en fábrica. Los compartimentos del equipo y cable quedarán sellados de los compartimentos adyacentes por medio de separadores. La altura total de los tableros de distribución, cubículos y compartimentos para aparatos eléctricos no superará los 2.5 m por encima del nivel del suelo.

Las unidades del centro de control de motores se ubicarán dentro de los límites de 0.25 m y 1.9 m por encima del nivel del piso con entrada inferior para las conexiones de los cables. El diseño será optimizado (cuando sea posible) para instalar los alimentadores más grandes en la parte inferior del gabinete. Esto aumentará la altura de las empuñaduras de las puertas, etc.

Se proporcionarán instalaciones de bloqueo (candados) de forma que, en cualquier posición, los módulos puedan repararse y protegerse contra acciones de funcionamiento.
Especificaciones generales: tablero de conexión de 480 V

- Forma de separación: Forma 4b, tipo 5
- Sistema de conexión a tierra: TN-S
- Versión de entrega: Paneles completos
- Empaque: Doméstico
- FAT: FAT estándar
- Altitud de instalación m: menos de 1000

Sistemas de enclavamiento

Se instalarán sistemas de enclavamiento entre el interruptor y los cortacircuitos para evitar la conmutación bajo carga. También se incluyen sistemas de enclavamiento para el cierre de las secciones para fines de mantenimiento y puesta en servicio.

Acometida principal

Las acometidas principales de la línea de incineración y de los tableros de distribución de los servicios comunes se suministrarán con medidores de energía conectados al sistema de control distribuido (DCS). Se registrarán las siguientes variables medibles:

- Potencia activa (P) en kW.
- Potencia reactiva (Q) en kVar.
- Potencia aparente (S) kVA.

El tablero de distribución se suministra con las interfaces conectadas al sistema de control distribuido.
• **Tablero de conexión LV y MCC**

Un MCC es un conjunto de una o más secciones de gabinete metálico vertical con tablero de alimentación y alimentadores removibles de cada una de las unidades de control de motor, convertidores de velocidad variable o alimentadores de energía.

Las unidades MCC son el método más adecuado para agrupar el control de motor eléctrico, la automatización y la distribución de energía en un paquete compacto y económico. Los centros de control de motores constan de estructuras totalmente independientes cerradas y atornilladas. Estas secciones apoyan y albergan unidades de control, una barra colectora común de distribución de la alimentación a las unidades de control, una red de canales de cableado y áreas de entrada de conductores con capacidad de admitir carga entrante y saliente, así como cableado de control.

Las unidades de control constan de componentes tales como arrancadores de motor de combinación, dispositivos alimentadores de bifurcaciones, controladores CA o tableros de control de iluminación.

• **Diseño de arrancador de motor removable**

 o **Corriente principal (hasta 30 kW, 480 VCA):**

 • Protección de motor adecuada para corrientes de cortocircuito de hasta 50 kA con dispositivo de bloqueo (enclavado).
 • Contactor.
 • Relés de acoplamiento de 220 VCA o 24 VCC para la interfaz a los controles.
 • Si el sensor PTC es necesario, se proveerá de un relé de disparo.
 • Interruptor de circuito miniatura con contacto auxiliar para lazo de control.
 • Bloques de terminales.
• **Corriente principal (por encima de 30 kW, 480 VCA):**

 o Protección de motor adecuada para corrientes de cortocircuito de hasta 50 kA con dispositivo de bloqueo (candado).

 o Contactor.

 o Relés de acoplamiento de 220 VCA o 24 VCC para la interfaz a los controles.

 o Disparo por sobrecorriente térmica estándar o por arranques pesados.

 o Relé de sobrecorriente térmico. No será necesario si se suministran tanto el sensor PTC como el relevador de disparo.

 o Contador de horas (reportadas al DCS).

 o Transformador de corriente, monofásico (para unidades ≥ 100 kW con transductores de medición 4-20 mA).

 o Interruptor de circuito miniatura con contacto auxiliar para bucle de control.

 o Bloques de terminales.

• **Corriente de control:**

 o Interruptor de circuito miniatura con contacto auxiliar.

 o Relevador de disparo para sensor PTC, como se especifica.

 o Relé auxiliar.

 o Relé de temporización.

 o Bloques de terminales.

 o El intercambio de señales con el DCS se lleva a cabo por medio de los módulos de E/S distribuida o a través del enlace Profibus. Las señales de seguridad se cablearán físicamente.
• **Alimentadores:**

Los alimentadores son las salidas de energía con la protección de sobrecarga apropiada. Una falla de la protección, se transfiere al DCS.

Para los alimentadores con potencia nominal de 25A a 630A se utilizará un MCCB, es decir, un interruptor de circuito de caja moldeada. Los alimentadores que estén por debajo de 25A utilizarán un MCB. Se utilizarán interruptores de circuito de aire por encima de 630A. Cuando sea necesario, los alimentadores de energía serán motorizados.

Sistema de alimentación de corriente ininterrumpida UPS de CA (480/220V)

El sistema UPS y las baterías se encuentran instalados al interior del edificio. En caso de falla de alimentación, el sistema de fuente de energía ininterrumpida de estado sólido, garantiza la continuidad del suministro eléctrico para la instrumentación operativa y el sistema de control, es decir, el suministro eléctrico para los sistemas de instrumentación, monitoreo y los módulos de entrada y salida, así como la tensión de control del MCC.

El sistema UPS diseñado con tecnología IGBT (transistor bipolar de compuerta aislada) consta de una serie de rectificadores, baterías, inversor y de una derivación integrada. La salida es en tecnología PWM (modulación por ancho de pulsos).

Las principales distribuciones para CA constarán de dos secciones de barra colectora con un interconector normalmente abierto. El sistema de UPS se suministra como un sistema redundante.

Derivación de UPS:
En caso de sobrecarga o falla del inversor, la desviación estática será cerrada y el interruptor estático del inversor se abrirá. Durante el período de transición, ambos interruptores estáticos se cerrarán siempre por un breve periodo de tiempo para evitar la interrupción del suministro a los consumidores.

Baterías

Básicamente, las baterías se cargarán continuamente durante su funcionamiento con alimentación proveniente de los correspondientes cargadores de baterías. En operación normal, el cargador de baterías proporciona la energía eléctrica necesaria tanto para las cargas como para cargar la batería.

En caso de una falla del suministro de alimentación CA, las baterías serán la única fuente de poder, hasta que el generador diésel de emergencia se haya iniciado y vuelva a energizar el común. La disposición sobre bastidores depende del tamaño del sistema de la batería.

II.2.1.7.4 Variador de frecuencia (VSD)

Los VSD se instalan cuando la velocidad de los motores trifásicos tiene que ser constantemente alterada (p. ej. ventiladores de tiro). Un VSD regula la velocidad y la fuerza de rotación, o la salida de par, de un motor eléctrico. Los VSD se utilizan para ventiladores y bombas.

Los VSD son los ahorraadores de energía más eficaces para las aplicaciones de la bomba y del ventilador. Mejoran las operaciones de proceso, especialmente cuando se trata del control de flujo. El proceso VSD se realiza a partir de productos prefabricados.
Los convertidores de accionamiento de velocidad variable se instalan dentro de las casetas eléctricas o al interior del edificio y van conectados al a los consumidores de campo correspondientes.

La sección de alimentación de los accionamientos de velocidad variable será diseñada según las normas del nivel de integridad de seguridad 1 (SIL 1), de conformidad con la directiva IEC/EN 61508 (parada de emergencia de categoría 1, de conformidad con EN 60204). También la aplicación de SIL 2 estará disponible, si es necesario.

Los accionamientos de velocidad variable van dentro de gabinetes eléctricos que cumplen con los requerimientos de EMC (compatibilidad electromagnética). Todos los accionamientos de velocidad variable pueden operarse localmente. Para el control de los accionamientos de velocidad variable, las señales correspondientes se transmiten a través del sistema de bus desde/hacia el sistema de control distribuido (DCS).

La función de parada de cada VSD se definirá y clasificará de conformidad con las normas EN 60204-1 y EN 62061. Todos los accionamientos relacionados con la seguridad cumplen con la normatividad de EN 61800 en:

- Emisiones: EN 50081-2
- EN 55011, Clase A, Clase B
- Baja tensión: EN 60204-1
Variador de frecuencia del ventilador de tiro

El ventilador de tiro es un componente importante para el proceso de incineración y proporciona un constante flujo de gases desde la cámara de combustión a la chimenea. En general, las partes de control y alimentación están separadas. En la parte de alimentación, las partes descubiertas de los variadores de frecuencia, tienen una tapa de protección contra el contacto directo.

También es posible operar todos los variadores de frecuencia desde la parte delantera con un panel de operación.

Este convertidor se encuentra instalado en una caseta eléctrica. En esta dimensión de alimentación, es necesario hacer un enfriamiento del gabinete y, por consiguiente, se encuentran instalados ventiladores de enfriamiento.

Una interfaz Profibus se utilizará para la conexión del sistema DCS. También están previstas las señales con cableado físico por motivos de seguridad.

La conexión de alimentación del motor se ejecuta con un cable blindado simétricamente.

Motores de baja tensión LV

De preferencia, se seleccionarán motores de norma según IEC con baja corriente de arranque. Se respetarán los nuevos MEPS de la UE (reglamentos de eficiencia).

Los motores tendrán un mínimo de eficiencia, clase IE3 (eficiencia superior). Pueden suministrarse de una clase de eficiencia IE2 (alto rendimiento), siempre y cuando el motor esté asociado con un accionamiento de velocidad variable o que la salida nominal sea de <0.75 kW.

La designación de diseño se seleccionará según IEC 60034-7. Los motores irán enfriados por aire según IEC 34-6. La clase de protección es IP54 para motores, IP 55 para cajas de terminales en entornos normales e IP55W para lugares al aire libre.

El modo de funcionamiento S1 (operación continua) está especificado. Los motores irán equipados con sensores PTC (no válido para motores de <7.5 KW y válvulas de regulación y control eléctrico). El motor del ventilador de tiro irá equipado de forma especial con un sistema de monitoreo del estado del equipo.

Los motores de accionamiento por frecuencia son motores de norma estándar, diseñados para funcionar con accionamientos de velocidad variable.

El monitoreo del estado del equipo incluyendo los acelerómetros, las temperaturas del cojinete y de las ranuras será proporcionado para el motor del ventilador de tiro. Se utilizan generalmente motores 480 VCA LV.

- **Motores para actuadores**

Los motores que van montados en válvulas y compuertas están divididos en actuadores controlados y actuadores regulados. Generalmente, este controlador se suministra como una unidad con engranaje de control incluido. Los controladores con control/ regulación dependiendo de sus funciones, también pueden operarse localmente (por ejemplo, volante) en caso de falla de alimentación.

Los controladores están equipados, además de la fuente de poder, con los siguientes componentes mecánicos/eléctricos:

- 2 detectores de final de carrera (abierto/cerrado).
• 2 interruptores de par (abrir/cerrar).
• 1 indicador de posición de 4-20 mA (2 hilos) (para accionamientos con posiciones intermedias).
• 2 entradas de comando (abrir/cerrar) (accionamientos controlados).
• 1 punto de consigna de posición de 4-20 mA (controladores regulados).
• 1 alarma colectiva.

Solución modular de caseta eléctrica
La mayoría de los sistemas eléctricos y los controladores están instalados en casetas eléctricas para uso en interiores y exteriores. Todas las casetas eléctricas están diseñadas con el equipo necesario como sistema de ventilación y/o aire acondicionado, sistema de detección de incendios, iluminación y conexión a tierra y un sistema contra incendios.

La sobrepresión generada por un ventilador dentro de las casetas eléctricas impide la entrada de polvo. La clase de protección de las casetas eléctricas para uso en interiores y exteriores es IP54.

Todo el metal es galvanizado según EN ISO 1461/DIN 50976 y la superficie va pintada. Se han integrado las partes más importantes de los equipos eléctricos y de automatización en casetas eléctricas modulares, con ello se consigue:

• Ingeniería de planta concisa.
• Tiempos de construcción cortos.
• Alta calidad.
• Andamiaje reducido al mínimo.
• Consideración de las condiciones específicas del sitio.
Los equipos serán ensamblados previamente y probados y, por tanto, tras la entrega de los módulos en el sitio, el tiempo de puesta en servicio puede reducirse significativamente y asegurar, al mismo tiempo, un alto nivel de calidad. La infraestructura interna incluirá lo siguiente:

- Iluminación.
- Iluminación de emergencia con baterías.
- Luz de SALIDA de emergencia.
- Tomacorrientes.
- Sistema de puesta a tierra.
- Sistema de detección de incendios.
- Sistema contra incendios (opcional) Sistema de alarma contra incendios.

Bandejas de cables y cableado

Ningún cable llevará blindaje (excepto donde vaya directamente enterrado) y según las normas EN/IEC. Los cables de alimentación, control e instrumentación serán conductores de cobre, con caucho de propileno de etileno termoendurecible o con aislamiento de polietileno reticulado y materiales de recubrimiento ignífugo.
Todos los cables y alambres tienen que estar libres de plomo y halógenos. Por ejemplo, los cables de bajo voltaje están diseñados para una tensión límite de 0.6/1 kV. Estos cables tendrán conductores de cobre trenzados. El aislamiento será XLPE, con una temperatura de operación de 90 °C.

Cables multipolares y de control:
Los cables de control multipolares están diseñados para una tensión límite de 600/1000 V. Los conductores constarán de alambres de cobre trenzado con un área transversal de 0.75 mm² como mínimo.

Cables de instrumentación/control:
Los cables de instrumentación/control se utilizarán para fines de instrumentación y control como alternativa a los cables multipolares, siempre que su uso esté restringido a circuitos con tensión de trabajo inferior o igual a 125 voltios CA o CD y corrientes continuas de 100 mA o menos.

Estos cables constan de varios pares trenzados, con conductores de cobre de 0.5 mm cuadrados de tamaño mínimo (1/0.8 mm o 1/0.9 mm de diámetro), con aislamiento de polietileno o aislamiento XLPE, inmovilizados y blindados en general.

Los cables de instrumentación multipar se suministrarán de conformidad con los estándares de la industria.

Cables de fibra óptica.
Los cables de fibra óptica serán multimodo con núcleos de repuesto. Los cables de fibra óptica irán protegidos mecánicamente (por ejemplo, instalados dentro de tubos).
Cables de propósito especial:

Para temperaturas superiores de 100° C hasta 150° C, los cables irán aislados con un material como el caucho de silicón. Por encima de esta temperatura, se proveerá de un PTFE o un cable con aislamiento mineral.

Cables resistentes al fuego:

Los cables resistentes al fuego serán proporcionados para los sistemas de detección de incendios y de extinción de incendios, según la norma europea IEC 60331.

Tendido de cables

Todos los cables tendrán etiquetas de identificación fijadas de forma permanente en ambos extremos y se clasificarán de acuerdo con el sistema de identificación especificado para el proyecto.

Los cables serán colocados, en la medida de lo posible, sobre racks de cable. Donde el cable no pueda colocarse en racks, los cables irán sujetos con cinchas de plástico. Se utilizarán cinchas de cable resistentes a los rayos UV en exteriores. Se tenderán cables de un solo núcleo para los sistemas trifásicos en haces de tres e irán fijados con abrazaderas de plástico o metal no magnético.

Para los cables tendidos en las rutas de cable vertical, las paredes y los techos, los cables irán sujetos con abrazaderas de cable resistente a la corrosión (clips en forma de U con barras).

En ambientes químicamente agresivos, los racks de cable irán revestidos o hechos de plástico. En este caso, los tubos protectores de cables también están hechos de
plástico. Todos los cables estarán lo suficientemente protegidos contra sobrecargas térmicas, presión o deformación.

Conexiones por cable:
Para la conexión de núcleos de cable con una sección transversal mayor o igual a 25 mm², se utilizarán terminales de cable trenzado si no se dispone de bloques de terminales. Cuando se utilicen cables con núcleos aislados unipolares, los extremos de cable descubiertos se suministrarán con ferrules. Como regla general, los cables van conectados a relevadores de tensión de cable, mediante abrazaderas de cable resistentes a la corrosión. Los polos de repuesto van conectados a las terminales.

Racks de cable:
Básicamente, los racks de cable prefabricados y las escaleras se utilizan en diseños de galvanizado en caliente o uso común. Todas las fijaciones y piezas de conexión (tornillos, soportes, etc.) están galvanizadas en caliente. Todas las superficies de corte estarán protegidas contra corrosión.

Las bandejas de cables y los racks estarán conectados con el sistema de tierra. Las bandejas de cable estarán ubicadas en paredes interiores, siempre que sea posible. Si esto no es posible, las escaleras de cable estarán protegidas de la pared exterior con cubiertas de lámina metálica puestas a tierra.

En las habitaciones con un ambiente agresivo, se utilizarán bandejas de cables de plástico o racks de cable de plástico hechos de poliéster reforzado con fibra de vidrio. Esto también se aplica a las estructuras portantes (ejes y vigas en voladizo).
Estaciones de control local, gabinetes de distribución, cajas de conexiones

Las estaciones de control, los gabinetes de distribución y las cajas de conexiones serán fabricados de plástico o de acero inoxidable, si se instalan al aire libre.

Construcción

Los gabinetes o las cajas instaladas en las salas eléctricas cumplen con la clase de protección IP30/31; las clases mayores o menores se especificarán por separado. Los gabinetes o las cajas instalados dentro de la zona de la planta cumplen con la clase de protección IP54. Los gabinetes o las cajas instalados en el exterior cumplen con la clase de protección IP65 y serán de acero inoxidable o GFK.

Los voltajes de los distintos niveles están separados dentro de un gabinete o caja de conexiones. Todas las entradas de cable en los gabinetes o cajas se harán desde la parte inferior. Se suministran barras para señalarizar tierra de señal y tierra de protección.

Control local de los motores

Los gabinetes de control local se instalarán donde el proceso requiera de la operación local de los consumidores.

Pulsador de emergencia

Los pulsadores de emergencia se proporcionarán por razones de seguridad esenciales del proceso. Si es necesario, los pulsadores de emergencia estarán equipados con tapas para evitar un toque accidental.
II.2.1.1.8 Oficinas, estacionamientos, instalaciones, vialidades y otros.

En esta sección se consideran las edificaciones y equipamiento que son parte escencial del funcionamiento de la planta.
Figura II—75. Ubicación de las oficinas, estacionamientos, instalaciones, vialidades y otros en el proyecto.
II.2.1.1.8.1 Edificio de administración

El Edificio de administración o de Servicios Generales, el cual ocupa una superficie de 1,150 m², tendrá un vestíbulo a doble altura, y se compondrá de dos pisos, planta baja y primer piso, este contará con todos los servicios de electricidad, instalación contra incendios, agua sanitaria, fosa séptica, salas, laboratorios, baños, biblioteca, etc.

En la Sección II.4.2.2.1 se especifica su construcción y los elementos que componen a este edificio.

II.2.1.1.8.2 Estacionamientos

La planta contará con dos estacionamientos, uno de camiones y otro de coches y autobuses, cada uno con una superficie total de 5,253 m².

El estacionamiento de coches y autobuses se encontrará junto al edificio de administración. El de los camiones se encontrará a la entrada de la planta.

II.2.1.1.8.3 Vialidades en el interior de la planta

La circulación de vehículos al interior de la planta es forma de circuito, diseñados para una circulación constante y requerimiento mínimos de maniobra, estas vialidades ocupan una superficie total de 17,739 m².

Además de estas vialidades el proyecto cuenta con una rampa, para que los camiones suban al área de descarga de los residuos, el cual cuenta con una superficie de 2,375.35 m² y perfil se muestra a continuación.
CAPÍTULO II

210

Figura II—76. Perfil de la rampa.
Figura II—77. Circulación de vehículo al interior de la Planta.
II.2.1.1.8.4 Áreas de reserva

El proyecto contará con dos áreas de reserva, un área reservada para ampliaciones, con una superficie de 19,144.92 m², que necesite la planta en un futuro con respecto a las etapas de Recepción y almacenamiento de residuos, Combustión y caldera, Recuperación de energía, Tratamiento de gases de combustión y Manejo de residuos.

La otra área de reserva es para espacio adicional, la cual cuenta con una superficie de 8,305.86 m², y es para espacios adicionales que se requieran en cuanto a estacionamientos, oficinas o lo que se pueda ofrecer en un futuro.

Dichas áreas serán intervenidas con las autorizaciones eventuales que para tal efecto se obtengan por parte de la autoridad competente.

II.2.1.1.8.5 Área reservada para Escorias

Esta zona cuenta con una superficie de 18,405.47 m², y esta reservada para el depósito de escorias que se produzcan durante el proceso. Esta área funcionará como almacenamiento temporal, ya que posteriormente las escorias serán enviadas a los sitios de disposición final, que son 2 rellenos sanitarios que cumplen con la normatividad ambiental vigente de acuerdo con la Norma Oficial Mexicana NOM-083 SEMARNAT-2006, operados por Veolia Mx: RS Veolia Tlalnepantla y RS Veolia Tulantepec, mismo que cuentan con las autorizaciones correspondientes en materia ambiental. Para mayor información ir a la Sección II.6.2.1.

Previo al envío para disposición final del primer volumen de escorias producidas en el arranque de la operación de la planta, se llevarán a cabo análisis CRIT a efecto de caracterizar las propiedades de los residuos y garantizar un manejo adecuado de

CAPÍTULO II
conformidad con lo que establece la Ley General para la Prevencion y Gestion Integral de los Residuos.

II.2.1.1.8.6 Foso de agua pluviales

Tal y como su nombre lo indica, este equipamiento se compone de dos fosos (o balsas) de almacenamiento de aguas pluviales:

- Balsa de aguas pluviales de cubiertas: recogerá las aguas pluviales procedentes de las cubiertas del edificio de oficinas, área de descarga de camiones, foso de almacenamiento de residuos y calderas. La balsa tendrá una capacidad de 200 m3, suficiente para recoger en caso necesario el agua de vaciado de una caldera, de manera que se facilite su reutilización como agua bruta. La función de este almacenamiento es disponer de un depósito adicional de agua de aporte que pueda minimizar el consumo de agua bruta de la instalación.

- Balsa de aguas pluviales de caminos: Acumulará las aguas pluviales procedentes de las zonas de la instalación sin cubierta. La primera precipitación caída realizará un lavado de las zonas sin cubrir y arrastrará partículas y grasas. La balsa tendrá una capacidad tal que garantice la recogida de este primer agua de lluvia, considerándose como tal los 15 primeros minutos de precipitación. La función de este almacenamiento es retener dicha precipitación para un posterior tratamiento mediante decantación y desengrase, previos a su vertimiento al Río Churubusco.

Se prevén los siguientes vertidos de aguas pluviales:

- Vertido de aguas pluviales de cubiertas al Río Churubusco.
- Vertido de aguas pluviales de caminos al Río Churubusco, tras una decantación y desengrase previos.
El efluente tratado en la planta de tratamiento de efluentes será reutilizado como agua de apagado de escorias, por lo que no se considera la instalación de un punto de vertido de efluente tratado a algún cuerpo de agua receptor.

II.2.1.8.7 Tanques de agua

Tanque de agua bruta
Este tanque será utilizado para almacenar el agua total que se encuentra en la planta.

Tanque de agua de servicio y contraincendios
Este tanque, tal y como su nombre lo indica, es el agua que será utilizada para los servicios, como baños y comedores, así como para el sistema contraincendios.

Tanque de agua desmineralizada
Este tanque forma parte de la Planta de Tratamiento de Agua Desmineralizada, descrita más adelante, en el apartado II.2.1.8.9.

Tanque de agua para cenizas
Este tanque almacena el agua que se utilizará en el Sistema de limpieza de la Caldera, el cual fue descrito en la sección II.2.1.2.2.
Tanque de agua potable

Ese tanque, tal y como su nombre lo indica almacenará el agua potable que se necesita para la planta y su operación, el suministro de agua potable se llevará a cabo a través de la acometida que se conecta al Acueducto Peñón-Texcoco de 36” de diámetro, para la cual se empleará una tubería de PEAD (polietileno de alta densidad) unida mediante termofusión en diámetros de 6” requiriendo un volumen promedio operativo anual de 2,500 m³/año. Su ubicación se puede observar en la descripción del apartado II.2.1.2.1.

II.2.1.8.8 Tanque diésel

El tanque diésel tendrá una capacidad de 50 m³ y será utilizado para la operación de la planta, tendrá un surtidor que cumpliría con toda la normativa mexicana al respecto.

Se necesitará diésel para el arranque de las instalaciones ya sea para la primera puesta en marcha o tras realizar las paradas de mantenimiento.

La calidad de diésel considerada es “extra light fuel oil” de acuerdo con la norma EN950, y con un poder calorífico inferior de 42.7 MJ/kg. Se ha considerado que todos los usos pueden llevarse a cabo con la misma calidad de diésel, lo cual permite un almacenamiento unificado.

El tanque será de acero al carbono, diseñado de acuerdo al API standard 650.
II.2.1.1.8.9 Planta de Tratamiento de Agua Desmineralizada

En particular la planta de tratamiento de agua desmineralizada cubrirá la demanda de este tipo de agua para el uso en calderas y ciclo agua-vapor, entre otros, siendo diseñada para producir una salida de agua desmineralizada en la de 28m3/h.

El agua industrial externa aportada a la Planta de Termovalorización tendrá la calidad adecuada para alimentar el sistema contra incendios, baldeos y reposición de agua de apagado de escorias de incineración, así como para alimentar a la planta de agua desmineralizada.

En cuanto a la planta de agua desmineralizada, se consideran dos líneas de producción. De esta manera es posible funcionar con ambas líneas a la vez para duplicar la producción de agua desmineralizada en casos puntuales. La mencionada planta constará, asimismo, de:

- Bombas de alimentación de baja presión y alta presión al primer paso de ósmosis inversa.
- Primer paso de ósmosis inversa.
- Bombas de alimentación de alta presión al segundo paso de ósmosis inversa.
- Segundo paso de ósmosis inversa.
- Tanque pulmón de agua osmotizada.
- Bombas de alimentación a sistema de electrodesionización (EDI).
- Dosificación química (inhibidor de incrustaciones, bisulfito sódico).
- Equipo de limpieza en sitio CIP para membranas de ósmosis inversa.

La solución considerada tiene especialmente en cuenta la fiabilidad del sistema, considerando dentro de cada línea redundancia 2x100% en los equipos principales tales como las bombas de trasiego de un elemento a otro.
Parámetros de Agua de Entrada

La planta de tratamiento de agua desmineralizada se alimentará con agua industrial externa procedente de la acometida, antes mencionada y la cual tiene agua potable e industrial, y que estará conectada al Acueducto Peñon-Texcoco de 36” de diámetro. El agua industrial deberá de tener las características necesarias para la operación del proyecto (Tabla II-16).

El caudal estimado de agua industrial es de 151,000 m³/año, y se tiene contemplado en su situación más desfavorable un caudal máximo alrededor de los 250,000 m³/año. Previo a su uso, el agua será previamente filtrada.

Para el diseño tanto del sistema de filtración previo como de la propia planta de agua desmineralizada se ha considerado la siguiente calidad de agua industrial externa al predio:

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Unidad</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td></td>
<td>7.25</td>
</tr>
<tr>
<td>Conductividad</td>
<td>mS/cm</td>
<td>462</td>
</tr>
<tr>
<td>Sólidos disueltos totales</td>
<td>mg/L</td>
<td>185</td>
</tr>
<tr>
<td>Dureza total</td>
<td>mg/L</td>
<td>164.3</td>
</tr>
<tr>
<td>Fe</td>
<td>mg/L</td>
<td>0.07</td>
</tr>
<tr>
<td>Cl</td>
<td>ppm</td>
<td>1.1</td>
</tr>
<tr>
<td>Sólidos en suspensión totales</td>
<td>mg/L</td>
<td>94</td>
</tr>
<tr>
<td>Sulfatos</td>
<td>ppm</td>
<td>148</td>
</tr>
<tr>
<td>Aceite</td>
<td>mg/L</td>
<td><12</td>
</tr>
<tr>
<td>Dureza cálcica</td>
<td>mg/L</td>
<td>164.3</td>
</tr>
<tr>
<td>COT</td>
<td>mg/L</td>
<td>2.8</td>
</tr>
<tr>
<td>Si</td>
<td>mg/L</td>
<td>0.02</td>
</tr>
<tr>
<td>Turbidez</td>
<td>mg/L</td>
<td>3.45</td>
</tr>
</tbody>
</table>

Tabla II-19. Calidad de agua industrial para que ingrese a la planta.
Parámetros de Agua de Salida Desmineralizada

A continuación se indica la calidad del agua producida por la planta de agua desmineralizada:

<table>
<thead>
<tr>
<th>Calidad de agua</th>
<th>Parámetro</th>
<th>Unidad</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agua filtrada</td>
<td>Sólidos en suspensión</td>
<td>mg/L</td>
<td>< 1</td>
</tr>
<tr>
<td></td>
<td>Cloro libre</td>
<td>mg/L</td>
<td>< 1</td>
</tr>
<tr>
<td></td>
<td>Turbidez</td>
<td>NTU</td>
<td>< 1</td>
</tr>
<tr>
<td>Agua desmineralizada</td>
<td>Conductividad (25ºC)</td>
<td>µS/cm</td>
<td>< 0.1</td>
</tr>
<tr>
<td></td>
<td>Sílice</td>
<td>ppb</td>
<td>< 10</td>
</tr>
<tr>
<td></td>
<td>Na + K</td>
<td>ppb</td>
<td>< 10</td>
</tr>
<tr>
<td></td>
<td>Cloruros</td>
<td>ppb</td>
<td>< 3</td>
</tr>
<tr>
<td></td>
<td>Sulfatos</td>
<td>ppb</td>
<td>< 3</td>
</tr>
<tr>
<td></td>
<td>Fe</td>
<td>ppb</td>
<td>< 10</td>
</tr>
<tr>
<td></td>
<td>Cu</td>
<td>ppb</td>
<td>< 3</td>
</tr>
<tr>
<td></td>
<td>COT</td>
<td>ppb</td>
<td>< 100</td>
</tr>
</tbody>
</table>

II.2.1.8.10 Planta de Tratamiento de Aguas Residuales

Se prevé el tratamiento de las aguas residuales a través de una PTAR prefabricada dentro de las instalaciones de la Planta con calidad para reúso en limpieza, riego y muebles sanitarios, en el caso de excedentes se descargará a un cuerpo receptor.
denominado Río Churubusco, cumpliendo con los parámetros que para tal efecto dispone la Norma Oficial Mexicana NOM-001-SEMARNAT-1996. Dicha infraestructura contará con capacidad suficiente para procesar un caudal de aguas sanitarias de 2,500 m³/año y la cual contará con las siguientes especificaciones y características:

- CERO generación de malos olores.
- Color del agua cristalino.
- Bajo costo de operación y mantenimiento.
- Muy baja producción de lodos.
- Instalaciones compactas, de rápida y fácil construcción.
- Opera hasta con 1/6 del gasto de diseño (2 lps).
- Puede dejar de operar hasta por 8 horas contínuas sin desestabilizar el proceso.
- No requiere de agregados o productos químicos especiales.
- No usará Gas Cloro.

Figura II—78. Ejemplo de la PTAR prefabricada (Fuente: Rotoplas © México).
II.2.1.8.11 Sistema de aire comprimido

El sistema de aire comprimido de la planta asegura una correcta operación de los actuadores neumáticos de la misma, y además proporciona el aire demandado por los distintos procesos tales como el tratamiento de gases o tomas auxiliares de limpieza manual, entre otros.

El sistema de aire comprimido se subdivide a su vez en dos subsistemas diferenciados, en función de la calidad requerida de aire:
Subsistema de aire de instrumentos:

Se encarga de proporcionar aire de la calidad adecuada a los actuadores neumáticos de la planta. Además, proporciona el aire de refrigeración necesario para la cámara de observación del horno, aire de alimentación de los quemadores de combustible auxiliar, y aire demandado por el proceso de tratamiento de gases a la salida de la caldera. El aire proporcionado es de calidad 1-2-1, de acuerdo con la norma internacional ISO 8573-1, asegurando las siguientes concentraciones máximas de contaminantes:

<table>
<thead>
<tr>
<th>Partículas sólidas</th>
<th>Agua</th>
<th>Aceite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Máximo número de partículas por m³, según diámetro (ø) en µm</td>
<td>Punto de rocío a presión máxima</td>
<td>Máxima concentración</td>
</tr>
<tr>
<td>0.1 < ø < 0.5</td>
<td>0.5 < ø < 1.0</td>
<td>1.0 < ø < 5.0</td>
</tr>
<tr>
<td>0.01</td>
<td>-40</td>
<td>-40</td>
</tr>
</tbody>
</table>

Subsistema de aire de servicios:

Proporciona el aire necesario para algunos procesos tales como la reducción selectiva no catalítica de los óxidos de nitrógeno, así como aire para conexiones auxiliares de limpieza manual. El aire proporcionado es de calidad 2-4-2, de acuerdo con la norma internacional ISO 8573-1, asegurando las siguientes concentraciones máximas de contaminantes:
La configuración de compresores escogida es de dos en operación más uno en reserva, común para ambos sistemas. El compresor en reserva entrará en funcionamiento automáticamente en caso de una disminución anormal de la presión del subsistema. De esta manera se asegura un balance óptimo entre fiabilidad e inversión, además de reforzar la disponibilidad de la red de aire de instrumentos en caso necesario, que tendrá preeminencia sobre la red de aire de servicios en cuanto a demanda de aire.

El subsistema de aire comprimido para instrumentos se compone de:

- Prefiltros: el aire expulsado de los compresores atraviesa un conjunto de filtros (uno en operación más uno en reserva) encargados de eliminar las posibles impurezas contenidas en el aire. Los prefiltros garantizarán por sí solos una calidad de aire equivalente a la del aire de servicios.
- Secadores: el aire prefiltrado atraviesa un sistema de secado de doble recipiente con regeneración sin calor.
- Postfiltro: el aire seco vuelve a atravesar un conjunto de filtros (uno en operación más uno en reserva) previo a la distribución del aire a los diferentes consumidores de la planta. La calidad del aire a la salida del postfiltro debe ser equivalente a la del aire de instrumentos.

Calidad de aire de servicios 2-4-2 según ISO 8573-1					
Partículas sólidas	**Agua**	**Aceite**			
Máximo número de partículas por m³, según diámetro (ø) en µm	Punto de rocío a presión máxima	Máxima concentración			
0.1 < ø < 0.5	0.5 < ø < 1.0	1.0 < ø < 5.0	ºC	ºF	mg/m³
100.000	1000	10	+3	+37.4	0.1
• Depósito: su función es garantizar una un tiempo mínimo de funcionamiento de los consumidores en caso de caída del sistema de aire, o de caída de la red eléctrica. El depósito garantizará el aire necesario para los actuadores neumáticos en dicho caso.

Por otro lado, el subsistema de aire comprimido de servicios consta de:

• Prefiltros: el aire expulsado de los compresores atraviesa un conjunto de filtros (uno en operación más uno en reserva) encargados de eliminar las posibles impurezas contenidas en el aire. Los prefiltros garantizarán por sí solos una calidad de aire equivalente a la del aire de servicios.

• Depósito: su función es garantizar una un tiempo mínimo de funcionamiento de los consumidores en caso de caída del sistema de aire, o de caída de la red eléctrica.

Sistema de Refrigeración Auxiliar

Para los equipos principales y equipos auxiliares que debido a sus características operativas o tecnológicas requieran enfriamiento, se les proveerá refrigeración mediante un sistema de enfriamiento auxiliar. El diseño del sistema de refrigeración tomará en cuenta el 100 % de los requerimientos de enfriamiento más un factor de sobre dimensionamiento para la carga térmica teórica.

Los intercambiadores de calor, bombas, tuberías, válvulas, instrumentos, filtros, y demás accesorios requeridos garantizarán la operación en todos los niveles de carga de la central. No se obstaculizarán vialidades, ni interferirá con otros equipos o sistemas. El diseño procurará optimizar las trayectorias de tuberías.
Los componentes principales del circuito cerrado de enfriamiento son:

Aeroenfriador:

El aeroenfriador es un sistema paquete que consiste en la combinación de un circuito cerrado de agua de enfriamiento y un intercambiador de calor agua-aire donde se disipa el calor del agua al medio ambiente. Este sistema será del tipo seco y se diseñará para operar a la intemperie y para garantizar el enfriamiento del agua proveniente de los sistemas de refrigeración de equipos.

El sistema disipará al medio ambiente la carga térmica de acuerdo a los rangos de operación de los equipos de proceso en cuestión. El nivel de ruido de los ventiladores cumplirá con la normativa en materia de protección al trabajador y al medio ambiente.

Sistema de Bombeo:

Se instalará un grupo de bombeo compuesto por dos (2) bombas del 100 % de la capacidad cada una; una para operación normal y la otra como respaldo. La operación de las bombas y su conmutación debido a fallas será automática. Las bombas no contarán con variador de frecuencia y serán de tipo centrífugas horizontales. La altura de colocación de los Aeroenfriadores será tal que se garantice la Altura Neta Positiva de Succión (NPSH por sus siglas en inglés) requerida por los fabricantes de bombas.

Tanque, Tuberías y Soportes:

El agua fría proveniente del Aeroenfriador se captará en un tanque de agua, el cual a su vez estará interconectado con las bombas de agua de circulación. Las tuberías empleadas para la interconexión entre Aeroenfriador, Tanque y Bombas ofrecerán una
caída de presión y temperatura de acuerdo a las normas internacionales. El diseño estructural será acorde con los pesos y dimensiones de los equipos del proveedor seleccionado e incluirá escaleras, pasillos y plataformas necesarias para mantenimiento.

Equipo Eléctrico de Fuerza y Control:

El Aeroenfriador será eléctricamente alimentado mediante un CCM en baja tensión a 460 Volts. El CCM podrá o no ser parte del alcance del fabricante del Aeroenfriador. Por su parte, las Bombas también serán alimentadas en baja tensión mediante el circuito de baja tensión de la planta.

Instrumentación y Control:

El sistema de enfriamiento auxiliar contará con la instrumentación y control para monitorear como mínimo: temperatura de agua caliente, temperatura de agua fría, presión de succión y presión de descarga en bombas. Las señales de control se enviarán al SCD de la central. El alcance de suministro integra el diseño, suministro e instalación de la instrumentación necesaria para el monitoreo, operación y protección del sistema.

Sistema de Tratamiento Químico Integral a Agua de Enfriamiento:

El sistema de enfriamiento contará con abasto de agentes químicos provenientes del sistema de dosificación química de la central. Con estos agentes se impedirá que los equipos de intercambio de calor sufran incrustaciones y que por la tanto modifique la

CAPÍTULO II
eficiencia en la transferencia de calor; también se evitará el taponamiento de la tubería por arrastre de partículas o la incrustación en los equipos enfriados por aire.

II.2.1.9 Sistema de control centralizado y niveles de automatización

A continuación se describe el sistema de control centralizado y los niveles de automatización previstos en la Planta.

II.2.1.9.1 Arquitectura básica del sistema de control

El sistema de control distribuido (DCS) es un sistema de automatización para todas las funciones: proceso, maquinaria, accionamiento y controles de calidad. También cubre la gestión de la información, así como el seguimiento del estado del equipo mecánico y dispositivos de campo. La arquitectura del sistema ahorra en costos y esfuerzo, asegurando al mismo tiempo el crecimiento abierto para desafíos futuros.

El DCS es utilizado para operar la planta y garantizar la seguridad del personal y del equipo.

La confiabilidad está garantizada mediante el uso de componentes industriales, un avanzado concepto de refacciones y una estructura de red estable. La seguridad es esencial en un entorno de producción en tiempo real. La automatización de la producción crítica exige un alto estándar y soluciones de alta calidad. El enfoque de seguridad por capas garantiza que la seguridad necesaria se proporcione a todos los niveles.

El diseño de la red sigue los principios de la arquitectura de red segura con un firewall entre el sistema DCS y las redes de oficinas con una zona desmilitarizada. Las
conexiones remotas pueden realizarse por SCS (solución de conexión segura) con acceso seguro a través de la autenticación, autorización y contabilidad.

Las unidades de paquete, como la turbina tendrán su propio sistema de control y estarán conectadas con un enlace. La arquitectura del sistema para este proyecto se muestra a continuación:
Figura II—80. Arquitectura del sistema de control de la planta.
El DCS consta de tres niveles:

- **Nivel de campo**: Equipos de proceso, sondas, unidades de accionamiento y dispositivos de análisis y equipos de E/S.
- **Nivel de automatización**: Control de procesos, dispositivos automatizados y unidades de paquete.
- **Nivel de control de planta**: Monitoreo y control del proceso, adquisición de datos y herramientas de programación.

También hay interfaces con los sistemas de gestión y de la red de oficina. El DCS proporcionará la funcionalidad para operar la planta y para garantizar la seguridad del personal y del equipo.

El **nivel de campo** consta de los siguientes equipos y funciones:

- El proceso en sí mismo.
- Unidades de accionamiento (motores, válvulas, válvulas antirretorno, controladores).
- Los instrumentos, sondas y unidades de accionamiento (nivel, caudal, presión, temperatura, medición) que realizan todas las funciones del proceso y del sistema (monitoreo, seguridad, etc.)
- Los dispositivos de análisis específico.
- Las cajas de cableado local para señales analógicas, pulsos o señales digitales integradas.
- Las cubiertas de control equipadas con sus accesorios (interruptores, botones, botones de encendido/apagado, interruptores de parada de emergencia), motores y usuarios eléctricos (válvulas, válvulas de solenoide).
El cableado para el equipo de control e información a las cajas de cableado.
Los gabinetes RIO con tarjetas de E/S.

El nivel de automatización consta de los siguientes equipos y funciones:

- Gabinetes de estación de proceso con procesadores.
- Sistema de protección de caldera (sistema de control a prueba de fallos).
- Equipos que directamente realizan proceso de datos, control y monitoreo de los procesos.
- Elementos del sistema de seguridad (cableado de relés).
- Gabinetes de integración, regletas terminales modulares, relés de cambiadores de derivación y los transductores para el proceso en sí que son responsables del procesamiento en este nivel.
- El cableado de las cajas de cableado local hasta los equipos de procesamiento.
- Comunicaciones con el nivel de control de planta.

El nivel de control de planta consta de los siguientes equipos y funciones:

- La estación del operador y los gabinetes de servidor incluyen hardware de computadora.
- Pantallas de visualización.
- Impresoras de alarmas y eventos.
- Estructura y equipo de redes.
- La interfaz de usuario con el cual el personal controlará el proceso y monitoreará el estado de los equipos, y que les permitirá obtener acceso a los controles y ajustes en función de las exigencias del proceso.
- Software de usuario (operador) y programación (ingeniería).
- Almacenamiento de datos para la administración de la planta.

Archivo de datos es la copia de seguridad de los datos y para el restablecimiento del DCS. La copia de seguridad de los datos se almacena en los servidores durante un corto tiempo de almacenamiento de datos. Los datos históricos se almacenan en un servidor independiente, que incluye también una interfaz ODBC/OPC.

II.2.1.1.10 Redes de sistema

La red del sistema está diseñada mediante el switch ACN con topología de anillo en Ethernet. Los dispositivos de red son compatibles con el protocolo de monitoreo de red simple (SNMP) para el diagnóstico de la red.

Red de oficinas: La red de oficinas está separada del sistema de red por medio de un firewall.

Red de proceso

- Medios físicos: Ethernet por par trenzado o fibra
- Nodos / red: No hay límite práctico
- Longitud total: No hay límite práctico
- Protocolo: Ethernet industrial
- Velocidad de datos: Hasta 1 Gbit/s, normalmente de 100 Mbit/s
- Intervalo de comunicación: Normalmente 0.1 ... 1 s, lo más rápido 0.01 s
Red de bus de campo

La comunicación de los gabinetes RIO con las estaciones de proceso superior (nivel de automatización) será a través de la fibra óptica Profibus DP. La comunicación de los gabinetes PU con las estaciones de proceso superior (nivel de automatización) será a través de la fibra óptica Profibus DP.

Nivel de control de proceso (Interfaces de usuario)

Este nivel incluye la interfaz hombre máquina en tiempo real (IHM) = estaciones del operador para operación, monitoreo y visualización del proceso en todas las secciones de la planta, por ejemplo, tratamiento de residuos, incineración, tratamiento de gases de combustión y equipo de planta común. Estas funciones son generalmente conocidas como IHM.

La IHM ofrece al usuario todas las facilidades y funciones, lo que necesita para el monitoreo y control del proceso. La IHM del nivel de control de proceso se utiliza para controlar todas las máquinas y los equipos que están conectados a los PLC.

Los usuarios de la IHM son:

- Los operadores: operación en línea diaria de la planta.
- Ingenieros de proceso: procesamiento de análisis y ajuste de parámetros.
- Personal de mantenimiento: tareas de mantenimiento.

Es importante comentar que durante el proceso operativo se llevará a cabo la implementación de una plataforma en tiempo real del monitoreo de la calidad de las emisiones, la cual será de acceso permanente para la Dirección General de Gestión de la Calidad del Aire y Registro de Emisiones y Transferencia de Contaminantes de la Secretaría de Medio Ambiente y Recursos Naturales, así como del Instituto Nacional de Ecología y Cambio Climático.
II.2.1.10.1 Área de trabajo del operador

La comunicación en el nivel de control de planta está organizada como una estructura cliente servidor. Debido a esto, el sistema puede ampliarse a más clientes. También se ha previsto una estación de generación de informes/archivado que será ubicada en la sala de control principal y una segunda estación de generación de informes/archivado (SQL) para realizar copias de seguridad en la sala de servidores.

La red de la planta se vinculará con la red de proceso. De esta forma, se garantiza que el almacenamiento de datos, gestión de información y de planta, incluso el archivado, pueda realizarse con el equipo existente y conocido. Se pueden compartir la base de datos del equipo de proceso y las impresoras. La red administrativa estará vinculada con la red de proceso a través de un router y un firewall.

Cada imagen de la IHM consta de secciones estáticas y dinámicas; ambas partes combinadas reflejan el estado del proceso. Para simplificar el trabajo del operador en el monitor, la planta está dividida en secciones de proceso, donde cada sección representa una cierta unidad tecnológica. Las secciones de plantas individuales pueden operarse directamente desde la imagen correspondiente. Una sección de planta se separa en grupos funcionales (FG) que consisten en dispositivos que funcionan conjuntamente. En el más bajo nivel de funcionamiento, los dispositivos individuales pueden ser operados directamente.
Además de las vistas mencionadas de la planta, la IHM ofrece imágenes adicionales, por ejemplo, tendencias e inicio con condiciones previas y su estado.

La IHM va instalada en la sala de control central de la planta. Todas las impresoras se comparten desde todas las estaciones.

Figura II—81. Visualización típica de una IHM.
II.2.1.10.2 Redes de comunicación

Voz y datos

- Descripción funcional:

Este sistema incluye todos los equipos y accesorios que están relacionados con los servicios de Internet y Telefonía. En este apartado se describirá específicamente lo relacionado a los servicios de Internet. De igual manera, en este sistema se engloba la infraestructura para la red de comunicación interna de la planta o LAN.

Los servicios de Internet serán contratados mediante un tercero para suministrar el servicio a través de la infraestructura instalada en la planta, la cual incluirá los servicios de Internet por conexión alámbrica en el edificio de servicios generales, el edificio de taller y almacén y en la sala de control, y por conexión inalámbrica en los edificios antes mencionados y la caseta de control de acceso.

La red está diseñada para dar soporte inicialmente a 27 usuarios conectados de manera alámbrica más un número variable de usuarios conectados vía inalámbrica. La infraestructura de red utilizada será modular, lo que permite ser escalable según las necesidades futuras de la Planta.

El enlace entre los diferentes equipos se realizará a través de Cable UTP CAT.5e o CAT.6 a través de puertos de Ethernet y para cubrir distancias mayores se emplearán enlaces de fibra óptica.

De igual manera, por medio de la red de infraestructura instalada se proveerán los enlaces para realizar las conexiones remotas a través de un Cortafuegos (firewall) del Servicio Técnico de la Turbina de Vapor, del Sistema de Control Distribuido (por terceros) en caso de requerirlo, así como de otros accesos remotos que fuesen necesarios y que se acuerden entre las partes.
Intercomunicación y voceo

- **Descripción funcional:**

Para la rápida y eficaz comunicación dentro de la planta se requiere de un sistema de voceo e intercomunicación que permita no solamente localizar al personal sino que también permita emitir avisos, anuncios y, de ser requerido, mensajes de alarma o evacuación en caso de algún siniestro a lo largo de distintas ubicaciones de la planta o en la planta completa en sí.

Para las distintas finalidades del sistema, se establecerán mensajes pregrabados que permitan una rápida actuación en caso de siniestros.

Radiocomunicación

- **Descripción funcional:**

Las necesidades operativas de la planta requieren de un sistema de comunicación preciso entre las distintas áreas de trabajo involucradas, por lo que para satisfacer esta necesidad se ha considerado la inclusión de un sistema de radiocomunicación móvil a través de radios personales con baterías recargables que permita la movilidad necesaria para emplearse en el momento requerido.

El funcionamiento de estos radios de comunicación está diseñado de manera especial para no interferir con los procesos de la planta, las señales de control o cualquier otro equipo electrónico además de que el alcance de los mismos cubrirá todas las instalaciones de la planta.

El sistema será diseñado de forma que cubra todas las localizaciones de la planta, haciendo uso de repetidores de señal en aquellos lugares en los que sea necesario debido a la presencia de obstáculos arquitectónicos.
Il.2.1.2 Descripción de los servicios requeridos

Il.2.1.2.1 Conexión red de agua

Como antes dicho, para la acometida de agua potable e industrial, se empleará una tubería de PEAD (polietileno de alta densidad) unida mediante termofusión en diámetro de 6” al Acueducto Peñón-Texcoco de 36” de diámetro. Donde se requerirá un volumen promedio operativo anual de 2,500 m3/año de agua potable 151,000 m3/año de agua industrial (se tiene contemplado en su situación más desfavorable un caudal máximo alrededor de los 250,000 m3/año).

Esta tubería se conectará en la planta, a la planta de tratamiento de agua desmineralizada y al tanque de agua potable.
Figura II—82. Ubicación de la acometida de red de agua potable.
Antes del inicio de los trabajos relativos a la colocación de la tubería se realizará un control horizontal que servirá para situar en planta los puntos o estaciones de control. Los controles a realizar serán:

- Trazo de líneas primarias (para excavación de zanjas y colocación de tubería).
- Señalamiento y nivelación de cruces.
- Señalamiento para ubicación de válvulas de seccionamiento de mariposa, válvulas, hidrantes, etc. para su instalación.
- Después de revisar la información generada por este concepto se procederá el inicio de construcción.
- En primer lugar se realizará la apertura de brechas o retiro de herbáceas necesaria para el trazo del control horizontal.
- Concluidos los trabajos de limpieza se procederá con los trabajos de despalme los cuales consistirán en retirar la capa superficial de material de 30 cm aproximadamente.
- Tras estos trabajos se procederá a realizar la excavación para la ubicación de la tubería. La excavación se realizará sobre la capa de tezontle previamente tendida y de acuerdo a los niveles de proyecto.

Los trabajos de excavación comprenderán algunas o todas las operaciones siguientes:

- Afloje previo.
- Extracción, remoción, traspaleo.
- Carga y descarga (donde así se establezca).
- Acarreo libre de hasta un kilómetro (en donde así se establezca).
- Amacice.
- Afines.
Todas las excavaciones se ejecutarán y afinarán dentro de las líneas y niveles del proyecto y variarán en función del diámetro de las tuberías que quedarán alojadas en ellas. Las superficies de las excavaciones se afinarán en tal forma que cualquier punto de ellas no sobresalga más de lo que indique el proyecto. El fondo de la excavación deberá afinarse minuciosamente para que la tubería que se instale, quede a la profundidad señalada en el proyecto.

<table>
<thead>
<tr>
<th>Diámetro nominal</th>
<th>Ancho de zanja</th>
<th>Profundidad de zanja</th>
</tr>
</thead>
<tbody>
<tr>
<td>D (mm)</td>
<td>B (mm)</td>
<td>H (mm)</td>
</tr>
<tr>
<td>32-75</td>
<td>400</td>
<td>700</td>
</tr>
<tr>
<td>100</td>
<td>600</td>
<td>800</td>
</tr>
<tr>
<td>160</td>
<td>700</td>
<td>860</td>
</tr>
<tr>
<td>200</td>
<td>700</td>
<td>1100</td>
</tr>
<tr>
<td>250</td>
<td>750</td>
<td>1150</td>
</tr>
<tr>
<td>315</td>
<td>750</td>
<td>1215</td>
</tr>
<tr>
<td>355</td>
<td>750</td>
<td>1255</td>
</tr>
<tr>
<td>400</td>
<td>900</td>
<td>1300</td>
</tr>
<tr>
<td>450</td>
<td>1100</td>
<td>1355</td>
</tr>
<tr>
<td>500</td>
<td>1200</td>
<td>1400</td>
</tr>
<tr>
<td>630</td>
<td>1500</td>
<td>1730</td>
</tr>
</tbody>
</table>

Posterior al tendido de la tubería se procederá con la colocación de materiales naturales para llenar los vacíos existentes entre las tuberías y los paramentos de las excavaciones hechas para alojarlas; entre estructuras y las líneas de nivel que, para la protección de las mismas, que señale el proyecto.
Figura II—83. Detalle de zanja.

Tabla II-24. Dimensiones para las capas de relleno de zanja por diámetro de tubería.

<table>
<thead>
<tr>
<th>Diámetro nominal</th>
<th>Plantilla</th>
<th>Colchón</th>
<th>Relleno inicial</th>
<th>Relleno final</th>
</tr>
</thead>
<tbody>
<tr>
<td>D (mm)</td>
<td>(mm)</td>
<td>(mm)</td>
<td>(mm)</td>
<td>(mm)</td>
</tr>
<tr>
<td>32-75</td>
<td>100</td>
<td>300</td>
<td>400</td>
<td>200</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>300</td>
<td>400</td>
<td>300</td>
</tr>
<tr>
<td>160</td>
<td>100</td>
<td>300</td>
<td>460</td>
<td>300</td>
</tr>
<tr>
<td>200</td>
<td>100</td>
<td>300</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>250</td>
<td>100</td>
<td>300</td>
<td>550</td>
<td>500</td>
</tr>
<tr>
<td>315</td>
<td>100</td>
<td>300</td>
<td>615</td>
<td>500</td>
</tr>
<tr>
<td>355</td>
<td>100</td>
<td>300</td>
<td>655</td>
<td>500</td>
</tr>
<tr>
<td>400</td>
<td>100</td>
<td>300</td>
<td>700</td>
<td>500</td>
</tr>
<tr>
<td>450</td>
<td>100</td>
<td>300</td>
<td>750</td>
<td>500</td>
</tr>
<tr>
<td>500</td>
<td>100</td>
<td>300</td>
<td>800</td>
<td>500</td>
</tr>
<tr>
<td>600</td>
<td>100</td>
<td>300</td>
<td>930</td>
<td>700</td>
</tr>
</tbody>
</table>
Cajas de protección de válvulas

Es una estructura con el propósito de proteger las válvulas de seccionamiento de la intemperie y de actos vandálicos, permitiendo además su operación.

Se ejecutarán la construcción de dichas cajas antes de probar las líneas de tubería y si por alguna razón falla o se rompen las tuberías y provoquen la destrucción de las cajas, reemplazaremos las cajas. Los trabajos para la construcción de las cajas de protección comprenderán las operaciones siguientes:

- Excavación en cualquier tipo de material excepto roca.
- Colocación de plantilla de concreto simple de f'c= 200 kg/cm².
- Colocación de filtro de gravilla o tezontle de 0.3x0.3m.
- Construcción de muro de concreto f'c= 200 kg/cm² armado de 15 cm de espesor.
- Varilla de 3/8” de diámetro en emparrillado colocado al centro del muro en ambas direcciones a cada 25 cm.
- Suministro y colocación de tapa metálica de lámina calibre 22 con marco y contramarco de ángulo de 2”x3/16”.

Instalación y suministro de tuberías y conexiones

Son conductos de PEAD (Polietileno de alta densidad), utilizados para la conducción y distribución de agua.

Los materiales que se empleen en las tuberías de PEAD y conexiones de PVC tipo comercial, incluyendo conexiones y accesorios del mismo material o el que se requiera según proyecto y/o manual del fabricante de acuerdo a las normas oficiales.
Una vez que se hayan ejecutado las excavaciones se realizará en forma coordinada e inmediata las actividades de instalación de la tubería, prueba hidrostática y rellenos de la estructura.

Figura II—84. Ejemplo del tipo de instalación a realizar.

Una vez realizada la excavación y colocada la cama de arena procederemos a colocar la tubería alineada y para su unión emplearemos equipo de termofusión.

Una vez colocada la tubería por tramos se procederá con la colocación de un acostillado a base de arena para posteriormente colocar en capas de 20 cm material inerte hasta complementar el relleno de la excavación. Una vez terminado el junteo de la tubería y conexiones, previamente a la prueba de presión hidrostática, se fijará la tubería o conexión de acuerdo como lo indique el proyecto para cada diámetro y tipo de tubería comercial, dejándose al descubierto las juntas durante la operación de prueba, esto se realizará cuando sean aceptados todos los resultados en toda la longitud de la tubería.

Para evitar movimientos de la tubería y conexiones producidos por la presión neumática, por quiebres o curvas de radio corto o por golpes de ariete, se construirán los atraques definitivos.
II.2.1.2.2 Conexión a cauce público y excedentes pluviales limpias

El agua pluvial excedente (limpia o tratada) almacenada que no pueda ser reutilizada en la planta será vertida al Río Churubusco, de acuerdo a las Normas Oficiales Mexicanas. El límite de batería de suministro se establece en el límite de la parcela. Con el fin de facilitar la monitorización de dichas aguas, se establecerá un sistema para su desfogue.

II.2.1.2.3 Conexión telefónica

- Descripción Funcional

Los servicios de telefonía, al igual que los servicios de internet, serán proporcionados mediante un tercero usando toda la infraestructura instalada para dicho alcance. El sistema contará con la capacidad de realizar llamadas entre los distintos equipos dentro de la red interna a través de números cortos y, además, realizar y recibir llamadas del exterior contando con una configuración de usuarios para restringir las llamadas de acuerdo a los permisos requeridos.

II.2.1.3 Vías de acceso al área donde se desarrollarán las obras o actividades

Por la ubicación del predio, el acceso al sitio será por Calle 7 (Anillo Periférico) posterior al puente que cruza con el brazo derecho del Río Churubusco, se toma la salida del lado derecho.
Figura II—85. Vialidades de acceso a la Planta.
Este acceso se encuentra sobre la Calle 7 (Anillo Periférico) entre las avenidas Bordo de Xochiaca y la Autopista Peñón-Texcoco; entre ambas vías de comunicación hay una distancia promedio de 3.3 kilómetros, sobre la cual existen retornos que facilitarán el acceso y salida de los camiones que transportarán los residuos.

II.2.1.4 DESCRIPCIÓN DE OBRAS Y ACTIVIDADES PROVISIONALES Y ASOCIADAS

II.2.1.4.1 Terracerías

El movimiento de tierras contempla la nivelación del terreno y la preparación de las plataformas donde se ubicarán las instalaciones temporales y definitivas requeridas para la construcción y posterior operación del proyecto.

Para este proyecto, se pretende ejecutar una única plataforma para el área que ocupará la planta, de acuerdo con la implantación propuesta. El resto de espacios de reserva disponibles (alrededor de 50,000 m²) se utilizarán para zonas de acopio de materiales y pre-ensamblaje de equipos así como zona de ubicación de casetas y de servicios de obra.

II.2.1.4.2 Habilitación del terreno

El predio de pretendida ubicación del proyecto presenta condiciones ambientales ya transformadas derivadas de su utilización previa como zona de depósito del material producto de la actividad del dragado de la Laguna Churubusco, lo cual no solo ha modificado las condiciones de los recursos existentes y sus procesos ecológicos, a un ambiente totalmente transformado e impactado con procesos de alta erosión eólica,
confiriéndole a los materiales depositados una resistencia poco adecuada, ante lo cual se propone mantener la capa de azolve con un tratamiento especial, evitando la remoción del material depositado previamente. Para ello se considera un mejoramiento en base de una estabilización de suelo por medio de utilización de cal viva, ya que la transformación química provocada por la mezcla de la cal, el agua y el suelo a mejorar produce el secado rápido de los materiales y contribuye a compactarlos de una forma más eficiente.

Una vez realizado el tratamiento especial anteriormente descrito, se colocará en el área destinada a formar la plataforma, una geomembrana o geotextil que encapsule los materiales por colocar. Por último, se realizará el relleno de la excavación de la siguiente forma:

- Relleno con material de importación debidamente compactado por ejemplo tezontle o cualquier otro material que cumpla con las calidades requeridas hasta el nivel +3,00 por encima de la cota actual.

En paralelo con los trabajos de preparación del terreno, se establecerá la infraestructura provisional de obra que incluye, entre otros:

- Vallado provisional del predio.
- Caseta de entrada para vigilancia y control de acceso a obra.
- Señalización horizontal y vertical de las obras.
- Establecimiento del sistema de recogida y transporte de residuos generados en la obra y ubicación de contenedores de basura.
- Establecimiento de oficinas y estacionamiento de obra (para los cuales se estima una ocupación máxima aproximada de 27,000 m3), que incluyen a su vez:
A medida que se disponga de terreno preparado se procederá a la realización del pilotaje para cimentaciones de equipos y edificios.

Para la realización de las cimentaciones de equipos y edificios se prevé la utilización de pilotes prefabricados de concreto armado hincados por percusión, dichos pilotes propuestos son de sección cuadrada con dimensiones de 0.4 x 0.4 metros e hincados a una profundidad de 30 metros cumpliendo con los asentamientos diferenciales requeridos por los fabricantes de equipos. Los pilotes propuestos tienen una capacidad admisible permanente de 40 toneladas y una accidental de 50 toneladas y se estima la utilización de 4,200 pilotes aproximadamente.

Posteriormente, en el contenido del presente Capítulo se esquematiza el proceso constructivo a base de pilotes.

II.2.1.4.3 Urbanización y vialidades

Se consideran trabajos de urbanización los siguientes:

- Vialidades interiores: Se ejecutarán las vialidades interiores, las cuales permitirán el acceso a vehículos a los diferentes puntos de la planta dónde sean necesarios, sea para su construcción o para la adecuada operación y mantenimiento.
Los caminos internos y externos serán de pavimento asfáltico.

Estacionamientos: Se incluyen dos parques de estacionamiento, uno principal junto al edificio de administración para visitantes y personal de la planta; y otro específico para camiones y vehículos pesados próximos a la entrada a la planta. Las áreas de estacionamiento y áreas de maniobra proporcionan espacio suficiente teniendo en cuenta todas las actividades necesarias durante el funcionamiento de la planta.

Acerados: En las zonas de tránsito, se construirán acerados de concreto.

Alumbrado: Se incluyen todos los trabajos civiles asociados a la iluminación de todas las vialidades y áreas de operación que requieran contar con sistema de alumbrado.

Acabados de áreas: En función de las operaciones a realizar en cada área, se considerarán acabados de terracería compactada, grava o concreto.

II.2.1.4.4 Cerca perimetral y puerta de acceso

II.2.1.4.4.1 Cerca perimetral

Alrededor de todo el predio donde se ubica la Planta se prevé una cerca perimetral a base de malla ciclónica recubierta de PVC rejilla de 50 x 50 mm.

Se ejecutará mediante módulos de 2.50 metros de ancho (contados centro a centro) y una altura de 4.0 metros, los soportes estarán formados a base de perfiles estructurales PTR de 4” anclados a dados de concreto de sección de 40x40x80 cm de profundidad colados en sitio y ligados por una dala de liga prefabricada o bien colada en sitio de 2.2 metros de largo, 50 cm de alto y 15 cm de espesor armada con varillas.
del Numero 10, en la parte superior contará con alambre de púas 2 filas de 3 hilos cada una.

En el esquema siguiente se muestra cómo será la cerca perimetral:

![Cerca Perimetral](image)

Figura II—86. Detalle de Cerca Perimetral.

II.2.1.4.4.2 Puerta de acceso

De manera paralela a la construcción de la cerca perimetral se construirán las puertas de acceso, dichas puertas serán fabricadas en taller y posteriormente trasladadas al sitio de los trabajos para finalmente ser montadas.
II.2.1.5 PREPARACIÓN DEL SITIO Y CONSTRUCCIÓN

II.2.1.5.1 Preparación del sitio

II.2.1.5.1.1 Movimiento de Tierras y Obras Civiles Generales

El movimiento de tierras contempla la nivelación del terreno y la preparación de las plataformas donde se ubicarán las instalaciones temporales y definitivas requeridas para la construcción y posterior operación de esta planta.

Para este proyecto, se pretende ejecutar una única plataforma para el área ocupada por la planta, de acuerdo con la implantación propuesta. Se considera que el terreno disponible es plano, y que se dispondrá de vial de acceso adecuado para el tráfico pesado tanto para la fase de construcción como para la etapa de operación.

Tal y como fue especificado anteriormente, se propone mantener la capa de material existente en el predio de pretendida ubicación de la panta, producto del desazolve de la Laguna Churubusco, aplicando un mejoramiento en base de una estabilización de suelo por medio de utilización de cal viva, ya que la transformación química provocada por la mezcla de la cal, el agua y el suelo a mejorar produce el secado rápido de los materiales y contribuye a compactarlos de una forma más eficiente.

Como ya mencionado anteriormente, una vez realizado el tratamiento especial anteriormente descrito, se colocará en el área destinada a formar la plataforma, una geomembrana o geotextil que encapsule los materiales por colocar. Por último, se realizará el relleno de la excavación de la siguiente forma:

- Relleno con material de importación debidamente compactado por ejemplo tezontle o cualquier otro material que cumpla con las calidades requeridas hasta el nivel +3,00 por encima de la cota actual.
Para la realización de las cimentaciones de equipos y edificios se prevé la utilización de pilotes prefabricados de concreto armado hincados por percusión, dichos pilotes propuestos son de sección cuadrada con dimensiones de 0.4 x 0.4 metros e hincados a una profundidad de 30 metros cumpliendo con los asentamientos diferenciales requeridos por los fabricantes de equipos. Los pilotes propuestos tienen una capacidad admisible permanente de 40 toneladas y una accidental de 50 toneladas y se estima la utilización de 4,200 pilotes aproximadamente.

II.2.1.5.2 Construcción

II.2.1.5.2.1 Especificaciones para el procedimiento constructivo de la cimentación

Trabajos preliminares

1. Como primera actividad, deberá ubicarse y referenciarse perfectamente el área que ocuparán las cimentaciones de cada estructura, así como las zonas donde se localizan las interferencias locales, como ductos, telefonía, fibra óptica, tuberías municipales, etc. que se interfieran con las obras. Una vez ubicadas, deberán acotarse por medio de pintura o marcas con un sobre ancho de 50 cm a cada lado de los paños detectados.
Figura II—87. Ubicación de áreas con cimentación y su vista en planta y corte.
Figura II—88. Detalle de pavimento en zona de tránsito ligero y de maniobra.

2. Las instalaciones municipales se deberán descubrir, proteger o reubicar, bajo la supervisión de la dependencia responsable.

3. Deberá confinarse la zona de obra con señalamientos claros y luminosos, evitando el paso de personal ajeno a la misma, así como mantener el tránsito local alejado de las zonas de maniobras.

Mejoramiento del terreno

Con la finalidad de contar con una superficie de trabajo adecuada para llevar a cabo la totalidad de las actividades relacionadas con la construcción de la cimentación y demás obras que implique el proyecto, se colocará una capa de tezontle con espesor mínimo de 50 cm, reforzada con georedes biaxiales.
Previo a la colocación del tezontle se tenderá un geotextil con capacidad para soportar el trabajo a que será sometido. Una vez colocado el geotextil, se tenderá una primera capa de tezontle con un espesor mínimo de 10 cm. Sobre esta, se colocará la primera geored biaxial. Se tenderá una segunda capa de tezontle, con espesor mínimo de 15 cm, y, de manera análoga al paso anterior, se colocará una segunda geored biaxial. Se realizará este proceso de manera sistemática hasta llegar un poco antes de la mitad de la altura total que tendrá la terracería de mejoramiento. El resto de tezontle se colocará sin intercalar capas de geored biaxial.

Hincado de pilotes

La instalación de los pilotes de concreto, debe efectuarse de modo que garantice la integridad estructural del pilote y se alcance la integración deseada con el suelo, de manera que cumpla su cometido; además no deberán ocasionarse daños a las estructuras e instalaciones vecinas por vibraciones o desplazamiento vertical y horizontal del suelo, por lo que se tendrán que seguir las siguientes indicaciones:

I. Todos los pilotes deberán estar perfectamente limpios y su cabeza será perpendicular al eje del mismo.

II. No deberán hincarse aquellos pilotes que presenten agrietamientos o fisuras.

III. Una vez que los pilotes hayan sido aceptados por la supervisión, es conveniente que se coloquen marcas, para así llevar un registro del número de golpes necesarios para hincar cada decímetro en el tramo de hincado.
Figura II—89. Armado y cimbrado de pilote.

Figura II—90. Colado y pilote producido.
IV. Deberá evaluarse la conveniencia de realizar una perforación guía en los primeros metros previo al hincado de los pilotes. De igual manera se realizarán pruebas de hincabilidad a partir de las cuales se realizarán los ajustes al procedimiento adoptado.

Figura II—91. Perforación Previa.
CAPÍTULO II

5. Después del manejo e izaje de los pilotes mediante estrobos, ésta maniobra se realizará una vez que los pilotes hayan alcanzado por lo menos el 75 % de la resistencia de proyecto. Colocado el pilote no se permitirá su extracción para volverlo a dejar caer, y provocar su hincado, por lo que queda prohibido la maniobra conocida como “Chaqueteo”.

Figura II—92. Ubicación de Pilotes.
VI. Tanto el pilote como la resbaladera del martillo se colocarán de manera vertical. En caso contrario, deberá corregirse con algún método disponible en obra la posición del pilote y el martillo hasta lograr la verticalidad.

VII. Para el hincado de pilotes se deberá utilizar un martillo con características adecuadas a las condiciones que se presentan en el suelo del sitio.
VIII. Los pilotes dañados durante el hincado, deberán retirarse y sustituirse por otros en perfecto estado.
IX. Se deberá seguir una secuencia de hincado empezando con los pilotes perimetrales del cajón, para posteriormente seguir con los pilotes centrales, esto con la finalidad de reducir las expansiones que se puedan generar por el desplazamiento de la masa de suelo.
X. Una vez iniciado el hincado de cada pilote no se deberá suspender esta actividad hasta que la punta alcance la profundidad de proyecto, consignado en plano topográfico correspondiente.

XI. Durante el hincado, deberá llevarse un registro del número de golpes necesarios para hincar la totalidad del pilote.

XII. En caso de ser pilotes de dos o más tramos, al empalmar se deberá verificar la verticalidad de los mismos en la junta.

XIII. Una vez hincado el pilote, se obtendrá el nivel de la cabeza, verificando nuevamente éste al final del hincado de todos, debiendo corresponder al indicado en proyecto.

XIV. La desviación angular máxima admisible del pilote es de 2% de tolerancia. En la profundidad de hincado será de ± 1% de la longitud total.
Figura II—95. Hincado de Pilotes.
Excavación para cajones

I. La excavación para los cajones piloteados deberá iniciarse hasta que la totalidad de los pilotes hayan sido hincados.

II. La excavación se realizará en una sola etapa hasta la profundidad de desplante y con la geometría del proyecto.

III. La excavación deberá observar taludes cuya relación horizontal-vertical sea de 3:1 y ocupará un área cuyos lados sean 50 cm mayores a los de la geometría del cajón a nivel de desplante. En caso de presentarse grietas longitudinales paralelas a la excavación, el talud deberá tenderse hasta una relación de 1:1 (h:v). Donde no sea posible tender el talud de inicio, debido a condiciones de vialidad o colindancias cercanas, será necesario implementar un sistema de contención temporal. La excavación deberá permanecer abierta el mínimo tiempo posible.

IV. Una vez que se tenga el área del cajón excavada en su totalidad y al nivel de desplante de proyecto, se colocará una plantilla de concreto pobre (f'c = 100 kg/cm²) de 5 cm de espesor que cubra únicamente el área del cajón.

V. Realizadas las actividades anteriores, se procederá a la demolición o descabezado de los pilotes. La longitud mínima de descabezado será de 80 cm. Tal condición deberá ser prevista en el diseño y fabricación de los pilotes. El descabezado de los pilotes se realizará mediante martillos rompedores, cuñas o alguna herramienta similar. Queda prohibido el uso de explosivos para este fin. Los fragmentos de concreto resultado del descabezado, así como materiales ajenos a la cimentación que se encuentren en el sitio después del descabezado, deberán ser retirados en su totalidad.
VI. Durante toda la etapa de excavación y construcción deberá de contarse en obra con un sistema de bombeo de achique que sea capaz de resolver cualquier eventualidad posible.

VII. Para garantizar el colado homogéneo de los elementos del cajón, se establece la siguiente metodología:

1. Los elementos constituyentes del concreto, no deberán deteriorarse ni modificar sus propiedades con el tiempo y bajo las condiciones a que estarán sujetos, es decir, deberán ser compatibles entre ellos y resistentes al medio que los rodeará.

2. El agregado grueso del concreto deberá tener el tamaño adecuado para que éstos se introduzcan fácilmente entre el armado de los elementos que formarán los cajones.

3. El concreto contendrá de forma integral y homogénea algún aditivo impermeabilizante.

Figura II—96. Cimentación superficial y armado de zapatas.
4. El concreto deberá ser colocado y vibrado, incluso contener un aditivo fluidificante, de tal forma que se garantice la no existencia de conductos generados por aire o cualquier discontinuidad por efecto de la segregación de sus componentes.

5. El colado de los elementos del cajón se realizará, de ser posible, en forma monolítica con el fin de eliminar las juntas frías.

6. Se deberá prever la cantidad de concreto por cada elemento, ya que por ningún motivo se suspenderá el colado una vez que dé inicio.

7. De existir juntas, estas no se admitirán en la losa de fondo ni en los muros perimetrales, así como en la conexión entre estos. Para tal fin en el colado de los elementos citados, se deberá contemplar muñones de 20 cm y chaflanes de 5 cm.

8. El área de contacto entre concretos de diferentes edades (junta fría) deberá presentar un acabado rugoso, se humedecerá por un plazo de 24 horas.

Figura II—97. Zapatas coladas en sitio.
previas al colado y se aplicará un aditivo para unir concretos de diferentes edades, además de colocarse cintas water-stop a cada lado.

9. El fraguado del concreto se controlará con un método tal, que asegure la no generación de grietas, fisuras, etc., pudiéndose realizar un curado a base de películas o aditivos.

Una vez construido el cajón de cimentación y previo a la colocación de los rellenos que lo confinarán, se aplicará el siguiente procedimiento para garantizar su estanqueidad:

VIII. Por la parte exterior de los muros que formarán el cajón, se aplicará un tratamiento a base de algún producto no degradable que forme y garantice una película impermeable, selladora del microfisuramiento que pudiera presentar el concreto. Esta película se colocará en toda la periferia del cajón y hasta la altura de la losa tapa, o por lo menos 50 cm por arriba del NAF. Durante la colocación de los rellenos que confinarán al cajón, se deberá garantizar la integridad de la película.

IX. En la parte interna de la losa de fondo, se aplicará un tratamiento análogo al de los muros. El producto usado deberá cumplir, además de la impermeabilidad, la adherencia necesaria para que se mantenga en su sitio bajo la presión hidrostática a la que trabajará. Este producto podrá ser de los que cristalizan en los intersticios del concreto, o bien, una membrana de polietileno de alta densidad (polipropileno) termosoldada, de 90 micras de espesor mínimo. Asimismo, será colocada sobre la plantilla de la losa de fondo del cajón, con características mínimas tales, que garanticen una permeabilidad menor a 0.01 l/día/m² y para su manejo y colocación cuente con una resistencia a la tensión mínima de 900 kg/m, quedando ubicada al centro de la plantilla de concreto. Especial cuidado se tendrá en las juntas entre cajón y pilotes, retirando el
material suelto del pilote y aplicando el tratamiento indicado para las juntas frías, adicionalmente en la unión entre ambos se cubrirá el pilote con 20 cm de la membrana impermeabilizadora.

X. En todos los casos, el producto aplicado para impermeabilizar será colocado bajo la supervisión y total responsabilidad del proveedor, garantizando la efectividad de su producto.

XI. Cuando sea el caso, en la losa tapa se dejará la preparación para un registro, el cual servirá para recuperar la cimbra y verificar posteriormente la estanqueidad del cajón y aplicar, si es necesario, un tratamiento correctivo.

Rellenos locales

I. Una vez terminado el proceso de colado y descimbrado del cajón, se rellenará perimetralmente la parte exterior del cajón a base de tezontle, en toda el área de la excavación y hasta el nivel de desplante de las estructuras. Las características del material y su colocación se indican a continuación.

1. El tezontle que se colocará no debe contener más del 30% de fragmentos mayores a 4" y no más del 5% de fragmentos mayores a 8". La selección de materiales podrá ser mediante cribado en banco o mediante pepena en sitio. No deberá contener materiales plásticos.

2. En la zona de desplante, se procurará que la granulometría del tezontle sea predominantemente arenosa y preferentemente se ubique dentro del área que marcan las tres zonas de la siguiente figura, para garantizar un aspecto cerrado en estas superficies.
3. El tezontle se colocará en capas de espesor máximo de 30 cm, debiéndose acomodar al 95% mínimo de su densidad relativa (Dr) determinada con la Norma NOM C-164 (por impacto). Deberá verificarse un valor relativo de soporte de 20% mínimo. Este acomodo se realizará con un rodillo vibratorio ligero.

4. El material que pase la malla 40 deberá cumplir lo siguiente:
II. Donde sea necesario, sobre el relleno aligerado se construirá la estructura de pavimento (en las zonas de vialidad).

III. Todos los rellenos que se coloquen en la zona de obra y no tengan una función estructural u ornamental, deberán ser a base de material limo-arenoso (tepetate) compactado al 90% AASHTO estándar (T-99) en capas de máximo 20 cm de espesor y obtener un valor relativo de soporte (VRS) de 20% mínimo.

II.2.1.5.2.2 Construcción y edificaciones

Las dimensiones de los principales edificios proporcionarán el espacio adecuado para la instalación, operación y mantenimiento de los equipos de la planta, así como para permitir su correcta funcionalidad.

Los edificios presentes en la planta pueden clasificarse en función de su estructura en edificios de concreto y edificios metálicos. En general, los edificios que requieren mayor aislamiento o hermeticidad, serán de estructura de concreto reforzado. Las principales estructuras de concreto reforzado diseñadas son el foso de almacenamiento de residuos (búnker) y los núcleos de escaleras de concreto.

Los edificios con grandes claros se construirán mediante estructura metálica. A continuación se indica un listado de los edificios considerados para la Planta:
• Edificio plataforma descarga de camiones: Edificio multiplanta de estructura principal de concreto y cimentación profundas. Este edificio estará compuesto por una planta baja sin cerramiento lateral y por una primera planta, la cual será la plataforma de descarga de camiones. El acceso será por medio de rampa, considerando puertas de apertura rápida al foso.

• Foso de residuos: Esta estructura cuenta con una capacidad de almacenamiento de 27,600 m³ en un foso dividido en dos vanos iguales, con capacidad para 2.4 días de almacenamiento incluyendo el apilamiento contra el muro (lado hornos-caldera y laterales). Para mayor detalle ver el Cálculo de los tiempos de almacenamiento permitidos en el foso, anteriormente descrita. Esta estructura consistirá en un foso rectangular impermeable, por debajo del nivel de la plataforma de descarga de camiones desde la cual los vehículos verterán los residuos. Estará construida con concreto reforzado. La sala de control, colocada en el centro de este foso permitirá a los operadores de las grúas una visión clara del mismo.

• Salas eléctricas/control: Edificios donde se albergarán las cabinas eléctricas y de control. Contarán con estructura principal de concreto.

• Sala de turbina: Una (1) turbina de vapor será alojada en la sala ubicada al oeste de las calderas. Este edificio es de estructura metálica, con unas dimensiones aproximadas de 27.1 x 33.6 m y tendrá una altura de 20 m.

• Área de almacenamiento de escorias: dos naves industriales de almacenamiento cubierta y cada una tendrá una capacidad de almacenamiento hasta de dos días (2 naves cubiertas y abiertas de 14 x 52.5 metros con una altura de almacenamiento prevista de hasta 3 metros o lo que es equivalente 2,205 m³ cada área). Esta zona de almacenamiento estará protegida por una losa de concreto con canales que llevarán el agua de escorrentía del material al sistema de tratamiento de aguas.
• Planta de tratamiento de aguas desmineralizada para calderas de capacidad de 28m³/h. Se ubicará en la planta baja del edificio plataforma de descarga de camiones y contará con un cerramiento lateral compuesto por una malla metálica.
• Edificio taller almacén: Se ubicará en la planta baja del edificio de descarga de camiones.

A estos edificios principales se añadirán algunos cobertizos y obras menores.

Edificio de administración y servicios generales

- **Descripción General**

El Edificio de Administración y Servicios Generales, se ha planteado dotándolo de un vestíbulo principal representativo, a doble altura y con lucernario en cubierta que dota a las zonas comunes de iluminación natural, al igual que los pasillos de distribución principales, que están dotados de ventanas exteriores; además cuenta con las siguiente distribución:

1. Planta baja:
 - 1 vestíbulo de entrada representativo y un mostrador de información.
 - 1 auditorio de sala de conferencias.
 - 1 sala de educación ambiental y reciclaje.
 - 1 laboratorio.
 - 1 sala de primeros auxilios.
 - 1 sala de apoyo médico.
 - 1 zona de restauración (congelados, cocina y comedor).
• 1 zona de vestuarios para hombres.
• 1 zona de vestuarios para mujeres.
• 1 área de sanitarios para hombres.
• 1 área de sanitarios para mujeres.
• 1 sala de servidores informáticos.
• 1 sala de servicios de limpieza.
• 1 sala de instalaciones de bombas y sistema contra incendios.
• 1 sala para el centro de transformación.
• Ascensor.

2. Primer piso:
• 1 despacho para jefe de planta 2 despachos para jefe de departamento.
• 4 despachos para mandos de nivel medio.
• 1 área de oficinas para 8 personas.
• 1 sala de conferencias.
• 1 sala de oración.
• 1 área de biblioteca.
• 1 área de archivo.
• 1 área de sanitarios para hombres.
• 1 área de sanitarios para mujeres.
• Ascensor.

Adicionalmente el edificio cuenta con las siguientes instalaciones:
• Instalación eléctrica de fuerza y alumbrado (interior y exterior).
• Instalación de detección de incendios y protección contra incendios del edificio.
• Agua sanitaria (caliente y fría) (procedente de la red de agua potable de la Planta).
• Recolección de aguas residuales de procedencia sanitaria, incluyendo red de agua residual hasta PTAR.
• Ventilación y acondicionamiento de aire de salas y dependencias.
• Instalación telefónica e informática, red de cableado estructurado.
• Circuito de cerrado de TV.
• Pararrayos.
• Sistema Contra Incendios.
• La recogida de pluviales limpias de cubiertas.
• El mobiliario del edificio y equipamiento de zonas específicas como enfermería y/o laboratorio.
• Acometida eléctrica para las necesidades del edificio de servicios generales.

II.2.1.5.2.3 Descripción de materiales del edificio

• Estructura metálica: Perfiles de acero Estructural: ASTM A992, Grado 50 y Perfiles estructurales principales y secundarios de acero estructural, placas y Barras de Acero Estructural: ASTM A36.
• Fachadas: se utilizará Superwall Flat 24/26 Pnt de 2" de espesor marca Metecno (o similar), pintado y con y espuma estándar por la cara interior plana y por la cara exterior tableteado.
• Cubierta: se utilizará panel de aluminio calibre 24 acabado poliéster estándar, color crema en ambas caras incluyendo lucernarios por medio de franjas de lámina translúcidas en un 10% las cuales optimizarán la luz natural.
• Áreas de oficinas con entrepiso metálico de lámina metálica acanalada Losacero 25, acabado galvanizado calibre 24, con pernos tipo Nelson.
• Muros interiores: a base de tabiques de block de concreto con dimensiones nominales de 20 x 20 x 40 cm.
• Muros exteriores: muro de ladrillo de 230 mm de espesor o bloques de concreto celular autoclave o bloques de concreto celular autoclavados con revestimiento de panel de aluminio compuesto.
• Paredes interna: paredes de ladrillo de 230 mm de espesor o bloques de concreto celular autoclavados con acabado en yeso.

II.2.1.5.2.4 Urbanización y Vialidades

Como antes mencionado, se consideran trabajos de urbanización los siguientes:

• Vialidades interiores: Se ejecutarán las vialidades interiores, las cuales permitirán el acceso a vehículos a los diferentes puntos de la planta dónde sean necesarios, sea para su construcción o para la adecuada operación y mantenimiento.
• Los caminos internos y externos serán de pavimento asfáltico.
• Estacionamientos: Se incluyen dos parques de estacionamiento, uno principal junto al edificio de administración para visitantes y personal de la planta; y otro específico para camiones y vehículos pesados próximos a la entrada a la planta. Las áreas de estacionamiento y áreas de maniobra proporcionan espacio
suficiente teniendo en cuenta todas las actividades necesarias durante el funcionamiento de la planta.

- **Banquetas**: En las zonas de tránsito, se construirán banquetas de concreto.
- **Alumbrado**: Se incluyen todos los trabajos civiles asociados a la iluminación de todas las vialidades y áreas de operación que requieran contar con sistema de alumbrado.
- **Acabados de áreas**: En función de las operaciones a realizar en cada área, se considerarán acabados de terracería compactada, grava o concreto hidráulico, concreto asfáltico y jardinería.

II.2.2 Camino de acceso a la planta (y puente)

El proyecto contempla la construcción de un camino de acceso y un puente con las siguientes características, cuya infraestructura será necesaria para comunicar el predio de pretendida ubicación de la planta con el acceso de la Calle 7 (Anillo Periférico).

Tabla II-26. Características del camino de acceso y puente.

<table>
<thead>
<tr>
<th>Camino Total (con puente)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitud (km)</td>
<td>2.3</td>
</tr>
<tr>
<td>Superficie Total</td>
<td></td>
</tr>
<tr>
<td>m²</td>
<td>ha</td>
</tr>
<tr>
<td>28,907.36</td>
<td>2.89</td>
</tr>
</tbody>
</table>

Dentro del Camino Total se Incluye:

<table>
<thead>
<tr>
<th>Camino</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Superficie</td>
<td></td>
</tr>
<tr>
<td>m²</td>
<td>ha</td>
</tr>
<tr>
<td>25,655.95</td>
<td>2.56</td>
</tr>
</tbody>
</table>
La sección tipo del camino se muestra en la siguiente imagen:

![Figura II—99. Sección tipo del camino.](image)
Figura II—100. Ubicación del Camino de Acceso y puente en el proyecto.
Figura II—101. Elementos que integran el camino de acceso.
II.2.2.1 Preparación del sitio y construcción para el camino de acceso y puente

II.2.2.1.1 Camino de acceso

1. Preliminares

Limpieza y deshierbe del terreno:

Suministro y colocación de geotextil

Para la ejecución de estos trabajos se seguirá lo establecido en Normatividad de la infraestructura del Transporte de la Secretaría de Comunicaciones y Transportes y en específico a lo establecido en las normas:

- N-CMT-6-01-001.- Geotextiles para terracerías
- AASHTO M-288.- Geotextile Specification for Highway Applications

Una vez limpia la zona de ejecución de los trabajos se procederá con los trabajos de suministro y colocación del geotextil no tejido, de polipropileno de resina virgen, la colocación se realizará siguiendo las recomendaciones del proveedor, el traslape mínimo será de 30 cm y su unión será mediante costura empleando para ello hilo kevlar, aramida, polietileno, poliéster o polipropileno.

Antes de terminar la colocación, el Geotextil se mantendrá en su lugar mediante medios adecuados, tales como pasadores, omegas hechas a base de varilla, lastres o bultos de tierra que eviten el movimiento durante la colocación del agregado.

En los sitios que así se identifiquen durante la obra, fundamentalmente en las zonas donde se presenten espejos de agua, se procederá a la colocación de la Geomalla con la finalidad de prevenir la mezcla entre los suelos del terreno natural y agregados o materiales seleccionados e impartir alta resistencia a la pérdida de capacidad de carga o integridad estructural contra los esfuerzos mecánicos desarrollados durante la...
instalación alta resistencia a la deformación provocada por fuerzas aplicadas durante su uso y alta resistencia a la pérdida de capacidad de carga o integridad estructural contra las solicitudes ambientales de largo plazo.

Las geomallas serán química y biológicamente inertes y resistentes a procesos degenerativos de los suelos; resistentes al desgaste, rasgaduras y punzonamiento, y soportarán cargas dinámicas aplicadas por el tráfico de construcción en cualquier dirección dentro de su plano.

La geomalla se colocará directamente sobre el geotextil, y habrá que asegurarse de que la superficie del mismo se encuentre libre de todo tipo de objetos extraños, piedras, raíces, ramas, alambres, varillas.

Figura II—102. Ejemplo de la colocación de las geomallas.
2. Capa de Tezontle

Una vez que la colocación del geotextil y la geomalla, en su caso, haya concluido se procederá con la construcción de la capa de tezontle de 60 cm de espesor.

Para lograr un acomodo adecuado se agregará la humedad necesaria y se procederá con su bandeado para su correcta homogenización.

Una vez que el material esté perfectamente homogenizado se procederá con su extendido formando capas de máximo 25 cm de espesor, con la finalidad de lograr el perfecto acomodo de los materiales se darán las pasadas necesarias con el mismo equipo a fin de que la capa de material quede compactado de acuerdo a las especificaciones establecidas en proyecto, este mismo procedimiento se repetirá en las capas subsecuentes hasta alcanzar el nivel establecido.

3. Estructura de Pavimento.

La estructura del pavimento cuenta con las siguientes fases:

- Construcción de capa de subbase.
- Construcción de capa de Base Hidráulica.
- Construcción de capa de Base estabilizada con cemento Portland.
- Construcción de capa de Carpeta Asfáltica.

Construcción de capa de subbase

El material a emplear consistirá de partículas durables o de fragmentos de agregados granulares provenientes del material procesado del material retirado de la precarga.
Una vez procesado y obtenido el material para subbase, se transportará hasta el lugar de su utilización, con el fin de proteger la capa inmediata inferior y asegurar el drenaje adecuado, el tendido de la subbase se iniciará a lo largo del eje de proyecto en una sección coronada o en el lado superior de los pavimentos con una sola pendiente.

Figura II—103. Colocación de la capa subbase.

Con la finalidad de lograr la calidad requerida de proyecto dicha capa de subbase se ejecutará en capas de no menos de 75 mm ni de más de 200 mm de espesor compacto.

Una vez que la capa del material ha sido tendida se procederá con su compactación, agregando si es necesario un riego para lograr el grado de compactación deseada, para dichos trabajos se empleará para ello compactadores del tipo vibratorios o bien empleando compactadores del tipo pata de cabra.
El material para la capa hidráulica consistirá de partículas durables o en fragmentos de agregados granulares provenientes del material retirado de la precarga y en caso de ser necesario para cumplir con las características de esta capa de base se utilizaría material de recargue proveniente de banco de préstamo, ya autorizados.

Para los trabajos de extendido se empleará una extendedora mecánica dotada de sensores, el camión vaciará directamente el material en la extendedora y posteriormente el material será extendido de tal manera que se obtenga una capa uniforme y que cuando se compacte cumpla con los requisitos de espesor, rasante y niveles.

Con la finalidad de lograr la calidad requerida de proyecto dicha capa de base la construiremos en capas de no menos de 75 mm ni de más de 200 mm de espesor compacto.
La compactación se realizará longitudinalmente, de las orillas hacia el centro en las tangentes y del interior al exterior en las curvas, con un traslape de cuando menos la mitad del ancho del compactador en cada pasada, como se indica en la norma N-CTR-CAR-1-04-002.

Construcción de capa de Base estabilizada con cemento portland

Esta estructura consistirá de una capa de base estabilizada con cemento la cual estará compuesta de un agregado mineral y cemento, uniformemente combinado o mezclado con agua, el material resultante se extenderá y moldeará empleando extendedoras mecánicas y se compactará con rodillos.

El cemento se suministrará del tipo Portland CPO 30, el cual será de una marca estándar y deberá ajustarse a los requisitos de la norma N CMT 2 02 001.

Previo inicio al proceso de producción de base cementada el personal de control de calidad diseñará la mezcla estableciendo y determinado el contenido de cemento de tal manera que el material resultante produzca una resistencia a la compresión a los 7 días como mínimo de 5.5 MPa.

Deberá garantizarse además que el contenido mínimo de cemento en la mezcla deberá ser de 4% por peso de agregado seco.

Para el tendido de dicho material se emplearán extendedoras sin cimbras deslizantes, con la finalidad de alcanzar un control de nivel y de pendiente apropiados, la capa superior de la base estabilizada con cemento deberá ser colocada por una pavimentadora mecánica, dicho equipo nos permitirá un proceso de esparcido continuo y satisfactorio del material y compactación al espesor y rasante apropiados.
Se cuidará principalmente que las capas extendidas de dicho material no excedan un grosor de 25 cm y el espesor mínimo compactado será de 15 cm.

Con la finalidad impermeabilizar y favorecer la adherencia entre la capa de base estabilizada con cemento y la mezcla asfáltica se realizará un riego de impregnación empleando emulsión catiónica de impregnación ECI-60.

Durante la aplicación del riego de liga, se ajustará la altura de la barra de la petrolizadora para aplicar el material asfáltico uniformemente, con la dosificación establecida en el proyecto, de tal manera que la base del abanico que se forma al salir el material por una boquilla cubra hasta la mitad de la base del abanico de la boquilla contigua (cubrimiento doble), o bien que la base del abanico de una boquilla cubra las dos terceras (2/3) partes del abanico de la boquilla contigua (cubrimiento triple).

Figura II—105. Ejemplo de la colocación de la base estabilizadora.

Cuando se aplique el material asfáltico en una franja contigua a otra previamente regada, se hará de tal manera que el nuevo riego se traslape con el anterior en un medio (1/2) o dos tercios (2/3) del ancho de la base del abanico de la boquilla extrema.
de la petrolizadora, lo anterior con la finalidad de garantizar que la dosificación del producto asfáltico en la orilla de la franja precedente sea la indicada en el proyecto.

Con el fin de evitar que la superficie cubierta por el riego de liga sea dañada, se mantendrá cerrado el tramo en cuestión a cualquier tipo de transito hasta que sea construida la carpeta asfáltica.

Después de la aplicación, se permitirá que la superficie cure sin que sea perturbada durante el periodo de tiempo necesario para permitir que se seque y fije el riego de liga.

Construcción de capa de Carpeta Asfáltica

La construcción de la capa de Carpeta Asfáltica será de 6.5 cm de espesor en pavimento en hombro, pavimento área de protección de erosión, pavimento en camino de servicio primario, pavimento camino de servicio secundario, pavimento camino de servicio terciario, pavimento en camino de rescate, pavimento en camino perimetral, pavimento en camino de rescate fuera del área de la precarga, se realizará empleando material procedente de la planta que será instalada en obra. El material pétreo se mezclará en planta con cemento asfaltico grado AC-20 con una proporción aproximada de 140 kg/m3 de, material pétreo seco y suelto de tamaño máximo determinado anteriormente, la calidad del material y la construcción de la carpeta asfáltica compactada al 98% la realizaremos acatando y guiándonos estrictamente por lo especificado en la normatividad vigente y en especial por la norma N.CMT.4.02.003/04.
4. **Señalamiento horizontal.**

Una vez que el pavimento haya sido correctamente construido se procederá con el suministro y aplicación del señalamiento en las siguientes zonas:

- Pavimentos de vialidades.
- Incluyendo esferas de vidrio en la pintura para marcoje o en su superficie para proporcionar características reflectantes; donde se especifique en el proyecto.
- En aquellos puntos que sea necesario.

El equipo para la aplicación y colocación de marcas en el pavimento será el adecuado para obtener la calidad especificada en el proyecto.

II.2.2.1.2 Puente de acceso

Como parte de las obras relativas al acceso a la Planta es necesario construir un viaducto elevado con un eje principal zapatas-columnas, las cuales estarán apoyadas por pilotes prefabricados de 11 metros de profundidad con sección de 40x40 cm.

Sobre las columnas se construirán cabezales con sección de acuerdo a proyecto y sobre el cabezal se apoyarán las trabes prefabricadas tipo cajón de diversas longitudes y sobre las trabes se construirá una losa de rodamiento de 20 cm de espesor cuatro carriles de circulación.

En los extremos de la losa se colocarán los parapetos de 3 metros de longitud y sobre este un parapeto metálico hecho a base de placa y dos tubos de acero y al centro un muro deflector, el cual sirve de división para los carriles en contraflujo.
Algunas trabes también irán apoyadas por cabezales sostenidos por las zapatas columnas y transversales al eje de trazo.

Todos los elementos de subestructura y superestructura serán colados en sitio o bien prefabricados como es el caso de las rabes tipo cajón, por lo que se deberá hacer la planeación de que elementos construir con objeto de avanzar de manera lineal tratando de no dejar espacios vacíos en la configuración del viaducto, el cual tendrá una longitud de 325 metros.

Sobre las trabes prefabricadas se colocará un cimbra y se realizará un armado y colado hasta llegar al espesor de proyecto y sobre de este firme de compresión se colocará el pavimento asfáltico de 5 cm.

Al final se colocará la iluminación tanto superior como inferior, así como los señalamientos horizontales y verticales.
Figura II—106. Perfil del puente.
Figura II—107. Puente de acceso a la planta.
II.2.3 Interconexión eléctrica

La energía producida en la planta está previsto que se evacue mediante una línea eléctrica a 230kV, de aproximadamente 8.1 km.

La instalación tendrá las siguientes características:

- Tensión nominal: 230 kV
- Longitud: 8.1 km
- Conductor: ACSR 1113KCM/AS (CFE)
- Número de circuitos: 1
- Número de conductores: 1
- Cable de guarda: 2 (AAS 7#8 y OPGW 36)
- Torres: Autosoportadas
- Tipo torres SC: E92B11CA y E92W11CA
- Normativa: Especificaciones y normativa vigente CFE

Características del conductor:

- Conductor: ACSR 1113kCML / AS (BLUEJAY)
- Sección: 564 mm²
- Nº de alambres de aluminio y acero: 45/7
- Diámetro exterior: 31.97 mm
- Resistencia a la rotura: 130.3kN
- Resistencia eléctrica: 0.049 Ω/km
- Masa lineal: 1,819 kg/km
Calculo de pérdidas de la línea
Se calcula las pedidas de potencia (perdidas por efecto Joule más efecto corona) de la línea según las características de la instalación y para una potencia nominal de 137MW para un factor de potencia de 0.95 es de **336 kW**, por lo que las pedidas de potencia de la línea son del **0.245 %**.

Subestación de Maniobras 230kV
Subestación de Maniobras completa con configuración interruptor y Medio, según lo indicado en el informe de CENACE, una bahía de línea es para la entrada de la línea de evacuación procedente de la planta de generación y dos alimentadores para la apertura de la Línea de Transmisión (L.T.) Aurora – Chicoapa. Esta subestación cumple con las especificaciones y normativas vigentes de CFE. Las características de la instalación son:
- Tensión nominal alta tensión: 230kV
- Configuración de la subestación: Interruptor y medio
- Nº de interruptores de potencia: 5

Línea de interconexión
Línea de Transmisión en 230kV con una longitud 0.26 km, la línea es de doble circuito con un conductor por fase ACSR 1113kCM, 1 cable de fibra óptica 36 fibras y cable de guarda AAS 7#8, con torres autoportadas tipo CFE (E92A21CA y E92W21CA). Esta línea cumplirá con las especificaciones y normativas vigentes de CFE. Las características de la instalación son:
- Tensión nominal: 230kV
- Longitud: 0.26 km
• Conductor: ACSR 1113KCM/AS (CFE)
• Número de circuitos: 1
• Número de conductores: 1
• Cable de guarda: 2 (AAS 7#8 y OPGW 36)
• Torres: Autosoportadas
• Tipo torres DC: E92W21CA
• Normativa: Especificaciones y normativa vigente CFE

Características del conductor:
• Conductor: ACSR 1113kCML / AS (BLUEJAY)
• Sección: 564 mm²
• Nº de alambres de aluminio y acero: 45/7
• Diámetro exterior: 31.97 mm
• Resistencia a la rotura: 130.3kN
• Resistencia eléctrica: 0.049 Ω/km
• Masa lineal: 1,819 kg/km

Se han considerado adicionalmente las correspondientes adecuaciones en las subestaciones de Aurora y Chicoloapan, y la reconfiguración de las protecciones para las nuevas características de la instalación.
Figura II—108. Ubicación de la línea de evacuación.
II.2.3.1 Descripción del proceso de construcción de la línea de evacuación, con el desglose de las estructuras de soporte

II.2.3.1.1 Construcción de la línea de evacuación

La construcción de la línea se realizará según la siguiente figura, el recorrido de la misma, tendrá una longitud de 8.1 km, 7.88 km en SC y 265 m en DC.

Las torres a utilizar son a base de estructuras metálicas galvanizadas los tipos utilizados son:

- **LAT Simple Circuito**
 - E92W11CA - uso deflexión 90°/400/500m-Remate 0°/400/500m.
 - E92B11CA - uso deflexión 2°/550/625m SUSPENSION

- **LAT Doble Circuito**
 - E92W21CA - uso deflexión 90°/450/1000m-Remate 30°/400/600m.
Figura II—109. Línea de evacuación, las Torres y la subestación de maniobras con respecto a la línea existente Aurora-Chicholoapan.
Figura II—110. Línea de evacuación de la torre 0 a la 5.
Figura II—111. Línea de evacuación de la torre 6 a la 10.
Figura II—112. Línea de evacuación de la torre 11 a la 15.
CAPÍTULO II

Figura II—113. Línea de evacuación de la torre 16 a la 20.
Figura II—114. Línea de evacuación de la torre 21 a la 26, subestación de maniobras y la línea de transmisión existente Aurora Chicoloapan.
Aprovechamiento del Poder Calorífico de los Residuos Sólidos Urbanos para la Generación de Energía Eléctrica

Figura II—115. Silueta LAT Simple Circuito.
CAPÍTULO II

Figura II—116. Silueta LAT Doble Circuito.
Las líneas de alta tensión del presente proyecto serán del tipo Aéreo, y estarán formadas por:

- Apoyos metálicos de celosía.
- Cimentaciones.
- Armados metálicos.
- Conductores desnudos de aluminio con alma de acero, y de aluminio con alma de acero recubierto de aluminio.
- Cadenas de aislamiento.
- Instalaciones de puesta a tierra.
- Herrajes y Accesorios.

Los aspectos de carácter general que son tomados en consideración para el diseño e instalación de la línea aérea son los siguientes:

- Seguridad de las personas.
- Ubicación.
- Accesos.
- Mantenimiento de la instalación.
- Características básicas.

Para la construcción de la línea de evacuación se requiere las siguientes cantidades de estructuras:

- **LAT Simple Circuito ES Elevadora a ES Maniobras**
 - E92W11CA cantidad total de estructuras: 18 un.
A continuación se presenta la tabla de las estructuras según su uso con su área de desplante máxima.

Tabla II-27. Estructuras según su uso, (Retención o Suspensión) y su área de desplante.

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Uso</th>
<th>Tipo</th>
<th>Área desplante m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAT SC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T0</td>
<td>Retención</td>
<td>E92W11CA</td>
<td>225</td>
</tr>
<tr>
<td>T1</td>
<td>Retención</td>
<td>E92W11CA</td>
<td>225</td>
</tr>
<tr>
<td>T2</td>
<td>Retención</td>
<td>E92W11CA</td>
<td>225</td>
</tr>
<tr>
<td>T3</td>
<td>Suspensión</td>
<td>E92B11CA</td>
<td>215</td>
</tr>
<tr>
<td>T4</td>
<td>Retención</td>
<td>E92W11CA</td>
<td>225</td>
</tr>
<tr>
<td>T5</td>
<td>Suspensión</td>
<td>E92B11CA</td>
<td>215</td>
</tr>
<tr>
<td>T6</td>
<td>Suspensión</td>
<td>E92B11CA</td>
<td>215</td>
</tr>
<tr>
<td>T7</td>
<td>Suspensión</td>
<td>E92B11CA</td>
<td>215</td>
</tr>
<tr>
<td>T8</td>
<td>Retención</td>
<td>E92W11CA</td>
<td>225</td>
</tr>
<tr>
<td>T9</td>
<td>Suspensión</td>
<td>E92B11CA</td>
<td>215</td>
</tr>
<tr>
<td>T10</td>
<td>Suspensión</td>
<td>E92B11CA</td>
<td>215</td>
</tr>
<tr>
<td>T11</td>
<td>Retención</td>
<td>E92W11CA</td>
<td>225</td>
</tr>
<tr>
<td>T12</td>
<td>Suspensión</td>
<td>E92B11CA</td>
<td>215</td>
</tr>
<tr>
<td>T13</td>
<td>Suspensión</td>
<td>E92B11CA</td>
<td>215</td>
</tr>
<tr>
<td>T14</td>
<td>Suspensión</td>
<td>E92B11CA</td>
<td>215</td>
</tr>
<tr>
<td>T15</td>
<td>Suspensión</td>
<td>E92B11CA</td>
<td>215</td>
</tr>
<tr>
<td>T16</td>
<td>Suspensión</td>
<td>E92B11CA</td>
<td>215</td>
</tr>
<tr>
<td>T17</td>
<td>Suspensión</td>
<td>E92B11CA</td>
<td>215</td>
</tr>
</tbody>
</table>
APROVECHAMIENTO DEL PODER CALORÍFICO DE LOS RESIDUOS SÓLIDOS URBANOS PARA LA GENERACIÓN DE ENERGÍA ELÉCTRICA

CAPÍTULO II

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Uso</th>
<th>Tipo</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>T18</td>
<td>Suspensión</td>
<td>E92B11CA</td>
<td>215</td>
</tr>
<tr>
<td>T19</td>
<td>Suspensión</td>
<td>E92B11CA</td>
<td>215</td>
</tr>
<tr>
<td>T20</td>
<td>Suspensión</td>
<td>E92B11CA</td>
<td>215</td>
</tr>
<tr>
<td>T21</td>
<td>Suspensión</td>
<td>E92B11CA</td>
<td>215</td>
</tr>
<tr>
<td>T22</td>
<td>Suspensión</td>
<td>E92B11CA</td>
<td>215</td>
</tr>
<tr>
<td>T23</td>
<td>Suspensión</td>
<td>E92B11CA</td>
<td>215</td>
</tr>
<tr>
<td>T24</td>
<td>Retención</td>
<td>E92W11CA</td>
<td>225</td>
</tr>
<tr>
<td>LAT DC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC1</td>
<td>Retención</td>
<td>E92W21CA</td>
<td>273</td>
</tr>
<tr>
<td>DC2</td>
<td>Retención</td>
<td>E92W21CA</td>
<td>273</td>
</tr>
</tbody>
</table>

Ancho Derecho de Vía o Servidumbre

Por lo que se refiere a los parámetros que determinan el ancho o amplitud del derecho de vía (DDV), éstos varían dependiendo la tensión eléctrica nominal, el calibre del conductor, la magnitud de la presión del viento, el tipo de estructura y la altitud respecto al nivel del mar en que se ubique la línea de transmisión. Asimismo, para el cálculo del derecho de vía, se considera la zona de ubicación, distinguiendo entre zona urbana y zona rural, ya que la amplitud varía entre una y otra.
Para la determinación del ancho del derecho de vía de la línea en cuestión, con tensión de 230 Kv, se observa en la siguiente tabla, los valores, mismo que encuentra sustento en la Norma NRF-014-CFE-2004: “Integración del Derecho de vía”, por lo tanto el derecho de vía será de 32 m de ancho.

Figura II—117. Ejemplo de la determinación del ancho del DDV.

<table>
<thead>
<tr>
<th>Tensión (kV)</th>
<th>Distancia A+B (m)</th>
<th>Distancia C</th>
<th>Ancho del derecho de via (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Un circuito (horizontal) (m)</td>
<td>1 ó 2 circuitos (vertical) (m)</td>
</tr>
<tr>
<td>115</td>
<td>6</td>
<td>4</td>
<td>----</td>
</tr>
<tr>
<td>230</td>
<td>8</td>
<td>8</td>
<td>----</td>
</tr>
<tr>
<td>400</td>
<td>9</td>
<td>12</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td>115</td>
<td>6</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td>8.5</td>
<td>----</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>----</td>
<td>9</td>
</tr>
</tbody>
</table>

1. Obra civil

- Levantamiento topográfico

Descripción: levantamiento topográfico considerando cualquier elemento que se encuentre dentro de una franja de 50 m a cada lado del eje del trazo de la línea de evacuación, el levantamiento topográfico será en planta y perfil.

Incluye equipos de topografía y nivelación, certificados de calibración de los equipos, localización general, alineación, niveles, construcción de bancos de nivel y mojoneras, materiales de marcación, crucetas de madera, estacas, pintura, fletes y acarreos, movimientos, limpieza durante y al final de la actividad, mano de obra, depreciación y demás derivados del uso de herramientas y equipo, todos los reportes generados de los trabajos realizados y todo lo necesario para su correcta ejecución.

- Localización de estructuras en el terreno
Con el apoyo de las brigadas de topografía se procederá a la localización de estructuras consistente en ubicar en el terreno por medio del señalamiento adecuado (mojoneras) los sitios en que deberán instalarse las estructuras. Se debe elaborar y entregar un listado con la localización georeferenciada en coordenadas UTM de la ubicación definitiva de las estructuras del proyecto.

Se localizará en el campo los sitios de instalación de las estructuras, y colocará la mojonera correspondiente en el centro; ésta debe tener claramente indicado con pintura indeleble el número y tipo de la estructura. Adicionalmente verificará los puntos sobresalientes del levantamiento topográfico y laderas existentes, así como los cruces con vías de comunicación y construcciones en general.

- **Perfiles en cruz y determinación de patas de extensión en torres**

A partir del centro de cada estructura (la mojonera instalada), se efectuarán los levantamientos topográficos en diagonal que se utilizarán para determinar las extensiones que se instalarán en cada pata de la estructura y para determinar los ejes de las excavaciones, de acuerdo a lo establecido en proyecto la cimentación para cada pata o apoyo de la torre será a base de zapatas aisladas.
Figura II—118. Detalle de pata de estructura.

- **Apertura de brechas**

La apertura de brecha es la limpieza de una franja de terreno a todo lo largo de la línea, cuyo centro coincidirá con el trazo topográfico, ancho de la brecha es de 4 metros a lo largo de la línea. El tratamiento de los residuos producto de la apertura de brecha se realizará conforme se establezca en el plan de manejo de residuos correspondiente.

Para las estructuras, el área a ocupar en el sitio de estructuras será de 50 x 50 m como máximo. La brecha tiene como objetivos esenciales:
- Proteger las estructuras y conductores contra la caída de árboles o ramas que puedan ocasionar daños o fallas en la línea.
- Permitir las maniobras de construcción durante el desarrollo de los trabajos.
- Servir para la habilitación de caminos a lo largo de la línea, para el transporte de personal, materiales y equipos; así como para el tendido y tensionado de cables conductores y de guarda.
- Proteger a los bosques, terrenos y cultivos adyacentes contra incendios ocasionados por una posible falla en la Línea de Evacuación.

• Cimentaciones

Las cimentaciones de todas las estructuras serán empotradas en concreto y de acuerdo con las características del terreno y lo indicado en el proyecto. En este concepto quedan incluidas todas las actividades necesarias para construir las cimentaciones de las estructuras y son las siguientes:

- Trazo de cepas.
- Excavaciones o perforaciones en cualquier tipo de terreno.
- Anclajes para cimentaciones en roca.
- Acero de refuerzo.
- Elaboración e instalación de cimbras, incluyendo los materiales necesarios.
- Concreto en cimentaciones.
- Relleno y compactación.
- Instalación de sistemas de tierras.
- Suministro e hincado de pilotes.
• Sistema de tierras

El sistema de tierras para Líneas de Transmisión consiste en la instalación de contrantenas a base de alambre o cable de longitud variable, las cuales estarán conectadas a electrodos para tierra y soldadas a la parte metálica de la estructura con los conectores tipo fundido apropiados, de acuerdo con lo manifestado en la Especificación CFE 00J00-52 "Red de Puesta a tierra para Estructuras de Líneas de Transmisión aéreas de 69 a 400 kV en Construcción".

La instalación del alambre o cable indicado en el proyecto se hará a una profundidad de 1.50 m en terreno cultivable y 0.80 m en terreno no cultivable; procurando que su trayectoria se localice en terreno de baja resistencia.

2. Obra Electromecánica

• Montaje de estructuras

Consiste en el armado, ensamblado e instalación completa de los elementos que integran la estructura de acuerdo con los planos del proyecto. El montaje de estructura abarca a todos los tipos de estructuras de soporte utilizados en una línea de transmisión como son:

- Torres de acero autosoportadas.
- Postes de metálicos tipo tronco-cónico.

En este concepto quedan incluidas todas las actividades necesarias para instalar todos los elementos que conforman la estructura tales como:

- Armado y montaje de estructura.
- Vestido de estructuras.
• **Armado y montaje de estructuras**

Las actividades necesarias para armar e instalar las estructuras, en los sitios fijados por el proyecto, y dejarlas preparadas para el tendido y tensionado de los cables, estas actividades son las siguientes:

- Prearmado de estructuras.
- Izaje de elementos o módulos prearmados.
- Ensamble y fijación.
- Instalación de accesorios complementarios (retenidas, protecciones, señalización, etc.)
- Revisión de las estructuras montadas.

El manejo de las estructuras será desde su carga o embarque en los puntos de entrega, su transporte, descarga y almacenamiento, movimiento hasta los sitios de instalación y montaje.

Se armará y montará todos los miembros que comprenden la estructura de acuerdo con los planos, utilizando el método constructivo que garantice que no se dañen sus componentes.

Una vez fijada y nivelada la base de la estructura (placa base, empotramiento, cimientos, etc.), se podrá continuar con el armado de los cuerpos superiores.

La tornillería que se coloque en posición vertical se instalará con la tuerca hacia abajo. Para los casos de instalación de torres, toda la tornillería del “bottom-panel”, debe puntearse por golpe en la cuerda del tornillo después de apretarlo, e inmediatamente se le debe de aplicar una cubierta de pintura anticorrosiva.
• **Vestido de estructuras**

Una vez que las estructuras han quedado perfectamente cimentadas y colocadas se procederá con el vestido de estructuras lo cual consiste en colocar en los lugares respectivos los herrajes, aisladores y accesorios en general; incluyendo las placas de aviso de peligro y numeración de estructuras de acuerdo con lo indicado en los planos del proyecto, estas actividades son las siguientes:

- Instalación de los conjuntos de herrajes y aisladores, tanto para los cables conductores como para los cables de guarda convencional y con fibras ópticas integradas.
- Instalación de los sistemas de señalización de peligro y numeración consecutivos de las estructuras.
- Señalización aérea de numeración en cada una de las estructuras y en ambos sentidos de la trayectoria de la línea de evacuación.
- Colocación de protección de cadenas de aisladores contra excremento de aves.

Estos trabajos se deben de ejecutar con las precauciones necesarias para garantizar el ensamblé adecuado de todos los componentes de las cadenas de herrajes y aisladores, y utilizar el equipo y herramientas apropiadas.

• **Instalación de cables**

 o Instalación de cables de guarda
Las actividades incluidas en este concepto, son las correspondientes al tendido del cable de guarda a lo largo de toda la línea de transmisión, el tensado correspondiente y su sujeción definitiva a los herrajes para unirlo a la estructura.

El tendido y tensionado del cable de guarda consiste en colocar el cable indicado en el proyecto y los herrajes necesarios en los extremos superiores de las estructuras y posteriormente tensionar el cable para dejarlo a una altura determinada del suelo.

Para el tendido de cable de guarda se empleará el método de tensión mecánica controlada. En cada tramo en que se haya dividido el programa de tendido se comprobarán las flechas por lo menos en 3 claros, uno al centro y los que más se aproximen al claro regla, procurando que no sean cercanos entre sí. El Contratista tendrá cuidado de que en ningún caso los empalmes queden a menos de 25 m de la clema de suspensión o de tensión.

Para el tendido de cable se podrá utilizar poleas de fierro, sí se instala cable de acero de 9,54 mm (3/8") de diámetro; en caso de instalar cable de acero con aluminio soldado (Alumoweld), las poleas para el tendido serán de aluminio u otro material suave que no maltrate al cable.

En cualquier método que se utilice para tender el cable de guarda, se cuidará que no se maltrate o forme cocas.

Para el tensionado de cable se aplicará el método de medición directa de la flecha y verificación con dinamómetro, de acuerdo a lo indicado en las tablas de flechas y tensiones.

Cuando durante el proceso de tendido y tensionado de los cables, sea necesario efectuar cruzamientos con otras líneas de transmisión, de distribución ó de comunicaciones, se efectuarán los trabajos con línea energizada, para lo cual se
tomas

También debe prever las estructuras auxiliares necesarias para efectuar el tendido en el cruce de carreteras, caminos y cuerpos de agua. En los cruzamientos de Líneas de Transmisión y vías de comunicación, no se colocarán empalmes en el claro de cruce y claros adyacentes. En estos casos el Contratista deberá prever sus maniobras de tal modo que evite la interrupción en los servicios.

- **Instalación de cable de guarda con fibras ópticas (CGFO)**

En lo general es aplicable lo indicado para el cable de guarda convencional, sin embargo es necesario tener en cuenta las siguientes consideraciones:

La instalación del CGFO debe de cumplir con lo indicado por las instrucciones del fabricante del CGFO con sus correspondientes precauciones y cuidados, incluyendo la realización de las pruebas requeridas o sugeridas por el mismo. Se entregará la metodología y resultados de las pruebas realizadas al CGFO antes y después de su instalación.

Se entregará el programa de tendido del CGFO que incluya todas las actividades que se consideran en el tendido de un cable. En todo momento se evitará el doblez del cable, así como su compresión. La calidad de transmisión de las fibras ópticas puede degradarse si el CGFO se somete a tensiones de tendido excesivas o dobleces que sean inferiores al radio mínimo de curvatura recomendado, el cual es de 15 veces el diámetro del cable cuando se enrolla permanentemente sin aplicarle tensión. Los carretes que contengan el CGFO se transportarán y manejarán siempre en posición vertical. No se estibarán los carretes en posición horizontal.
La guía para jalar el CGFO durante las maniobras de tendido puede ser un cable formado por alambres devanados, sin embargo también se pueden utilizar cables de nylon. En ambos casos las guías deben ser lo suficientemente resistentes como para soportar las tensiones de tendido requeridas. El sentido del devanado de los alambres que forman el cable guía debe ser el mismo que tenga el CGFO, para ayudar a resistir la tendencia a rotar cuando se aplica la tensión de tendido.

Para controlar la tensión de tendido se recomienda el uso de la tensionadora tipo de doble tambor con protección de neopreno en las ranuras de los tambores. Esta máquina tensionadora debe ser capaz de mantener las tensiones requeridas a varias velocidades de tendido. Tanto la tensionadora como la traccionadora contarán con sistemas efectivos de frenado para mantener la tensión cuando el tendido sea detenido por alguna causa. El diámetro de los tambores no debe ser menor a 70 veces el del cable.

El diámetro mínimo para las poleas de tendido es de 40 veces el del cable. La garganta de las poleas debe estar recubierta de neopreno con el fin de no dañar el CGFO. La ubicación de las máquinas tensionadora y traccionadora será en una relación de 3:1 con respecto a la altura de las estructuras inicial y final adyacentes a estas máquinas.

Es necesario enfatizar la importancia de cumplir con el diámetro de las poleas y la ubicación de las máquinas tensionadoras y traccionadoras ya que de ello depende el que no se dañe el tubo de aluminio que va en el interior del cable y que aloja a las fibras ópticas.

Se debe instalar un dispositivo antitorsión entre el CGFO y el cable guía. Este dispositivo antitorsión se ensambla en la punta del CGFO mediante una clema temporal tipo malla (calcetín). Para una elección adecuada de la clema temporal es necesario considerar el diámetro y la tensión de tendido del cable. Tanto el dispositivo antitorción como la clema temporal deben tener una tensión de ruptura máxima de 1,500 kg.
El corte del CGFO no debe hacerse con herramientas que causen la deformación del tubo de aluminio por compresión excesiva. Se recomienda el uso de arco segueta, evitando jalar las fibras ópticas que van dentro del tubo.

Es importante monitorear en todo momento del tendido que no se apliquen sobretensiones ni tensiones súbitas al cable. La tensión máxima de tendido es del 20 % del valor especificado para la tensión de ruptura. En las maniobras de tensionado del CGFO para el flechado del mismo se usan clemas de tensión temporales, las cuales deben ser del tipo "cuña". Debe evitarse el uso de herrajes tipo "quijada", porque pueden dañar el tubo interior de aluminio del cable.

Las clemas de tensión permanentes deben ser del tipo de compresión a tornillo, con dispositivo mecánico de protección contra sobreapriete, que evite un posible daño al tubo de aluminio. Una vez efectuado el tendido del CGFO, éste no debe permanecer sobre las poleas de tendido por más de 48 horas para evitar daños a la unidad óptica del cable.

Mientras no se realice el empalme, las puntas de los cables deberán enrollarse cuidadosamente en espiras de diámetro no menor a un metro y fijarse a la estructura. La unidad óptica debe sellarse herméticamente mediante tapones de plástico, silicón, cinta aislante, etc. para evitar la penetración de humedad hacia las fibras ópticas.

- **Elaboración de empalmes**

Se deben realizar los empalmes ópticos CGFO-CGFO y CGFO-CDFO. Los empalmes deben ser por fusión y el valor de pérdida por cada empalme óptico será menor o igual a 0,1 dB. Los empalmes deben hacerse siguiendo las recomendaciones del fabricante que garanticen la adecuada conexión mecánica y eléctrica del cable, así como el empalme de las fibras ópticas y la protección mecánica de éstas.
Los herrajes de guía y fijación del CGFO a la estructura o poste deberán colocarse como máximo cada 2,0 metros.

- **Mediciones de atenuación óptica**

Para cada carrete de cable con fibras ópticas la medición de la atenuación óptica debe hacerse a cada una de las fibras ópticas del CGFO, antes y después de su instalación. La medición y análisis de cada empalme óptico deben hacerse con el reflectómetro óptico en el dominio del tiempo y los resultados de estas mediciones deben entregarse a CFE en forma impresa y en archivo electrónico.

Se debe realizar la medición de la atenuación total para cada una de las fibras ópticas en los enlaces ópticos; de caseta a caseta de control de las subestaciones enlazadas. Esta medición debe realizarse estando el CGFO totalmente tendido, tensado y enclemado.

La medición de la atenuación debe hacerse por medio de los métodos llamados: Retroesparcimiento, mediante el uso del reflectómetro en el dominio del tiempo y método de corte, mediante el uso de una fuente de luz estabilizada y un medidor de potencia óptica (IEC 60793-1-40, Fibras Ópticas – Parte 1-40: Métodos de medición y procedimientos de prueba – Atenuación).

- **Instalación de cable conductor**

En este concepto se incluirán todas las actividades relacionadas con el tendido, tensionado, enclemado e instalación del sistema de amortiguamiento necesario para evitar vibraciones en los cables conductores que pudieran llegar a dañarlos, o a dañar la estructura y la instalación de los dispositivos necesarios para mantener los
subconductores del haz de conductores múltiple separado entre sí a distancias seguras.

Este concepto incluye el tendido y tensionado de cable conductor, la colocación definitiva de los herrajes correspondientes y sus accesorios para sujetarlos a las cadenas de aisladores; la instalación de separadores (cuando sean necesarios) y amortiguadores, la ejecución de los empalmes de tramos de cable conductor, y la instalación de puentes y remates en las torres que se requieran.

Se transportará el cable a los almacenes de la obra para su distribución a los sitios en que se instale, utilizando equipo adecuado.

Se efectuará el tendido de cable conductor bajo el procedimiento de tensión mecánica controlada, entendiéndose como tal procedimiento, aquel en el cual el cable conductor no tenga contacto con el suelo, para lo cual es necesaria la utilización de equipos y herramientas especiales.

El equipo principal estará constituido por una unidad de frenaje y otra de tensión, con sistema de radio-comunicación adecuado. La unidad de frenaje o desenredo deberá ser de doble tambor recubierto con neopreno en las superficies donde el cable conductor quede en contacto.

Para reducir el peligro de falla el diseño de equipo debe ser tal, que se pueda mantener la tensión deseada en forma constante, por lo cual deben de tener sistemas de frenos que puedan ser operados manual, neumática, hidráulica o eléctricamente.

El equipo estará diseñado de manera que no haya transmisión de calor generado por el sistema de frenaje de los tambores por donde pasa el cable conductor. Deberá contarse con un sistema de frenaje mecánico suave en los portacarretes para evitar que no se cuelgue el cable entre el portacarrete y el equipo de frenaje o desenredo. El
recubrimiento del neopreno deberá ser como mínimo de 6 mm (1/4”) de espesor en los tambores.

El cable conductor deberá dar 4 ½ vueltas como mínimo en cada uno de los tambores. El equipo deberá ser capaz de mantener en forma contínua la tensión por conductor especificada de acuerdo con las características del cable por tender.

Cuando durante el proceso de tendido y tensionado de los cables, sea necesario efectuar cruzamientos con otras líneas de transmisión, de distribución o de comunicaciones, el Contratista debe efectuar los trabajos con línea energizada, para lo cual tomará las precauciones necesarias.

También debe prever las estructuras auxiliares necesarias para efectuar el tendido en el cruce de carreteras, caminos y cuerpos de agua.

El cable guía con el que se dará la tensión deberá ser adecuado, para evitar la aplicación de esfuerzos indeseables en las cadenas de aisladores y estructuras y deberá conectarse al cable conductor por medio de eslabones giratorios (swivel) y mordazas tipo calcetín sencillo. El extremo de las mordazas (calcetines) deberá ser flejado y encintado al conductor para facilitar su paso sobre las poleas y tener seguridad en las maniobras.

Se cuenta con el equipo necesario para efectuar el tendido bajo tensión mecánica controlada, con las poleas suficientes y del diámetro requerido para el tipo de cable que se esté tendiendo, las empalmadoras adecuadas para instalar los herrajes a compresión y cualquier otro equipo que requiera para el desarrollo seguro y eficiente de esta actividad.

Las poleas que se utilicen en el tendido y tensionado de los conductores deberán tener un diámetro mínimo, medido al fondo de la garganta de 12 veces el diámetro del cable
conductor, la garganta deberá estar recubierta de hule o neopreno y será del ancho necesario; las poleas deberán estar montadas en chumaceras de bolas o rodillos.

Es muy importante que se tenga el mayor cuidado al manipular el cable conductor, para que éste, no sufra deterioro ni roturas que posteriormente puedan acarrear problemas cuando la línea de transmisión esté en operación. Se deberá tensionar, usando el método de medición directa de flecha y verificación con dinamómetro, comprobados con las tablas de flechas y tensiones del proyecto.

Los tramos a tensionar no serán mayores de 3,000 m, salvo casos especiales en que se justifique, cada tramo de tensionado deberá comprobarse las flechas cuando menos en 3 claros, procurando hacer esta verificación en los claros que más se aproximen al claro regla. Se evitará que el cable conductor permanezca tendido, sin tensionar y enclemar durante más de 72 horas.

En ningún caso los empalmes quedarán a menos de 25 m de los apoyos (suspensión o tensión), ni se permitirá su paso por las poleas. La distancia entre empalmes no será menor de 450 m, no se permitirá más de un empalme en el mismo conductor por claro.

No se instalarán empalmes o manguitos de reparación en los cruzamientos con carreteras, ferrocarriles y Líneas de transmisión. Antes de engrapar o sujetar en forma definitiva los conductores se verificarán los libramientos a tierra. La separación de los puentes a la estructura deberá cumplir con las distancias dieléctricas adecuadas al nivel de tensión eléctrica.

- **Inspección, mediciones y pruebas previas a la energización**

Se llevarán a cabo las siguientes actividades:

- Inspección física total de la Línea de Transmisión para detectar posibles afectaciones a los trabajos ejecutados ó la presencia de elementos extraños en
los materiales instalados; lo anterior, ocasionados por vandalismo, omisión ó descuido del personal durante la etapa constructiva.

- Verificación de que los trabajos ejecutados cumplan con el alcance establecido para cada uno de los conceptos de obra en las especificaciones correspondientes.
- Revisión física de las cimentaciones para verificar que no estén expuestas a problemas de erosión que pongan en riesgo a las estructuras y en consecuencia la confiabilidad de la línea.
- Mediciones de resistencia eléctrica en los sistemas de tierra instalados para verificar que no se exceda de 10 Ohms.
- Mediciones de distancias para verificar libramientos mínimos. En especial se debe realizar mediciones en zonas con obstáculos laterales.

II.2.3.1.2 Construcción de subestación eléctrica de maniobra

1. Obra civil
 - Terracerías
 - Levantamiento topográfico

Comprende todas aquellas actividades realizadas con el fin de recabar información necesaria para determinar la ubicación de puntos, accidentes naturales y artificiales sobre la superficie terrestre para su representación en un plano. La ejecución de levantamiento topográfico del terreno destinado a Subestación Eléctrica. Incluye la configuración de la planimetría y altimetría del terreno y las instalaciones existentes, hasta 200 m circundantes fuera del límite de la ampliación.
La limpieza se realizará con maquinaria retirando 30 cm de la capa superior del terreno. El producto de desperdicio de la limpieza quedará fuera de las zonas destinadas a la construcción y al derecho de vía, se depositarán en los bancos de desperdicio aprobados. Con esto se:

- Facilitarán los trabajos durante el proceso de construcción, y se asegurarán la estabilidad de las terracerías,
- Evitarán en lo posible el crecimiento de maleza en todo el predio.

Rellenos para terracerías

Se utilizará material de préstamo para la construcción de la terracería. Los rellenos compactados se harán por capas no mayores de 20 cm proporcionando al material la humedad óptima requerida y un grado de compactación mínimo del 95% de su peso volumétrico seco máximo, con respecto a la prueba de compactación seleccionada, la cual se elegirá dependiendo del tamaño de las partículas. Si contiene gravas en una cantidad considerable, el ensayo patrón será el Porter y para partículas menores a esta la prueba seleccionada será la Proctor SCT y para terraplenes con altura mayor a 5 m. el grado mínimo de compactación será del 95% de la prueba Proctor CFE.

Caminos de acceso

Trabajos para el acondicionamiento del camino de acceso existente

Se refiere a la superficie de rodamiento para tránsito de vehículos requerida para comunicar al predio de la subestación con el camino o vialidad más cercana. Se
considera un escarificado y recompactado de 30 cm de espesor en camino de terracería existente, posteriormente se acondiciona con una capa de material sub-base de 20 cm de espesor.

- **Pisos terminados**

Pisos terminados de grava, con la finalidad de evitar el crecimiento de hierba se aplicará al suelo un tratamiento el cual consiste en la aplicación de cualquiera de las mezclas siguientes: cemento-arena en proporción 1:8, cal arena en proporción 1:5. El espesor de este tratamiento será de 5 cm. Una vez que se tenga acondicionada la superficie del terreno que recibirá el piso terminado se aplicara el acabado, empleando para ello grava, extendiéndose hasta formar una capa de 10 cm de espesor. Los pisos terminados deben quedar delimitados por guarniciones de concreto.

- **Cimentaciones mayores**

Las cimentaciones para estructuras mayores son aquellos elementos cuyo propósito es dar soporte eficiente y seguro a las estructuras mayores. Se incluye trazo y nivelación, excavación, rellenos, retiros, concreto, curado, acero de refuerzo, cimbrado y descimbrado y todo lo necesario para su correcta ejecución. El diseño se realizará de acuerdo a lo establecido en la especificación “CFEDCCSET01 Construcción de Subestaciones de Transmisión”, considerando adicionalmente las recomendaciones y resultados del estudio geotécnico del sitio donde se realizará la obra.

Las cimentaciones serán de concreto con un $F'_c=250 \text{ kg/cm}^2$, empleando cemento que cumpla la norma NMX-C-414-ONNCCE y la especificación CFE 0000-15. El acero de refuerzo empleado tendrá una resistencia $F_y=4200 \text{ kg/cm}^2$. Los anclajes en las
cimentaciones para sujetar las estructuras mayores serán de acero redondo estructural liso ASTM tipo A-36 estándar galvanizado.

- **Cimentaciones menores**

Las cimentaciones para estructuras menores son aquellos elementos cuyo propósito es dar soporte eficiente a los transformadores de instrumento, apartarrayos, trampas de onda, interruptores, cuchillas y aisladores soporte. Se incluye trazo y nivelación, excavación, rellenos, retiros, concreto, curado, acero de refuerzo, cimbrado y descimbrado y todo lo necesario para su correcta ejecución.

El diseño se realizará de acuerdo a lo establecido en la especificación “CFEDCCSET01 Construcción de Subestaciones de Transmisión”, considerando adicionalmente las recomendaciones y resultados del estudio geotécnico del sitio donde se realizará la obra.

Las cimentaciones serán de concreto con un $F'_c=250 \text{ kg/cm}^2$, empleando cemento que cumpla la norma NMX-C-414-ONNCCE y la especificación CFE 0000-15. El acero de refuerzo empleado tendrá una resistencia $F_y=4200 \text{ kg/cm}^2$. Los anclajes en las cimentaciones para sujetar las estructuras menores serán de acero redondo estructural liso ASTM tipo A-36 estándar galvanizado.

- **Caseta de control**

El alcance de los trabajos incluye lo que se indican a continuación:

- Diseño estructural y arquitectónico de la caseta, así como la ingeniería asociada a todas sus Instalaciones.
- Construcción de la caseta de control, incluyendo excavaciones y rellenos, cimbrados y colados de los diferentes elementos constructivos.
- Habilitado del acero de refuerzo.
- Retiro de materiales excedentes a los tiraderos más cercanos y limpieza al final de la obra.
- Suministro e instalación de todos los materiales y accesorios que se empleen para construcción de la caseta.

Caseta de planta de emergencia

El alcance de los trabajos incluye los conceptos que se indican a continuación:

- Diseño estructural y arquitectónico de la caseta, así como la ingeniería asociada a todas sus Instalaciones.
- Construcción de la caseta, incluyendo excavaciones y rellenos, cimbrados y colados de los diferentes elementos constructivos.
- Habilitado del acero de refuerzo.
- Retiro de materiales excedentes a los tiraderos más cercanos y limpieza al final de la obra.
- Suministro e instalación de todos los materiales y accesorios que se empleen para construcción de la caseta.

Trincheras y ductos para cables

Las trincheras son canalizaciones construidas a base de muros de concreto armado. Cada trinchera debe contar con dos secciones, una para canalizar el cableado de protección, control y comunicaciones, y otra para canalizar el cableado de fuerza.
También se construirán banco de ductos encofrados en concreto, los ductos a emplear serán de PVC diferentes diámetros, los registros a emplear serán de concreto armado.

- **Sistema contra incendio**
 - **Sistema de extinción de incendio**
 a) Suministro e instalación de un sistema cortafuego para eliminar aberturas o huecos que puedan contribuir a la propagación de un incendio, incluyendo lo siguiente:
 - Apertura en montaje de pisos y muros con o sin elementos penetrantes como; tuberías, cables, conduits, charolas de cables, etc.
 - Huecos entre orillas perimetrales de piso y muro exterior.
 - Huecos entre la parte superior de muros piso/techo o montajes de techo.
 - Juntas de expansión en muros y pisos.

 b) Material e instalación de los sistemas completos y funcionales de acuerdo a las especificaciones y requerimientos de los estándares, códigos y reglamentos señalados a continuación:
 - Certificación de los materiales.
 - Pruebas.
 - Inspecciones.
 - Aseguramiento de calidad.
 - Estándares, códigos y reglamentos.

 - **Extintores móviles de carretilla**
De polvo químico seco ABC de 70 kg clasificado como 4-A:40-B:C; se debe incluir medio de resguardo contra la intemperie (casetas de resguardo para extintores con materiales prefabricados). El diámetro mínimo de las ruedas para el transporte de estos extintores debe ser de 50 cm.

- **Sistema de seguridad física**

Consiste en una cerca de división a base de malla ciclónica galvanizada cal. 10 con abertura de 5.5 x 5.5cm con una altura mínima de 2.20m. Incluye: trazo, nivelación, suministro de todos los materiales herrajes, alambre tornillería, coples, espadas, tapones de aluminio, barra superior e intermedia de diámetro de 1 1/2" galvanizada calibre 20, y todo lo necesario para su correcta colocación, postes de línea, postes de esquina, muertos de concreto, dala de desplante, acarreos y fletes, cortes, limpieza durante y al final de la actividad, mano de obra, desperdicios y todo lo necesario para la correcta colocación.

- **Drenajes**

El drenaje del área de ampliación será a base de tubería PAD, diferentes diámetros, incluye:

- Suministro de tubería PAD, incluyendo almacenaje y todas las demás maniobras.
- Excavación a cielo abierto, materiales, afine, ademe, bombeo y sobreexcavaciones.
- Trazos de líneas, niveles y estacados.
- Limpieza general del sitio y zonas adyacentes.
- La colocación de las tuberías, instalación y habilitado, la verificación de las líneas, niveles y las correcciones y ajustes.
- La construcción de registros, según estén indicados en los planos de proyecto.
- Excavación y fabricación de pozos de absorción para drenaje, si así lo indican los planos de proyecto.
- El relleno y compactado de las zanjas para tuberías y registros, así como retiro del material sobrante al banco de desperdicio.
- Prueba hidrostática al drenaje para verificar que no tenga fugas.

2. Obra Electromecánica

- **Montaje de estructuras mayores y menores**

Las estructuras mayores son las columnas y trabes que soportan los buses aéreos para su conexión con los diferentes equipos. Las estructuras menores son aquellas que soportan interruptores de potencia, cuchillas desconectadoras, transformadores de instrumento (TC’s, TPI’s y TPC’s), apartarrayos, trampas de onda, aisladores soporte, así como buses de terciario y otros.

Recibidos y clasificados todos los elementos y terminadas las cimentaciones, se procederá al armado y montaje de las mismas, con el equipo y métodos adecuados que garanticen la correcta ejecución del trabajo.

- **Montaje, tendido y conectado de buses**

Se define por montaje, tendido y conectado de buses a los trabajos para instalar los aisladores de suspensión y tipo poste, herrajes, accesorios, cables conductores,
guarda, tubos conductores que formen las canalizaciones de las distintas áreas de voltaje que componen la Subestación.

Montaje de cadena de aisladores de suspensión y tipo poste, tendido y tensado de cable conductor y guarda, tendido de tubo conductor y colocación de herrajes y puentes. Las bajadas a equipo y las conexiones de cable y/o tubo entre equipo eléctrico primario (puente entre equipo).

El Constructor debe cuidar que el cable conductor no permanezca tendido sin enclemar más de 72 h.

En la instalación de puentes se vigilará que guarde la distancia a tierra y a fase indicados en los planos de proyecto. Se contará con equipo apropiado para este tipo de trabajo. Durante el transporte y tendido de cable conductor y tubos, se tendrá cuidado de no provocar deterioros, evitando se tenga contacto con el suelo.

- **Montaje de interruptores de potencia**

Montaje de interruptores de potencia para servicio intemperie, autocontenidos, trifásicos para tensiones nominales de sistemas desde 13.8 kV hasta 400 kV, para una frecuencia nominal de 60 Hz, con medio de extinción en gas, aceite o vacío.

Se debe entender por interruptor trifásico al conjunto de tres unidades de interrupción que podrán estar integrados en una sola estructura, o bien estar constituido por tres interruptores monofásicos que operarán en un sistema trifásico. Para cada juego de interruptor trifásico, por voltaje se deben realizará las siguientes actividades:

- Maniobras y traslado al sitio de montaje.
Montaje y nivelación de bancadas y bases.
- Montaje de aisladores y accesorios.
- Tratamiento y llenado de aceite e introducción de gas con la utilización de la maquinaria y accesorios especializados para tal efecto.
- Colocación e interconexión entre gabinetes del interruptor.
- Aplicación de pintura anticorrosiva y de acabado en tanques, bases y gabinetes locales.

• Montaje de tableros de control, protección y medición

Se entiende por "Tablero de control", al gabinete que contiene todos los aparatos que registran, miden y controlan las funciones eléctricas de todos los equipos instalados en la Subestación.

El nivel de almacén será el "C". El tablero debe llegar ensamblado y alambrado de fábrica; se montará y nivelará en el sitio indicado, fijándolo a las anclas de acuerdo a los planos de proyecto.

• Montaje de tableros de servicios propios

Se debe entender por "Tablero de servicios propios", a los centros de carga para corriente alterna y corriente directa, que se montarán en la caseta de control. Estos centros de carga deben controlar y distribuir los circuitos que requiera a la Subestación, para el alumbrado y servicio de emergencia eléctrica en general, en sistemas de (440/220/127) V c.a., (250/125/48/12) V c.d.

Los “Tableros de servicios propios”, se deben montar en el sitio indicado, fijando los anclajes; asimismo efectuará las interconexiones entre el tablero de corriente directa, tablero corriente alterna y tablero de control. Debe identificar y conectar los circuitos de
los tableros de corriente directa y alterna de acuerdo a las indicaciones en los planos de proyecto.

- **Tendido y conectado de cable de control**

Se entiende por "Cable de control", a los conductores que unen los gabinetes de los equipos que se montarán en la parte exterior de la Subestación, con los instrumentos y aparatos que se localicen en los tableros de control, ubicados en las "Casetas de control".

Los conductores vienen integrados en cables y se componen de 3, 4, 5, 6, 7, 8, 10 y 12 conductores por cable, están aislados con polietileno y a su vez el cable está protegido exteriormente con neopreno para un aislamiento de 600 V.

La instalación de cables será sobre los soportes localizados en las trincheras, siguiendo la trayectoria indicada en los planos de proyecto. Durante el tendido se formarán capas de cables uniéndolos a los soportes de las trincheras con cáñamo para evitar su caída.

Una vez tendido al cable, se debe conectar en gabinetes de tablillas de interconexión a las tablillas de los Tableros de control y/o Servicios Propios y gabinetes de control de los equipos de acuerdo a las listas de cables. Se debe tener el cuidado de no dañar el neopreno de los cables durante su tendido.

Todos los cables después de tendidos se deben identificar con los listones o placas colocadas en los extremos de cada cable, de acuerdo a la lista de cableado. Los cables deben ser de una sola pieza y en el caso de que se requieran empalmar, se debe solicitar la autorización del supervisor.
• **Instalación de fuerza y alumbrado exterior**

Las Subestaciones de Potencia son de tipo intemperie por lo que se requieren instalaciones para alumbrado exterior. En este concepto se ejecutarán todos los trabajos necesarios para instalar los equipos y materiales que requieran estos servicios, ajustándose a los planos de proyecto correspondiente.

• **Colocación del sistema de tierras**

Los sistemas de Potencia están expuestos a fenómenos que provocan fallas en los aislamientos y daños al equipo. La forma más eficaz para reducir estas causas, es un sistema adecuado de conexión a tierra, al que se conectarán las estructuras y equipos de la Subestación.

El sistema de tierras consiste en una cuadrícula de conductores de cobre enterrados y conectados entre sí y a varillas (Copper Weld), así como a electrodos localizados en la periferia de la cuadrícula. En algunos puntos de la cuadrícula, las varillas (Copper Weld) irán alojadas en registros que permitan hacer lecturas al sistema de tierras.

Al ocurrir un disturbio atmosférico, un buen sistema de tierras reduce los voltajes peligrosos, limita las elevaciones de potencial a tierra, permite operar satisfactoriamente los relevadores, facilita la localización de fallas, ahorra costos de equipos y mantiene niveles adecuados de aislamiento.

Derivado de lo anterior a continuación se presenta, en la siguiente figura, el arreglo general de como quedará la subestación de maniobras una vez terminada su construcción.
Figura II—119. Arreglo general de la subestación de maniobras.
II.2.4 Concepto Arquitectónico General

La Planta se pretende llevar a cabo en la zona conocida como “Bordo Poniente de la Ciudad de México”; ésta surge como una respuesta ecológica y social a la necesidad de resolver la movilidad y el aprovechamiento de las toneladas de basura que se generan diariamente.

El proyecto propuesto tiene como primera intención establecer una planta como un ícono en el manejo de residuos sólidos para la Ciudad de México y un referente tecnológico en América Latina. Debido a su ubicación geográfica y su lejanía con centros urbanos; el sitio va a tener una gran visibilidad para visitantes nacionales e internacionales en su ruta de llegada al futuro Aeropuerto Internacional de la ciudad, así como por los habitantes del valle de que se encuentren en las cercanías de la nueva instalación.

Así mismo se ha tenido en cuenta que dicha obra proporcione a los mexicanos identidad, y sea reconocida a nivel mundial, y que a su vez genere el cuestionamiento e interés sobre lo que ocurre dentro de este gran espacio.

La estrategia arquitectónica y artística toma rumbo a través del color y la escala, dando como resultado una piel envolvente que simboliza nuestra nación. La piel toma personalidad, un Sarape, prenda de gran simbolismo y tradición mexicana, considerado uno de los elementos artesanales más representativos del México independiente, atractivo por su variable e intenso colorido a través de sus múltiples patrones.

El Sarape envuelve los dos cuerpos principales de la planta, cubriendo una superficie aproximada de 25,000 m². Dicho patrón se compone principalmente de 5 colores que se repiten de manera consecutiva. Esto se consigue por medio de la instalación de miles de láminas metálicas que corren en sentido vertical de un volumen a otro.
Teniendo en cuenta que la planta producirá la energía suficiente para abastecer al sistema de transporte colectivo (metro), el color naranja se convierte en el protagonista del resto de los volúmenes que conforman esta gran instalación, por ser el color característico de dicho medio de transporte.

Conservando el carácter industrial del equipamiento electromecánico, el color naranja pinta y dará personalidad a cerca de 25,000 m² de techumbres, muros y estructuras.

La luz toma fuerza por las noches cuando la Planta se enciende junto con los múltiples colores que la envuelven. Dicha iluminación responde a un patrón que se comunica de manera particular con las tiras del sarape, y nuevamente hacen que este espacio se pueda vislumbrar a la distancia.

Se tiene previsto que, en un futuro, las zonas que una primera etapa no son intervenidas o que se han previsto para una posible ampliación y/o crecimiento futuro, se vean afectadas por el clima y tipo de suelo de la zona y del predio en particular, propiciando el crecimiento y desarrollo de vegetación local y de humedales; éstos últimos, entendidos como pastizales con cierto grado de inundación en algunas épocas del año.

Es por esto, que se consideran intervenciones paisajísticas dentro de estas zonas. Para así tener un desarrollo controlado, en la medida de lo posible, y que a su vez genere vistas y espacios agradables para quienes trabajan y visitan el sitio.

Dicha intervención se ha diseñado de manera que se pueda adquirir el carácter icónico y simbólico que se refleja en las imágenes que se dan a conocer en el diseño arquitectónico y artístico.

El diseño arquitectónico para la instalación de esta planta se ha desarrollado como resultado de una comprensión del contexto y la tecnología propuesta de tratamiento de residuos, dos factores fundamentales en el diseño de la misma.
El contexto ofrece oportunidades de diseño innovador que mantiene la calidad estética, destacándose en términos de forma y fachada entre las soluciones aplicadas en los edificios de esta tipología.

A continuación se presentan dos renders del diseño arquitectónico de la planta.
Figura II—120. Diseño arquitectónico “El Sarape”.
Figura II—121. Diseño arquitectónico "El Sarape" (vista aérea).
II.3 OPERACIÓN Y MANTENIMIENTO

II.3.1 Procedimientos de Operación

Este apartado presenta una descripción básica de los procedimientos de operación de la planta en todos sus componentes, desde el ingreso de los residuos a tratar, hasta la salida de los subproductos que deriven de su tratamiento.

II.3.1.1 Control de entradas y salidas, vigilancia y circulación de vehículos

I. Control de Entradas y Salidas

Para llevar a cabo el control de entradas se llevará un registro de:

- Residuos admisibles o RSU.
- Residuos NO admisibles.
- Reactivos, aceites y grasas.
- Consumibles de oficinas.
- Energía para consumo de la planta en paradas y arranques en las que consumirá de la red.
- Personal de operación y mantenimiento.
- Visitas técnicas.
- Visitas formativas.

En cuanto al control de salidas, se registrará la información referente a los movimientos que se den en la planta, consistentes en:

- Metales férricos como subproductos de su separación sobre las escorias.
- Escorias.
II. Residuos no admisibles

A fin de controlar el ingreso de residuos a la Planta y evitar aquellos que no se ajusten a las condicionantes establecidas, se contará con un procedimiento para determinar las características de los residuos que harán que se pueda rechazar, tales como:

- Residuos de construcción y/o demolición.
- Residuos industriales.
- Residuos peligrosos.
- Residuos radiactivos.
- Residuos de limpieza de vialidades, banquetas, mercados, ferias, actos públicos, etc.

III. Procedimiento de control de entradas

a. Residuos

Durante el mes de septiembre de cada año, se entregará el Programa Anual de Suministro de los RSU para el año calendario siguiente de acuerdo al Contrato. Para el primer año de operación se incluirá la cantidad de RSU que la Planta requiere para
operar en Condiciones de Funcionamiento durante la Etapa de Prestación del Servicio durante un año, en base a su experiencia y teniendo en cuenta los resultados de la etapa de Comisionamiento de la Planta.

El procedimiento de actuación en el control de entrada se diferenciará en función de la clasificación descrita en el punto anterior, teniendo en cuenta que los comprobantes de origen de los RSU serán emitidos por el personal de la Verificadora del Sistema de Transferencia.

Sobre el Sistema de Transferencia, es importante mencionar que en particular la Dirección General de Imagen Alumbrado Público y Gestión de los Residuos Sólidos Urbanos de la AGENCIA DE GESTIÓN URBANA (AGU) de la CDMX es la encargada de realizar la transferencia de los residuos sólidos urbanos generados en la CDMX, los cuales son recolectados por el personal de la sección uno del sindicato de trabajadores al servicio del gobierno de la CDMX con apoyo de vehículos recolectores adscritos a cada una de las 16 delegaciones políticas de la Ciudad de México. Todo el Sistema de Transferencia cuenta con trece estaciones de transferencia y tres plantas de selección, en donde se llevan a cabo las actividades de transferencia de los residuos sólidos generados por las 16 delegaciones; actividad que se lleva a cabo los 365 días del año.

Dicha actividad se realiza de acuerdo a lo establecido en la Ley de Residuos Sólidos del Distrito Federal (LRSDF), publicada el 22 de abril de 2003 y sus reformas en lo general y en lo particular, a lo señalado en el capítulo I de las Facultades, artículos, 6 fracción V, 7 fracción I, IV,IX, XI, del capítulo III transferencia y Tratamiento de Residuos Sólidos artículo 43,45 fracción III y del capítulo IV de la Separación de los Residuos Artículo Art. 33, Art. 34 y 35; así como a lo establecido en la norma oficial NADF-024-AMBT-2013, misma que entrará en vigor a partir del 8 de julio del 2017.

Para que la AGU pueda dar cumplimiento con lo establecido en la Ley de Manejo de los Residuos Sólidos del Distrito Federal y próximamente a la Norma NADF-024-
AMBT-2013; dentro de las estaciones de transferencia se lleva a cabo una inspección física ocular de cada uno de los vehículos recolectores delegacionales.

El proceso de inspección física se describe a continuación:

- Los vehículos recolectores delegacionales trasladan los residuos sólidos recolectados a las estaciones de transferencia.
- Personal de la AGENCIA DE GESTIÓN URBANA asigna al vehículo recolector delegacional tolva y cajón para descargar los residuos sólidos.
- Los vehículos recolectores tiran sus residuos a piso para que personal de la AGENCIA DE GESTIÓN URBANA inspeccione y verifique la separación de acuerdo a los establecido en la ley de manejo de los residuos sólidos del Distrito Federal (orgánica e inorgánica).
- En caso de detectar residuos de la construcción y residuos de manejo especial; estos son rechazados y regresados al vehículo recolector delegacional que ingresa con estos residuos; además de apercibirlo verbalmente o a través de una acta administrativa.
- Los desechos sólidos urbanos que ya pasaron por la inspección física ocular son depositados en cajas de transferencia para ser transportados a los destinos oficiales, como Plantas de Selección y Aprovechamiento, Planta de Compostaje y Sitios de Disposición Final, y en este caso a la Planta Termovalorizadora.

Con lo anterior, en cumplimiento a la LRSDF, antes mencionada, se garantizará que los residuos que lleguen a la planta, ya estén previamente seleccionados en las estaciones de transferencia, evitando la incorporación de residuos no admisibles que como ejemplo de su separación se incluye la siguiente figura.
APROVECHAMIENTO DEL PODER CALORÍFICO DE LOS RESIDUOS SÓLIDOS URBANOS PARA LA GENERACIÓN DE ENERGÍA ELÉCTRICA

CAPÍTULO II

PROCESO DE INSPECCIÓN DE LOS RESIDUOS SÓLIDOS URBANOS EN ESTACIONES DE TRANSFERENCIA

ESTACIÓN AZCAPOTZALCO

Personal de la AGU informa al operador de la revisión

Tiro a piso para observar que los residuos estén separados en orgánicos e inorgánicos

Se verifica que los residuos no se encuentren mezclados y que no contengan residuos de la construcción o de manejo especial

Se retiran los residuos orgánicos y los inorgánicos se tiran a la caja de transferencia

ESTACIÓN CENTRAL DE ABASTO

Personal de la AGU informa al operador de la revisión

Tiro a piso para observar que los residuos estén separados en orgánicos e inorgánicos

Se verifica que los residuos no se encuentren mezclados y que no contengan residuos de la construcción o de manejo especial

Se retiran los residuos orgánicos y los inorgánicos se tiran a la caja de transferencia

PROCESO DE INSPECCIÓN DE LOS RESIDUOS SÓLIDOS URBANOS EN ESTACIONES DE TRANSFERENCIA

ESTACIÓN VENUSTIANO CARRANZA

Personal de la AGU informa al operador de la revisión

Tiro a piso para observar que los residuos estén separados en orgánicos e inorgánicos

Se verifica que los residuos no se encuentren mezclados y que no contengan residuos de la construcción o de manejo especial

Se retiran los residuos orgánicos y los inorgánicos se tiran a la caja de transferencia

ESTACIÓN GUSTAVO A. MADERO

Personal de la AGU informa al operador de la revisión

Tiro a piso para observar que los residuos estén separados en orgánicos e inorgánicos

Se verifica que los residuos no se encuentren mezclados y que no contengan residuos de la construcción o de manejo especial

Se retiran los residuos orgánicos y los inorgánicos se tiran a la caja de transferencia

Residuos enviados a planta de selección
Por lo anterior, adicionalmente en la entrada a la planta, se desarrollará un sistema de reconocimiento de vehículos de residuos para permitir el acceso de vehículos a la planta y optimizar el proceso de pesaje. En caso de no reconocerse el vehículo, el controlador de accesos en báscula (basculista) verificará si el camión tiene autorización de entrada.

De forma general, el Controlador de accesos en báscula (basculista) verificará en el listado de vehículos si un camión determinado ha accedido anteriormente a la Planta. Si lo ha realizado tendrá acceso al recinto, sino, verificará si tiene autorización de entrada.

Se confeccionará un libro de registro para el control de los camiones autorizados por la AGENCIA DE GESTIÓN URBANA de la CDMX para su acceso a la Planta. En el caso de tratarse de camiones aún no autorizados (camiones que vienen por primera vez a la Planta), solo admitirá el acceso en caso de exista la previa, expresa y escrita autorización de AGU de la CDMX.

Siempre que se trate de un origen autorizado y que no exista manifestación expresa de la AGU de la CDMX autorizando su entrada, el vehículo no podrá acceder a la Planta para su descarga. El personal encargado del control de entrada, solicitará la confirmación a AGU de la CDMX de la autorización de estos vehículos.

En esos casos, el controlador de accesos de báscula (basculista) podrá solicitar información por el origen del residuo y verificar que coincide con lo registrado en el sistema informatizado.

En los casos en que el sistema de reconocimiento de vehículos no reconozca la matrícula del camión y no se encuentre en el listado de las matrículas de los camiones que tienen en el Controlador de accesos, se procederá a la verificación de admisión de residuos.
En el Programa Integral de Manejo de Residuos de la Planta se recogerá el procedimiento para la admisión de los residuos a tratar, que describirá los tipos de residuos admisibles en la Planta, que serán los admitidos de acuerdo con el Contrato y que se describen en el presente capítulo, así como los procedimientos para actuar en el caso de tratarse de un residuo no admisible.

El procedimiento contemplará la realización de chequeos aleatorios de camiones (uno al día como máximo); si en esos chequeos se detectan residuos no aceptables, el Prestador o bien devolverá el camión a su origen, o bien gestionará el residuo eligiendo el destino adecuado con cargo a la AGU de la CDMX según se acuerde entre las partes.

Tras la detección de un camión con residuos no admisibles y por un plazo que se determinará en el procedimiento y de acuerdo con la AGU de la CDMX, se realizará un control específico de los camiones con el mismo origen que el camión rechazado.

Finalmente se realizará un informe para la AGU de la CDMX que demuestre que el residuo no es aceptable y que incluya los costos incididos. En estos casos, se realizarán los siguientes pasos:

1. Segregar estos residuos en la recepción.
2. Caracterizarlos en tipo y volumen.
3. Gestionar el rechazo correctamente.
4. En ningún caso se aceptarán entradas a planta sin conocimiento previo o sin autorización expresa y formal de la AGU de la CDMX.

En caso de ser admitido, se procederá al pesaje de camión mismo que se realizará en básculas-puente registradoras ubicadas en el control de accesos. La información del pesaje se registrará en un sistema informatizado. Dicha información de pesaje es
enviada y registrada automáticamente en un sistema de adquisición de datos situado en la sala de control de Planta.

- El pesaje se realizará sin personal en el vehículo ni a la entrada ni a la salida.
- Todos los productos que entran a la Planta y/o salen de Planta serán pesados.

Una vez cumplidos todos los trámites de recepción (identificación del vehículo, autorización, origen y peso), el basculista dará a los conductores de los camiones las instrucciones pertinentes para la operación de acceso, carga y descarga, u otras que resultaran procedentes.

Se establecerá un control de entrada específico de los camiones que van a entrar al recinto para recoger subproductos o residuos de salida, a fin de que el personal de báscula proceda a un nuevo pesado del camión (tara).

b. Energía

La Planta funcionará en autoconsumo excepto en paradas y arranques en las que consumirá de la red.

El sistema eléctrico de la instalación contemplará la instalación de contadores de consumo eléctrico consumido del exterior en caso de que se produzca esta situación.

c. Otros

Para los otros casos de entradas el basculista solicitará la información pertinente y la persona de contacto responsable de las entradas (materiales para mantenimiento, visitas, etc.).
IV. Procedimiento de control de salidas

a. Residuos

Este procedimiento afecta fundamentalmente a la evacuación de subproductos y residuos de tratamiento. Se optimizará la instalación para la recuperación de metales férricos de las escorias, adoptando las medidas necesarias, técnicas, organizativas y de recursos para alcanzar rendimientos razonables. En cualquier caso, las características de las escorias se adecuarán estrictamente a las garantías contractuales.

Las principales salidas de residuos serán:

- Escorias. La gestión de las escorias se realizará a través de un gestor autorizado para esta tipología de residuos.
- Cenizas. La gestión de las cenizas se realizará a través de un gestor autorizado para esta tipología de residuos.
- Residuos que no puedan ser valorizados así como otros residuos tales como, residuos de operaciones de mantenimiento, aceites usados, restos de refractario, etc. Estos residuos se gestionará a través de personas autorizadas.

Se almacenará los subproductos y los residuos en las zonas previstas de Planta. Los subproductos que puede generar la Planta son metales férricos que se pueden separar en la corriente de escorias. Los residuos de operaciones de mantenimiento, aceites usados, resto de refractario, etc. serán asimismo responsabilidad de la Planta.

El prestador de servicio se ocupará de la carga de subproductos y residuos en los vehículos para su pesaje antes de abandonar las instalaciones y su posterior transporte.
b. Energía

El aprovechamiento térmico de los residuos entregados en la Planta se realizará mediante generación de energía eléctrica y entrega al Sistema Eléctrico Nacional de más de 965,000 MWh/año.

De la misma manera que para el posible consumo de energía eléctrica del exterior se contempla la instalación de contadores de energía exportada al Sistema Eléctrico Nacional.

La entrega y medición de energía eléctrica se realizará de acuerdo a las condiciones de interconexión establecidas con CFE, así como en el contrato de compra-venta de electricidad. En cualquier caso el Prestador del Servicio está obligado a la generación eléctrica garantizada en su oferta.

V. Sistema informático de control de entradas y salidas

Se dispondrá de un sistema informatizado para registrar la matrícula del camión, transportista, origen, tipo de residuo, destino dentro de la Planta, hora, día, peso de material, etc. Dicho sistema deberá ser capaz de cumplimentar toda la documentación que pida la AGU de la CDMX.

II.3.1.1.1 Vigilancia.

El personal de vigilancia del acceso al centro será responsabilidad del operador y estará dotado de los medios necesarios para su cometido.

El servicio se llevará a cabo por medio de una empresa externa contratada y dispondrá de una persona de vigilancia las 24 horas del día. El personal de vigilancia completa al
finalizar cada turno realizará un reporte de incidencias, donde se reflejan todos los aspectos de relevancia acaecidos en dicho periodo.

II.3.1.1.2 Circulación de vehículos.

El recinto dispondrá de toda la señalización necesaria para la correcta circulación de vehículos. Se prevé que la máxima velocidad permitida del recinto no sobrepase los 20 km/h.

La señalización de tipo horizontal, vertical y luminosa, guiará a todos los vehículos que circulen dentro del recinto de manera clara y precisa, especialmente en la entrada al centro, donde indica la dirección que deben tomar los vehículos según sean, camiones, vehículos de personal o visitas, clasificadas por zona de pesaje, zona de espera y acceso directo.

La planta también dispondrá de señales móviles de tipo balizas para casos en los que se necesite hacer uso de ellas en situaciones distintas a las normales.

II.3.1.1.3 Horario de recepción y aceptación de residuos

La Planta estará operativa para recibir vehículos de RSU 24 horas al día 365 días al año, excepto los períodos acordados con la AGU de la CDMX en los que la infraestructura permanecerá cerrada por fines de mantenimiento.

Los residuos admitidos son los especificados en la presente Manifestación de Impacto Ambiental y aquellos que autorice la AUG de la CDMX.
II.3.1.1.4 Tipología y origen de los camiones en el control de entrada.

Se pueden diferenciar los siguientes grupos de camiones-residuos-orígenes:

- Camiones tipo semirremolque y gran volumen con Residuos Sólidos Urbanos procedentes de Estaciones de Transferencia.
- Camiones tipo semirremolque y gran volumen con Residuos Sólidos Urbanos procedentes de Plantas de selección existentes.

II.3.1.2 Procedimiento de descarga al foso

La Planta dispondrá de una única área de descarga en foso dividido en dos áreas diferenciadas equivalentes en volumen, preparados para la descarga de los residuos, de forma que éstos podrán derivarse directamente al aprovechamiento térmico.

Se establecerá el procedimiento de descarga de los residuos en cada una de las dos áreas en función del nivel de residuos del mismo y de la gestión diaria de homogeneización y mezclado.

En el caso, por ejemplo, de los residuos no admisibles que entren en la Planta sin haber sido detectados previamente, se elaborará un Libro de Incidencias para que quede constancia, y posteriormente se seguirá el procedimiento establecido para gestionar dicho residuo. Si existen descargas con impropios (neumáticos, envases no identificados, electrodomésticos, medicamentos, etc.) se hará un reportaje fotográfico con informe indicando la procedencia de los materiales, y avisará inmediatamente a la AGUE de la CDMX.

Se establecerá un control de salida de los camiones una vez hayan descargado en planta, a fin de que el personal de la AGU de la CDMX, con la asistencia en su caso de personal del contratista, proceda a un nuevo pesado del camión (tara).
El controlador de accesos emitirá dos recibos con la misma numeración (uno para la AGU de la CDMX y otro para el usuario), de forma en que cada pesaje individual de camión emita un número correlativo donde se indicará el origen, el transportista y la matrícula, así como el peso del residuo que entra en la Planta.

II.3.1.3 Gestión del foso

En el foso de recepción de la Planta serán descargados directamente los residuos tal como se describirá en el procedimiento general dentro del Manual de Operación de la planta. De forma aleatoria, se realizará un control visual durante las operaciones de descarga de los camiones en el foso de recepción para detectar la presencia de algún tipo de residuo especial que no pueda ser tratado en la Planta.

Si un residuo no aceptable es detectado mientras se produce la operación de descarga del camión, se informará al personal de báscula para que sea registrada la incidencia y procederá de manera equivalente a cuando el residuo no admisible se haya detectado en la báscula. Se realizará un reportaje fotográfico con los residuos no aceptables, se identificará la matrícula del camión, el origen de residuo, el transportista y la tipología del residuo y se notificará de inmediato a la AGU de la CDMX enviándole toda la información que le sea de utilidad.

Ocasionalmente se puede dar el caso de que no se detecte tanto en báscula como en la fosa de recepción algún residuo que por sus características físicas no se pueda incinerar. En este caso, se elaborará un procedimiento interno que establecerá las directrices (supervisión, control, limpieza y almacenamiento) a seguir en caso de actuación en el Manual de Operación.
II.3.1.4 Alimentación de residuos

Para optimizar el proceso de combustión de los residuos, se realizará una homogeneización de los residuos, ubicándolos en las zonas opuestas a las rampas de descarga y mezclándolos con las entradas recientes en las bahías de descarga. De esta forma, se evitará en la medida de lo posible la acumulación de residuos en las esquinas y así reducir el riesgo de fermentación y compresión.

La finalidad de la homogeneización es la de obtener un Poder Calorífico Inferior (PCI) estable y uniforme, por ello se deberán tener en cuenta los siguientes aspectos:

- Potencial variabilidad, en periodos de lluvia, que aumenta la humedad del residuo y disminuye su PCI.
- Los residuos industriales presentan en general un PCI medio (madera, cartón, textil, etc.).
- Plásticos variados, presentan un PCI elevado.

II.3.1.5 Cálculo del Poder Calorífico Inferior (PCI)

El cálculo del PCI de los residuos incinerados para cada una de las unidades de aprovechamiento térmico se elaborará, de forma no limitativa, a partir de los datos siguientes:

- Toneladas residuos incinerados.
- Toneladas de agua alimentada a caldera.
- Toneladas de vapor producido.
- Toneladas de condensados del calentador de aire primario.
- Temperatura de los condensados.
- Temperatura aire de combustión.
• Temperatura del vapor producido.
• Temperatura agua alimentada.
• % O₂ en los gases de combustión.
• Temperatura de los humos de combustión.
• % H₂O en los gases de combustión.

El sistema de cálculo termodinámico de PCI se implementará en el sistema de control se ajustará al estándar internacional FDBR en su edición más actualizada, considerando los parámetros mencionados y todos los que se requieran, y se incorporará este procedimiento al Manual de Explotación.

II.3.1.6 Operación de la planta de tratamiento térmico

II.3.1.6.1 Inspección y control de la planta

La Planta dispondrá de la instrumentación y elementos de análisis suficiente para conocer y utilizar los parámetros determinantes de las condiciones de proceso y así controlar los flujos y las condiciones y variables de proceso y optimizar la operación de Planta.

Las situaciones de puesta en marcha y paradas asociadas al desarrollo habitual del proceso de aprovechamiento térmico se realizarán siguiendo los requerimientos descritos en el Manual de Operación y Mantenimiento.

Las operaciones de combustión, aprovechamiento térmico, tratamiento de humos y funcionamiento del grupo turboalternador, se realizarán de forma automatizada y el
seguimiento de los parámetros de funcionamiento se realizará desde la sala de control mediante sistema informático.

Los márgenes de funcionamiento vienen limitados por las instrucciones del fabricante de cada equipo que estarán disponibles e identificadas en la sala de control. Estos equipos han sido incorporados en la configuración del sistema de control con la supervisión de cada fabricante. El sistema de control dispondrá de alarmas de operación, cuando las condiciones de funcionamiento se alejen del estado consignado y automáticamente quedarán registradas.

Para asegurar el máximo seguimiento del estado físico de las instalaciones de la Planta, se establecerá una lista de los puntos más importantes de observación para proceder a su comprobación visual in situ y registrar las posibles anomalías detectadas.

La observación precisa y rutinaria de los equipos permitirá detectar cualquier cambio en las condiciones normales de funcionamiento. Normalmente estos cambios obedecerán a situaciones del tipo ruidos, vibraciones, manchas de aceite, etc.

Las anomalías detectadas deben ser motivo de la elaboración de un procedimiento interno para gestionar de una forma rápida y sencilla la problemática que conlleva. Después de una primera evaluación se determinará la gravedad y urgencia de su reparación. A modo de ejemplo, la urgencia puede ser clasificada en cuatro niveles:

- **1er Nivel**: Pérdida de operación (avería de equipos,…); seguridad del personal.
- **2º Nivel**: Obstáculo en la operación; elemento vital que no impide la operación hasta su urgente reparación.
- **3º Nivel**: Intervenciones diversas.
- **4º Nivel**: Modificaciones, mejoras y trabajo en parada.
Se establecerá un procedimiento en caso de producirse alguna de las urgencias clasificadas como nivel 1 y nivel 2, durante los turnos de noche, fines de semana y festivos, para establecer las acciones a realizar si es preciso.

II.3.1.6.2 Sala de control

Desde la sala de control es desde donde se controlarán todos los parámetros tanto del sistema de aprovechamiento térmico como de la depuración de gases y las emisiones así como del ciclo de vapor y generación de energía.

Se controlará mediante un sistema de control distribuido y las correspondientes pantallas de control donde los operadores podrán justar los parámetros principales de operación.

II.3.1.6.3 Equipos móviles de operación

Se aportará a la Planta toda la maquinaria móvil imprescindible para las operaciones y mantenimiento de la misma, así como las operaciones de limpieza industrial que se requieran.

II.3.1.7 Gestión de residuos, productos, subproductos y energía

II.3.1.7.1 Gestión de residuos: cenizas volantes y residuos de la depuración de gases

La planta dispondrá de un sistema de almacenamiento de cenizas volantes / residuos de depuración de gases. La carga de cenizas a camión se realizará automáticamente desde los silos previstos para tal efecto. El procedimiento de pesaje de las cenizas se
realizará de acuerdo a lo estipulado en el Programa Integral de Manejo de Residuos de la planta teniendo en cuenta que el camión de entrada llegará vacío y se llevará un registro específico de su generación.

Es importante mencionar que las cenizas serán gestionadas a través de una persona física o moral autorizada.

Se conoce que los componentes de las cenizas contienen sílice, aluminio, hierro y calcio, pueden tener componentes secundarios como el titanio, magnesio, sodio, potasio o fosfato y en muy pequeñas cantidades bario, estroncio, rubidio y metales pesados, como el Cd, Cr, Cu, Ni, Pb y Zn, así como Cloruros9,10.

Por lo anterior, a las cenizas formadas después del primer arranque operativo, se les realizará su caracterización CRIT, con lo cual y dependiendo de los resultados, se propondrá la mejor estrategia de manejo, de acuerdo a lo dispuesto por la Ley General para la Prevención y Gestión Integral de los Residuos y su Reglamento correspondiente.

II.3.1.7.2 Gestión de productos: reactivos, combustibles y aditivos

La Planta contará con la infraestructura necesaria de almacenamiento de los suministros de reactivos, combustibles o cualquier aditivo necesario para su operación. Los procedimientos de carga de estos materiales quedarán descritos en el Programa

Integral de Manejo de Residuos que se elaborará en su momento para la planta en específico.

II.3.1.7.3 Gestión de subproductos

- El Prestador del Servicio será el responsable de maximizar los procesos que permitan el aprovechamiento térmico de todos los materiales que se produzcan o separen y seleccionen a este efecto a lo largo del proceso.
- El Prestador del Servicio con sus medios efectuará la carga a camión así como la gestión externa (transporte y gestión posterior).
- Se prevén dos subproductos en la Planta: los metales separados de las escorias y las propias escorias una vez separados los metales.
- Las escorias y los metales separados de ellas, serán gestionados por el Prestador del Servicio con sus medios, y transportará los subproductos hasta el lugar de gestión seleccionado. Los subproductos serán pesados en la Planta y se llevará un registro específico de su generación.
- Los procedimientos de gestión interna de los subproductos se describirán en el Manual de Explotación.
- El Prestador del Servicio generará los subproductos, y más concretamente las escorias, con las características contractuales.

II.3.1.7.4 Gestión de la energía generada y/o consumida

La entrega y medición de energía eléctrica se realizará de acuerdo a las condiciones de interconexión establecidas con CFE, así como en el contrato de compra-venta de electricidad.
II.3.1.7.5 Gestión de otros residuos

La gestión de otros residuos como pueden ser aceites de lubricación de maquinaria, trapos impregnados de aceites, restos de soldaduras, metales cortados por pequeñas modificaciones de los procesos, piezas cambiadas, etc., se gestionarán con una persona física o moral autorizada y conforme al Programa Integral de Manejo de Residuos.

II.3.2 Plan de mantenimiento y sustitución de equipos

El mantenimiento comprende todas y cada una de las acciones necesarias para mantener en sus mejores condiciones de funcionamiento y estado de conservación el conjunto de instalaciones de la Planta durante la vigencia del proyecto.

El conjunto de acciones necesarias para ejecutar los trabajos de mantenimiento, reparación o renovación requeridos para mantener las instalaciones de la Planta en las condiciones indicadas en el párrafo anterior se podrán ejecutar con las instalaciones paradas (programadas o no, y parcial o totalmente) si ello fuera necesario o en funcionamiento (total o parcial) si ello fuera posible.

II.3.2.1 Mantenimiento con las instalaciones de la Planta parada (parcial o totalmente)

Se considera parada programada a aquella parada planificada de forma periódica, total o parcial, de una o más líneas, o de la planta completa con el objetivo de realizar mantenimientos que no se pueden hacerse con la Planta en marcha (reparaciones), reemplazar equipos, o bien, inspeccionar tanto exterior como interiormente los equipos.
Además de la “Parada Programada Anual” de la Planta, se podrá planificar cualquier otra parada programada total o parcial (equipos y/o instalaciones principales) a incluir en el Programa Anual de Suministro de los RSU.

Los trabajos programados que requieran la interrupción de una o más líneas de tratamiento se ejecutarán de forma que, siempre que sea posible, se realice el tratamiento de los residuos en el resto de líneas que sigue en funcionamiento. Cualquier tarea de mantenimiento programado a realizar será comunicada por anticipado a la AGU de la CDMX.

II.3.2.2 Mantenimiento con las instalaciones de la Planta funcionando (parcial o totalmente)

Durante el funcionamiento de la Planta se realizarán todas las labores y acciones del mantenimiento de rutina de una naturaleza normal, preventiva y de carácter menor, que deben ser realizadas periódicamente (diaria, semanal, mensual, después de x horas de operación) durante la operación de la Planta, para mantener cotidianamente la misma en condiciones normales de operación sin necesidad de planificar paradas programadas aparte de la “Parada Programada Anual”.

Entre dichas labores se incluyen, entre otras, inspecciones rutinarias, lubricaciones, ajustes varios, reparaciones de fugas menores, provisión de fluidos, engrases, limpiezas y reemplazo de consumibles operativos, mantenimiento o reemplazo de fusible, interruptores, lámparas, etc. y cualquier otro trabajo similar preventivo, de carácter menor o de rutina.

Se programará y realizará el mantenimiento de rutina con personal propio de Operación y Mantenimiento, salvo casos excepcionales que lo justifiquen. El Plan de
Mantenimiento de la Planta contendrá, de forma no exhaustiva ni limitativa, el siguiente contenido:

- Mantenimiento reglamentario y administrativo.
- Mantenimiento preventivo.
- Mantenimiento predictivo.
- Mantenimiento correctivo.
- Mantenimiento de equipos singulares.
- Gran mantenimiento (Parada anual de líneas de tratamiento).
- Plan de sustitución (reposición de equipos).
- Programa de limpieza.

II.3.2.3 Mantenimiento de los equipos electromecánicos

II.3.2.3.1 Mantenimiento reglamentario y administrativo

Se considera “Mantenimiento Reglamentario” a las tareas de control, verificación e inspecciones determinadas por reglamentos legales de tipo de seguridad industrial vigente (instalaciones eléctricas, recipientes sujetos a presión, etc...), y, en su caso, por la AGU de la CDMX.

Se considera “Mantenimiento Administrativo” a las tareas de control, verificación e inspección que resulten de cualquier permiso, licencia, documento y autorización emitidas por las Administraciones competentes y solicitados para la puesta en marcha y explotación de la Planta.

También se gestionarán, actualizarán y conservarán los registros documentales (actas, informes de inspección, etc.) del cumplimiento de dichas obligaciones, incluido los Libros de Registro de carácter oficial y debidamente establecidos por la autoridad.
competente. En los citados Libros se indicará, sin carácter limitativo, los datos siguientes:

- Equipos o instalaciones sometidas a mantenimiento Reglamentario, que recogerá, como mínimo:
 - Calderas, tuberías y aparatos a presión.
 - Aire acondicionado.
 - Puentes grúa y otros equipos de elevación.
 - Carretillas elevadoras; Ascensores.
 - Vehículos; Sistema contra incendios.
 - Red de aire comprimido.
 - Almacenamiento de productos químicos.
 - Contadores de electricidad; sistemas eléctricos (alta y baja tensión).

Para cada grupo de equipos o instalación del registro se relacionará con la normatividad vigente, indicando la legislación, reglamento y apartados específicos para el cumplimiento del Mantenimiento Legal Reglamentario de todos los equipos de las instalaciones de la Planta.

- Personal responsable de efectuar las inspecciones reglamentarias, tareas que podrán ser efectuadas por:
 - Personal de mantenimiento debidamente habilitado si así se exigiera.
 - Una empresa especializada que disponga de los medios y conocimientos necesarios, pero que no es necesario que esté acreditada, autorizada o inscrita en algún registro.
 - Una empresa autorizada específicamente para llevar a cabo este tipo de inspecciones.
o Un Organismo de Control Autorizado (por la autoridad reguladora si es posible).

- Tipo de inspección reglamentaria y frecuencia.

Se pondrá a disposición de la AGU de la CDMX un registro preliminar de los controles, verificaciones e inspecciones Administrativas (“Mantenimiento Administrativo”) a realizar en las instalaciones de la Planta durante el periodo de operación. En dicho registro de indicará como mínimo los equipos o instalaciones que se sometan a mantenimiento Administrativo y contendrán como mínimo:

- Las Emisiones atmosféricas, controles continuos (contrato de mantenimiento de analizadores con empresa especializada) y controles periódicos (a efectuar por la entidad ambiental reguladora correspondiente).
- Subproductos de incineración (caracterización y análisis de escorias y cenizas).
- Vertidos de aguas (análisis reglamentarios).
- Piezómetros, control del suelo (análisis), etc.

Para cada grupo de equipos o instalación del registro se relacionará con el permiso o documento administrativo para el cumplimiento del Mantenimiento Administrativo legal de todos los equipos de las instalaciones de la Planta.

- Tipo de control, verificación o inspección Administrativa y frecuencia.
II.3.2.3.2 Mantenimiento preventivo y conservación

El Mantenimiento Preventivo consiste en programar las intervenciones o cambios de algunos componentes o piezas según intervalos predeterminados de tiempo o espacios regulares (horas de servicio, toneladas procesadas, kilómetros recorridos). El objetivo de este tipo de mantenimiento es reducir la probabilidad de avería o pérdida de rendimiento de una máquina o instalación tratando de planificar unas intervenciones que se ajusten al máximo a la vida útil del elemento intervenido y puede realizarse, como mínimo, de tres formas:

1. Revisando las instalaciones a intervalos de tiempo iguales entre revisiones, desmontando los componentes objeto de revisión antes de que fallen y respondiéndolos a tiempo cero.
2. Revisando las instalaciones periódicamente y, según su estado, efectuando su sustitución si exceden sus límites de operación.
3. Desmontando los componentes para ser examinados y sustituyendo los que están en deficientes condiciones.

En base a las características técnicas de los equipos e instalaciones de la Planta y los correspondientes Manuales de Operación y Mantenimiento, se establecerán las fichas de mantenimiento preventivo para cada uno de los equipos (tipo de tarea a efectuar, especialidad, periodicidad, tiempo estimado, material y consumible necesarios, contrataciones exteriores, etc.).

El conjunto de fichas técnicas y su gestión y seguimiento se registrarán en el sistema GMAO (Gestión del Mantenimiento Asistido por Ordenador o Computerized Maintenance Management System -CMMS- por sus siglas en inglés).
El Plan de Mantenimiento Preventivo, dentro del Programa de Mantenimiento de la Planta que se realizará con carácter anual podrá ser objeto de modificaciones y actualizaciones informando debidamente a la AGU de la CDMX y se extenderá, de forma no exhaustiva, al siguiente ámbito:

- Urbanización del vial de acceso.
- Urbanización interior del predio, vialidades y pavimentos, alumbrado, zonas ajardinadas, etc.
- Naves y edificaciones.
- Equipamiento e instalaciones fijas.
- Equipamiento y maquinaria móvil.
- Balsas, depuración de aguas.
- Cercado de cierre exterior.
- Sistemas de vigilancia, alarmas, video vigilancia, etc.

Se identificarán las tareas principales realizadas por el personal de operación y mantenimiento propio y por personal contratado.

Las actuaciones de mantenimiento preventivo también abarcan la sustitución de las piezas de desgaste. La sustitución de estas piezas sometidas a desgaste siempre que sus tasas de sustitución estén por debajo de los valores garantizados se considerará dentro del mantenimiento preventivo. Tasas de sustitución superiores a las garantizadas se considerarán dentro del mantenimiento correctivo.
II.3.2.3.3 Mantenimiento predictivo

Se considera Mantenimiento Predictivo cualquier técnica de medida empleada permita detectar durante el funcionamiento de la Planta, o durante las paradas programadas si fuera preciso, los puntos potenciales de futuras fallas de los componentes de equipos, de tal forma que dichos componentes puedan reemplazarse antes de que se produzca cualquier fallo.

Esta técnica implica la medición de ciertos parámetros que muestren una relación predecible con el ciclo de vida del componente (vibraciones, temperaturas, resistencias, medida de espesores por ultrasonidos, análisis de lubricantes, termografías, etc.). Para ello se utilizarán:

- Registros de diagnóstico de mantenimiento predictivo programado en el sistema DCS en base a parámetros controlados automáticamente.
- Instrumentos de diagnóstico, aparatos y pruebas no destructivas.

El personal de operación y mantenimiento propio estará debidamente capacitado para poder aplicar las diferentes técnicas de Mantenimiento predictivo durante el funcionamiento de la Planta.

Durante las paradas programadas se podrán realizar las pruebas no destructivas necesarias para tomar las medidas de pérdida de espesor en los paneles y haces tubulares de hornos-caldera y cualquier otra prueba no destructiva recomendada por los fabricantes o suministradores de equipos a realizar durante las debidas revisiones anuales o periódicas.
II.3.2.3.4 Mantenimiento correctivo

El Mantenimiento Correctivo se define como las acciones necesarias para reparar las averías sufridas por los componentes o equipos de la Planta y restablecerlos a su estado operativo habitual de funcionamiento, todo ello cuando las mismas son debidas a un fallo o defecto que ya se ha producido y que no ha podido ser evitado.

Todos los elementos que se detecten en mal estado en las operaciones, inspecciones y comprobaciones descritas o en el funcionamiento normal de explotación, serán substituidos. Se distinguen los siguientes tipos de avería:

- Averías de carácter menor, a reparar durante el funcionamiento de la Planta o durante una parada programada: es aquella que puede ser reparada durante el funcionamiento de la Planta (sin que afecte a la disponibilidad de equipos) o que pueda ser reparada posteriormente durante una parada programada.
- Averías de carácter mayor, a reparar durante una parada no programada de equipo: se trata de una avería o accidente que provoca una parada no programada de componentes y equipos de las instalaciones.

II.3.2.3.5 Mantenimiento de equipos singulares

Se establecerán contratos de mantenimiento de aquellos equipos que, por su singularidad, así lo precisen. Habitualmente se requiere vigencia de los contratos de mantenimiento con posibles diferentes alcances (asistencia técnica, diferentes mantenimientos, etc.) con los suministradores durante la vida útil de los equipos principales, que suelen ser:

- Suministrador de puentes grúas de residuos.
- Tecnólogo del horno caldera.
- Tecnólogo del tratamiento de gases.
• Suministrador de analizadores de gases de combustión.
• Tecnólogo/Fabricante del turbogenerador de vapor.

I. Horno
Gran parte del mantenimiento del horno debe realizarse durante los paros programados. Las actividades a llevar a cabo de forma general son:
• Limpieza, desmontaje y control mecánico bajo parrilla, superficie de parrilla y cambio de barras defectuosas.
• Control del estado del refractario y trabajos de reparación.
• Control del sistema de enfriamiento de humos.
• Control y limpieza de los equipos de aire de combustión.

II. Caldera
Al igual que el horno, el mantenimiento de la caldera debe realizarse durante los paros programados. Típicamente las actividades a realizar son:
• Control visual del revestimiento de inconel, tubos primer paso, bóveda y segundo paso.
• Control no destructivo por ultrasonidos de espesor de tubos del segundo paso después del revestimiento de inconel (inicialmente anual y según frecuencia a determinar en función de las velocidades de corrosión constatadas).
• Control de espesor de los tubos de sobrecalentadores para programación de sustitución.
• Control y tarado de las válvulas de seguridad.
• Control de tolvas, seguridades.
III. Grupo turboalternador

Diariamente el personal de operación y mantenimiento realiza un cierto número de operaciones de control y mantenimiento corriente en el grupo turboalternador. Entre estas operaciones se encontrarán:

- Control y registro de presiones, temperaturas, caudales, velocidad y vibraciones.
- Ronda en cada turno con una especial atención a fugas, ruidos u olores anormales.

Las operaciones de mantenimiento más comprometidas se subcontratan a empresas especializadas/fabricante y se realizan durante una visita anual. Estas operaciones comprenderán:

- Ensayos de comportamiento mecánico a distintos regímenes de funcionamiento del grupo.
- Control de los límites de disparo por sobre velocidad.
- Control de los juegos del cojinete axial.
- Control de cojinetes, acoplamientos, válvula de cierre rápido, virador, bomba de aceite.
- Control de las válvulas de regulación.
- Apertura de la turbina.

Típicamente en función del grado de inspección / mantenimiento se diferenciará entre:

- Mantenimiento corriente: anual.
- Inspección menor: cada tres años.
- Inspección mayor: cada seis años.
II.3.2.3.6 Gran Mantenimiento

El Gran Mantenimiento se define como el conjunto de trabajos necesarios a realizar durante una parada programada de larga duración, normalmente con carácter anual, para mantener y renovar una línea de tratamiento o varias, y en su caso, la Planta completa en un único período, asegurando su mejor estado de conservación.

Durante dicho período se procederá a realizar las inspecciones, comprobaciones, pruebas, reparaciones y/o sustituciones de componentes de la/s línea/s de tratamiento, o en su caso, de la Planta, según resulte razonablemente necesario tras verificar el deterioro debido al desgaste normal de las instalaciones y de acuerdo a las recomendaciones de los fabricantes, el Manual de Operación y Mantenimiento, y los buenos usos y prácticas industriales.

Típicamente los trabajos a programar del Gran Mantenimiento para cada horno caldera incluyen las siguientes labores:

- Parada y aplicación de todas las medidas de seguridad necesarias para permitir el acceso a todos los equipos e instalaciones de la Planta eliminando cualquier peligro para las personas y materiales, todo ello con carácter previo a cualquier intervención de inspección y/o revisión. El encargado de operación y mantenimiento es el responsable de las paradas y arranque de equipos, tomando todas las medidas de seguridad necesarias.

- Montaje e instalación del material necesario para acceder con todas las garantías de seguridad a todos los equipos e instalaciones para los cuales se ha programado intervenciones durante la parada. En cada parada programada se instalarán andamios en el horno caldera, los cuales no deberán estar apoyado directamente en la parrilla del horno.
Inspección y/o revisión de todos los equipos e instalaciones de la Planta. El Operador realizará una inspección visual, junto al personal especializado, de todos los equipos y componentes del horno caldera.

Limpieza del horno caldera siguiendo el procedimiento propuesto por el tecnólogo del horno caldera.

Comprobación de la pérdida de espesores en los paneles y haces tubulares metálicos siguiendo el procedimiento aprobado entre las partes.

Tras verificar el deterioro debido al desgaste normal, se realizarán los trabajos de reparación, sustitución y/o renovación de los barrotes del horno y material refractario que se consideren necesarios.

Tras verificar las pérdidas de espesores, se reemplazarán las superficies afectadas según los criterios técnicos inscritos en el procedimiento aprobado entre las partes.

Desmontaje del material necesario para acceder todos los equipos e instalaciones para los cuales se ha programado intervenciones durante la parada.

Todos los trabajos de mantenimiento preventivo se programarán para que el paro de la/s línea/s suponga el mínimo período temporal posible, y se informará a la AGU de la CDMX con una antelación suficiente de la programación aprobada, del periodo de tiempo previsto para realizar el conjunto de tareas del mantenimiento y de las fechas en que estén programadas.

Por lo anterior, se emitirá un informe relativo a los trabajos inicialmente programados, a los efectivamente realizados y a las inspecciones de verificación de garantías durante la "Parada Programada Anual de Línea/s".
Tras el inicio de Operación Comercial, se procederá a programar y realizar la “Parada Programada Anual de Línea/s” ejecutando anualmente los trabajos del “Gran Mantenimiento” definidos en su “Programa de Mantenimiento de la Planta”.

II.3.2.3.7 Programa de limpieza

Se consideran objeto de limpieza el conjunto de instalaciones de la Planta, el recinto y su perímetro, así como el vial de acceso. Para ello, dentro del Programa de Mantenimiento se incluirá un Plan de Limpieza. En el Plan de Limpieza se indicará para cada una de las zonas de la Planta el día y hora que deben limpiarse, y el procedimiento de limpieza empleado (barrido, enjuague, etc.) y considerará los siguientes aspectos:

- Regularmente (a diario o cada dos días) se efectuará la limpieza de los pavimentos y espacios en los que se hallan recibido los residuos frescos, excepto el foso. Si durante la recepción y descarga se hubiesen producido vertidos de lixiviados, se efectuarán limpiezas con equipos adecuados.
- También se procederá a la limpieza de los materiales que hayan podido dispersarse fuera de las zonas de recepción o almacenamiento. Se pondrá especial cuidado en la limpieza de las superficies en vías de acceso.

II.3.2.3.8 Plan de sustitución (reposición) de equipos de la planta

El Plan de Reposición de Equipos constituye una pieza clave en el mantenimiento de las instalaciones que constituyen la Planta. Se diseña para asegurar el funcionamiento óptimo de las instalaciones a lo largo de su vida útil.
El Prestador del Servicio desarrollará un Plan de Sustitución de Equipos incluido en el Programa de Mantenimiento de la Planta elaborado anualmente, notificando a la AGU de la CDMX cada sustitución que se vaya efectuando. El Plan de Sustitución de Equipos podrá ser objeto de modificaciones y actualizaciones, los cuales serán dados a conocer previamente a esa Dirección General de Impacto y Riesgo Ambiental para efecto de que se determine lo correspondiente.

El objetivo del plan de reposición es asegurar, junto con el correcto mantenimiento general de la planta, que se pueda llegar a la finalización del Contrato en condiciones de fiabilidad y seguridad. Los elementos de mayor impacto económico asociados a sustitución sistemática podrán ser:

- Barras de parrilla.
- Material Refractario de hornos.
- Tubos de caldera.
- Mangas de filtro.

I. Barras de parrilla

Se define como reposición de barras de parrilla el cambio por una nueva barra. No se considerará reposición si se trata de un cambio de posición dentro de la parrilla. De forma general se estima el cambio de un 10 – 20% de la superficie de parrilla cada 3-4 años.

Se llevará un control de los planos de parrillas, anotando los cambios de posición y/o reposición de barras, de forma que se pueda realizar un seguimiento de la vida de los mismos.
II. Material refractario

Dentro del Plan de Reposición de Equipos se estima una tasa de reposición típica del 40 – 60% del refractario cada cuatro años. Dentro de las actividades de gran mantenimiento se estima una reparación anual del 25% de la superficie.

Para su comprobación se realizará un mapa del refractario que se irá completando anualmente anotando los cambios, reparaciones y observaciones realizados durante los paros técnicos programados, de forma que pueda evaluarse después de cada parada el porcentaje reparado. De esta forma, también se podrán identificar aquellas zonas que tienen más riesgo de degradación.

III. Paneles / haces tubulares

Según la experiencia en el mantenimiento de este tipo de plantas, los elementos sujetos a reposición de mayor a menor frecuencia de reposición son:

- Tubos sobrecalentadores.
- Tubos evaporadores.
- Tubos economizadores.
- Paredes membrana.

Para el seguimiento, anualmente se tomarán espesores de las distintas partes, pudiendo establecer la velocidad de corrosión. De esta forma se podrá disponer de un documento que muestre el estado de la caldera en todo momento. Cuando se realicen reparaciones/sustituciones de tubos o haces, se mantendrá un registro indicando la fecha, la zona afectada y el motivo del cambio.
IV. Mangas de filtros

Se estima una tasa de reposición anual de mangas del 10% - 15% y proveyéndose el cambio completo del medio filtrante cada 3-5 años. Se llevará un registro de las mangas cambiadas, indicando fecha de cambio, su posición en el filtro, así como de motivo del mismo.

V. Repuestos Gestión de Almacén

Dentro del Plan de Sustitución de Equipos, la gestión del almacén de repuestos se considera fundamental. Se entenderá por “Repuesto” o “Recambio” cualquier pieza, material, aparato, componente o cualquier otro producto suministrado en estado nuevo destinado a sustituir, en caso necesario, a otro igual en una máquina, equipo o instalación de la Planta y dispuesto en el almacén o mediante sistema de suministro garantizado de respuesta rápida.

Se considera como “Repuesto” cualquier consumible, fungible, grasa, aceite y/o cualquier material/producto de consumo corriente empleado durante la operación de la Planta para ejecutar cualquier acción dentro del mantenimiento de rutina.

No se considera como “Repuesto” los reactivos, combustibles, aditivos y/o cualquier otro producto químico empleado durante la operación de la Planta. Tampoco se consideran como “Repuestos” los equipos y materiales de trabajo, tales como la ropa y calzado de trabajo uniforme para el conjunto de la plantilla, equipos de protección individual, pequeñas herramientas y útiles de trabajo, y cualquier otro material/producto necesario para ejecutar correctamente la prestación de servicio contratada. La sustitución de repuestos se realizará dentro del mantenimiento correctivo (programado o no) en los casos necesarios o durante el mantenimiento de rutina, todo ello de
conformidad con las recomendaciones e instrucciones de los manuales de organización y mantenimiento y siguiendo la periodicidad indicada en los mismos.

La Planta dispondrá de un almacén con el stock mínimo de seguridad de “repuestos” constituidos antes de iniciarse el comisionamiento de la misma, para asegurar la máxima de disponibilidad de los equipos instalados en la Planta, manteniéndolo al día en el caso de que se consuman y/o deterioren.

También se dispondrá de un procedimiento de gestión del almacén, donde se definen, entre otro aspectos, el sistema de acopio de repuestos según el stock de seguridad del mismo (considerando los diferentes niveles de criticidad que puedan alterar el buen funcionamiento y capacidad de la instalación). En dicho procedimiento se establece el control del inventario de los repuestos.

VI. Descripción del GMAO/CMMS

Se contará con un programa específico de GMAO (Gestión de Mantenimiento Asistido por Ordenador o en sus siglas en inglés CMMS Computerized Maintenance Management System), el cual deberá permitir integrar ciertas funciones programadas en el Sistema de Control Central de la Planta.

A partir del sistema GMAO se realizará toda la gestión del material y personal de mantenimiento; solicitud / órdenes / permisos de trabajos de mantenimiento preventivo / correctivo / predictivo, historiales de equipos, fichas y/o especificaciones técnicas de equipos e instrumentos, suministradores, empresas especializadas, repuestos disponibles / stock / inventarios, reactivos / consumibles / combustibles / aditivos / fungibles, normas, órdenes de compra, herramientas y útiles de trabajo, EPI (equipos de protección individual), etc.
También se mantendrá actualizada una ficha de control de las operaciones de mantenimiento, averías y anomalías, para cada elemento funcionalmente independiente (en funcionamiento o reserva) mediante el sistema GMAO. En la citada ficha figurarán:

- Fechas de las operaciones de control o mantenimiento preventivos.
- Fecha de las averías.
- Fecha de las reparaciones, descripción y causa que las han motivado y posibles mejoras introducidas o propuestas para evitarlas en el futuro.

Todas estas fichas figurarán en el archivo de la Planta debidamente informatizado. Del sistema GMAO se podría incluir la siguiente documentación:

- Presentación de las principales funcionalidades del GMAO.
- Presentación del GMAO/CMMS.
- Documentación del GMAO.
- Gestión de stocks y logística de mantenimiento.

VII. Mantenimiento de la maquinaria móvil

Se pretende implantar un sistema de mantenimiento de la maquinaria móvil partiendo de dos objetivos fundamentales:

1. Poner los medios para que en el desarrollo diario de los trabajos de un vehículo se produzcan un número de averías lo más bajo posible.
2. Que estas averías producidas sean controladas de tal manera que no se lleve al equipo a las últimas consecuencias y que al mismo tiempo se logre una mejor programación del trabajo del taller optimizando al máximo los recursos.

Para la consecución de los dos objetivos mencionados se realizará una serie de revisiones y mantenimiento periódico de los vehículos, que partirá de dos premisas básicas:

- Seguimiento de la Información técnica y recomendaciones de uso y mantenimiento de los fabricantes de los equipos.
- Experiencia de uso y circunstancias de trabajo.

Las ventajas de estas revisiones pueden resumirse en los siguientes puntos:

- Se evitará la paralización de trabajos con los consiguientes tiempos muertos que conlleva y la paralización de la mano de obra.
- Optimización del número de vehículos ya que la disponibilidad es mucho mayor, ya que éstos sufren averías en menor grado y de menor importancia.
- Máximo control y precisión del gasto de materiales de repuesto, al adelantarse mediante las revisiones a averías que supongan la sustitución de materiales fundamentales de la maquinaria.
- Ajuste del consumo de combustible como consecuencia de la puesta a punto de los motores de la maquinaria móvil.
- Uso más eficaz de la mano de obra al disminuir los periodos inactivos por averías importantes de la maquinaria.
Se puede por tanto denominar este sistema como un sistema de mantenimiento preventivo ya que se aplican revisiones periódicas de revisión que aplicadas sistemáticamente conducen a una reducción sustancial de las reparaciones de los vehículos.

Para poder llevar a cabo este Sistema será necesario llevar un control riguroso de los datos relativos a los tiempos, kilómetros y consumos de combustible y aceites de cada vehículo.

Conservación de edificios, obras y otros

De la misma manera que con los equipos electromecánicos con la obra civil (edificios, instalaciones y redes) se realizarán inspecciones periódicas rutinarias prefijadas de acuerdo con el plan de mantenimiento, de todos los elementos que componen las infraestructuras y se completarían en caso de ser necesario por empresas especializadas.

Estas inspecciones comprenderán todos y cada una de los elementos y módulos de los que se componen la infraestructura, tanto las relacionadas con la urbanización y el procesamiento de los residuos (vialidades, fosas, naves, etc.), como las relacionadas con el personal de servicio, (limpieza, vestuarios, oficinas, comedores, etc.) y se complementan con el mantenimiento y revisión de la infraestructura de los equipos electromecánicos. De forma no exhaustiva se tendrán en cuenta los siguientes elementos, períodos y actuaciones indicadas:

- Cimentación.
- Pavimentos.
- Estructuras verticales (paredes y pilares).
- Estructuras de cubiertas.
• Fachadas.
• Divisiones interiores.
• Red de saneamiento.
• Red de agua fría y Agua Caliente Sanitaria.
• Instalación eléctrica y equipos de iluminación.
• Instalaciones de aire acondicionado.
• Instalación de protección contra incendios.

Cimentaciones

Las afectaciones (grietas, hundimientos) en las cimentaciones no son apreciables directamente y se detectan a partir de las que aparecen en otros elementos constructivos (paredes, techos, etc.). En estos casos será necesario que un técnico especializado realice un informe sobre las lesiones detectadas, determine su gravedad y, en su caso, la necesidad intervención. Con una periodicidad anual se llevará a cabo una inspección general de los elementos que conforman las cimentaciones.

Pavimentos

Los pavimentos de hormigón de las naves se inspeccionarán mensualmente buscando fisuras, grietas o asentamientos localizados. Las fisuras y grietas se sellarán inmediatamente con productos adecuados que aseguren su impermeabilidad. En el caso de producirse asentamientos localizados se levantará y saneará la zona afectada, reponiendo el pavimento.
Estructuras verticales (paredes y pilares)

Con una periodicidad anual se realizará una revisión total de los elementos de la estructura vertical. A continuación se realiza una relación orientativa de síntomas de lesiones con posible repercusión sobre la estructura:

- Deformaciones: desplomes de paredes, fachadas y pilares.
- Fisuras y grietas: en paredes, fachadas y pilares.
- Desconchados en el revestimiento de hormigón.
- Aparición de manchas de óxido en elementos de hormigón armado.
- Debe tenerse en cuenta que las juntas de dilatación, aunque sean elementos que muchas veces no son visibles, cumplen una importante misión en la nave: absorber los movimientos provocados por los cambios térmicos que sufre la estructura y evitar lesiones en otros elementos del edificio.
- Es por esta razón que un mal funcionamiento de estos elementos provocaría problemas en otros puntos de la nave y, como medida preventiva, se inspeccionarán anualmente por un Técnico especializado.

Estructuras de cubiertas

En el caso de las estructuras de cubiertas si aparece alguno de los síntomas (de forma orientativa) que a continuación se detallan se realizará una consulta a un Técnico especializado:

- Deformaciones: abombamientos en techos.
- Fisuras y grietas: en techos, aleros, vigas, pavimentos y elementos salientes de la cubierta.
- Manchas de óxido en elementos metálicos.
• Con periodicidad anual se realizará una inspección general de la estructura de cubierta y del espacio bajo cubierta, del estado de los elementos de la estructura horizontal, del revestimiento de protección contra incendios de los perfiles de acero de la estructura horizontal y se realizará una revisión general de los elementos portantes horizontales.

• Con periodicidad anual se estudiará la necesidad de realizar un repintado de la protección de los elementos metálicos accesibles de la estructura horizontal y un repintado de la protección de los elementos metálicos accesibles de la estructura de la cubierta.

• Con periodicidad anual se realizará la inspección de los anclajes y fijaciones de los elementos sujetos a la cubierta, reparándolos si es necesario.

Fachadas

• Las fachadas deben cumplir importantes exigencias de aislamiento respecto del frío o el calor, el ruido, la entrada de aire y humedad, de resistencia, de seguridad al robo, etc.

• Con periodicidad anual se realizará una inspección del estado de las juntas y de la posible aparición de fisuras y grietas de los cerramientos.

• Con periodicidad anual se realizará una limpieza de la superficie de cornisas y bajantes.

• Con periodicidad anual se realizará una inspección general de los acabados de la fachada.
Divisiones interiores

- Las fisuras, grietas y deformaciones, hundimientos o bombeos serán defectos en los tabiques de distribución (divisiones interiores) que casi siempre presentan defectos estructurales importantes y es necesario analizarlos con detenimiento por un técnico especializado.
- Con periodicidad anual se realizará una inspección de estas divisiones.

Red de saneamiento

- En la red de saneamiento es muy importante conservar la instalación limpia y libre de depósitos. Se puede conseguir con un mantenimiento reducido basado en una utilización adecuada en unos correctos hábitos higiénicos por parte de los trabajadores y una revisión periódica de registros, ya que el buen funcionamiento de la red primaria de evacuación es directamente proporcional a la limpieza de estos elementos.
- Cualquier modificación en la instalación o en las condiciones de uso que puedan alterar el normal funcionamiento será realizada mediante un estudio previo y bajo la dirección de un técnico adecuado.
- Las posibles fugas se localizarán y repararán lo más rápido posible.
- Con periodicidad anual se revisará el estado de los canalones y sumideros, y se realizará la inspección del estado de los bajantes.
- Cada tres meses se procederá al vertido de agua caliente por los desagües y la limpieza de registros y coladeras.
- Con periodicidad anual se limpiarán los canales y sumideros de la cubierta y se procederá a la limpieza de registros, coladeras y la red de colectores horizontales.
Red de agua fría y Agua Caliente Sanitaria

- Todas las fugas o defectos de funcionamiento en las conducciones, accesorios o equipos se repararán inmediatamente.
- Todas las canalizaciones metálicas se conectarán a la red de puesta a tierra. Estará prohibido utilizar las tuberías como elementos de contacto de las instalaciones eléctricas con la tierra.
- En caso de bajas temperaturas, se dejará correr agua por las tuberías para evitar que se hiele el agua en su interior.
- Se realizará una revisión general en la que se comprobará el estado del aislamiento y señalización de la red de agua, la estanqueidad de las uniones y juntas, y el funcionamiento correcto de las llaves de paso y válvulas, verificando la posibilidad de cierre total o parcial de la red.
- En caso de reparación, en las tuberías no se empalmará acero galvanizado con cobre, ya que se producen problemas de corrosión de los tubos.
- Se repararán y sustituirán aquella grifos y elementos que se observen deteriorados o que no funcionan correctamente.
- Con periodicidad mensual se realizará una revisión del estado de conservación de los aparatos de grifos.

Instalación eléctrica y equipos de iluminación

- Con periodicidad semanal se comprobará el funcionamiento y grado de intensidad de todos los elementos de iluminación tanto de interior como exterior.
- Cada 2 meses se realizará una comprobación del funcionamiento de los elementos de corte y protección de cuadros y de máquinas, y una comprobación del estado de conservación de las cajas y tapas de protección de los cuadros.
• Cada 6 meses se revisarán resistencias de descarga de los condensadores de reactiva.
• Con periodicidad anual se revisará el transformador por personal de la compañía suministradora autorizado. Se revisará y si es necesario sustituir los contactos de trabajo de los contactores. Ser revisará y si es necesario cambiar las baterías de autómatas programables.
• Cada 2 años se realizará una comprobación de las conexiones de la red de toma de tierra y una medida de su resistencia tanto interiores como exteriores (Red de alumbrado exterior).
• Cada 4 años se efectuará una revisión general de la instalación eléctrica.
• Cada 5 años se realizará una comprobación de las intensidades nominales en relación con la sección de los conductores, comprobación de continuidad de las conexiones entre masas y conducciones de la red de equipotencialidad.
• Instalación de aire acondicionado.
• Con periodicidad anual se verificará la presión en las tuberías de gas.
• Se verificará cada 3 meses el consumo eléctrico en las unidades.
• Con periodicidad anual se procederá a la limpieza de filtros de la unidad interior y limpieza unidad exterior, polvo y pequeñas partículas.
• Con periodicidad anual se higienizar los filtros con un spray antimoho y antibacteriano con el fin de eliminar bacterias producidas por la humedad.

Instalación contra incendios

• Cada semana se comprobará el funcionamiento y grado de intensidad de todos los elementos de iluminación tanto de interior como exterior.
Cada 6 meses se realizará una verificación de las juntas, tapas y presión de salida a las bocas de incendios. Se verificarán los extintores según las normas dictadas por el fabricante.

Cada año se efectuará una inspección general de todas las instalaciones de protección.

Cada mes se limpiará el alumbrado de emergencia.

Mantenimiento de vialidades.

Se realizarán inspecciones periódicas rutinarias de todos los elementos que componen las vialidades interiores.

El pavimento de las vialidades interiores está muy expuesto al deterioro por abrasión, rozamiento y golpes. Son materiales que necesitan un buen mantenimiento y una buena limpieza y que según las características deben sustituirse con cierta frecuencia.

Se procederá a realizar una inspección mensual de su comportamiento, extendiéndose también a cunetas, pasos, etc. En particular se inspeccionará la aparición de fisuras, grietas y asentamientos localizados.

En caso de grietas o fisuras, se procederá a su sellado con productos adecuados al tipo de pavimento en cuestión, de modo que aseguren su impermeabilidad. En el caso de asentamientos localizados se procederá al levantamiento de la zona afectada, se saneará de manera adecuada y se repondrá el pavimento y elementos de drenaje.

Se realizará una pintura de la señalización horizontal cada dos años.

Para la limpieza del pavimento exterior se procederá a la limpieza por zonas una vez al mes, realizando un barrido diario/semanal en las zonas más afectadas.
Limpieza.

De manera orientativa a continuación se describe el proceso de limpieza de la Planta, a fin de garantizar la higiene así como un aspecto agradable:

- Se hará especialmente en las áreas de vialidades, edificios, líneas de tratamiento y zonas de almacenamiento.
- No se usarán productos abrasivos que dañen los materiales de acabado existentes.
- No se limpiarán las superficies con productos nocivos para la salud cuando los trabajadores se encuentren desempeñando funciones. En caso de ser necesario su uso, los trabajadores encargados de su aplicación adoptarán las medidas de seguridad pertinentes para proteger su salud, como el uso de máscaras, ventilación constante del lugar en que se aplique, evitar el contacto de la piel con sustancias ácidas o corrosivas, etc. Una vez limpio se asegurará la ventilación de la estancia y la eliminación de gases y vapores que se hayan desprendido en su aplicación y fueran nocivos para los trabajadores que usan normalmente las dependencias.
- La conservación y limpieza de edificios comprende todos los trabajos necesarios para que estos edificios sean operativos.

Exterior

- Se comprobará que todo el cerco perimetral esté en buenas condiciones de limpieza y se realizará una limpieza con periodicidad bimensual.
Áreas de proceso

- El vial de acceso en el interior de la Planta y la Plataforma de Descarga se limpiarán con periodicidad diaria y se eliminarán los restos de residuos que por una causa u otra hayan podido quedar en el suelo o en otras partes de las naves.
- Periódicamente se procederá al barrido y limpieza de estas zonas para eliminar los residuos más retenidos en el suelo.
- Cualquier eventualidad que produzca un derrame de residuos o de cualquier otro material será inmediatamente atendido.
- Los pavimentos y pasarelas se limpiarán semanalmente con agua a presión y productos específicos.

Oficinas y similares

- Se realizará una limpieza diaria. Se utilizarán productos de limpieza doméstica de uso común, así como desinfectantes y aromatizantes, todos de carácter biodegradable.
- Esta limpieza comprenderá el recinto de aseo personal de los trabajadores después de la jornada de trabajo (limpieza y vestuarios), así como la zona de oficinas.
- Cualquier incidente que provoque derrames domésticos de cualquier tipo se atenderá inmediatamente.
Desinfección y desratización

- Se establecerá un plan de control de plagas para poder crear unas condiciones ambientales, higiénicas y sanitarias idóneas para el conjunto de las instalaciones que componen la planta.
- Como controles para garantizar en todo momento las condiciones sanitarias óptimas de la instalación y del entorno, se realizarán fumigaciones y control.

Talleres externos de apoyo

- Se contará con un equipo propio de mantenimiento para la realización del mantenimiento preventivo y del mantenimiento rutinario.
- Para la realización del mantenimiento programado se realizarán contratos con empresas externas de mantenimiento, con las que se coordinará las acciones y puestas a punto necesarias.
- Para las averías y fallos de emergencia se dispondrá del equipo propio de emergencia.
- En caso de que no pudiera realizarse la reparación con el equipo humano propio se recurrirá a las empresas externas contratadas.
- Se mantendrán contratos de alquiler de maquinaria específica para mantenimiento con vistas a disponer cuando sea necesario de cualquier tipo de maquinaria necesaria.
II.4 DESMANTELAMIENTO Y ABANDONO DE LAS INSTALACIONES

La vida útil del proyecto es de 50 años contados a partir de la terminación de la etapa de preparación del sitio y construcción del proyecto. Sin embargo, para mantener todas las edificaciones funcionales y en buen estado se dará mantenimiento a todo el equipo y edificaciones. Los equipos se renovarán o reemplazaran una vez que termine su vida útil, con el fin de prolongar la conservación de las instalaciones, de tal suerte que en el programa del proyecto no se prevé el abandono del sitio.

II.5 REQUERIMIENTO DE PERSONAL E INSUMOS

II.5.1 Requerimiento durante la construcción

II.5.1.1 Personal

Se espera un promedio a lo largo de toda la obra de unos 800 trabajadores, llegando a una punta de 1,900 durante el montaje mecánico.

Durante la etapa de preparación del sitio y pilotajes se espera una ocupación promedio aproximada de unos 350 – 400 trabajadores, esperándose un pico de unos 500 trabajadores en el punto de avance máximo de la obra de pilotajes.

En la fase de Construcción y Montaje mecánico se espera un promedio de ocupación de 1,500 trabajadores con un pico al inicio de la fase final de montaje mecánico de 1,900 trabajadores.

Para la etapa de comisionamiento se espera una ocupación de entre 60 y 80 personas.
II.5.1.2 Insumos

Se estiman los siguientes consumos durante la construcción de la Planta:

- Electricidad: Aproximadamente 36,000 MWh.
- Agua: Aproximadamente 80,000 m3, la cual se obtendrá a través de pipas de agua.
- Gasolina: Aproximadamente 35,000 litros.

II.5.1.2.1 Maquinaria y equipo empleado durante la construcción

II.5.1.2.1.1 Maquinaria pesada

- Grúa torre 330 T (2 unidades).
- Grúa torre 150 T (2 unidades).
- Máquinas de hincar pilotes (6 unidades).
- Dragadoras de gran volumen (3 unidades).
- Grúas autopropulsadas.
Figura II—122. Grúa torre 330 T.
Figura II—123. Grúa torre 150 T.
CAPÍTULO II

Figura II—124. Máquina de hincar pilotes.

Figura II—125. Dragadoras de gran volumen.
II.5.1.2.1.2 Maquinaria semipesada

- Retroexcavadoras de ruedas o giratorias.
- Bulldozers.
- Motrotraillas o scrapers.
- Motoniveladoras.
- Apisonadoras.
- Dumpers, mini dumpers.
- Camiones revolventes de concreto.

Figura II—126. Grúas autopropulsada.
Figura II—127. Retroexcavadora de ruedas.

Figura II—129. Scraper o mototraila.

Figura II—130. Motoniveladora.
Figura II—131. Apisonadoras.

Figura II—132. Dumpers y mini dumpers.
II.5.1.2.1.3 Maquinaria ligera

- Maquinaria para concreto: Bombas, Revolvedoras, Vibradores.
- Maquinaria para varilla, cortadoras, dobladoras.
- Elementos de elevación de obra; trepantes y cabrestantes.
- Grupos de soldadura (eléctrica, oxiacetilénica).
- Maquinaria para curvado de tubos, esmeriladoras.
- Compresores.
II.5.1.2.1.4 Vehículos de obra

- Cuatro 4x4 ligeros.
- Dos 4 x 4 pesado.
- Dos camiones pluma.
- Dos camiones de transporte.

Figura II—135. Camión pluma y pick up.
II.5.2 Requerimiento en la operación y mantenimiento

Organización funcional

La Organización Funcional prevista para la operación de la Planta consta de 3 grandes áreas fundamentales, en la cual consideraremos tres grandes bloques o áreas como son:

Servicios Generales: en esta área se incluyen todas las operaciones durante la operación y/o mantenimiento, como son:
- Dirección y gerencia.
- Contabilidad y finanzas.
- Administración.
- Vigilancia.
- Servicio médico.
- Servicio jurídico.
- Sistema de calidad y medio ambiente.
- Formación del personal, etc.
- Relaciones públicas y con el cliente.

Producción: es el área propiamente de operación de la instalación y consta de las siguientes subáreas:
- Control de accesos.
- Gestión del foso y alimentación al proceso.
- Personal de control de la operación en sala de control para: proceso térmico, generación de vapor, depuración de gases, generación de energía, control de emisiones.
o Rondas técnicas, intervenciones puntuales en caso de incidente en el proceso y primera intervención en la resolución de averías.

o Aprovisionamiento de los reactivos.

o Evacuación de residuos (escorias y cenizas y/o residuos especiales)

o Actuación en primera instancia de potenciales incidentes, tales como incendios.

Mantenimiento: es el área encargada de que el equipamiento fijo, móvil y el resto de instalaciones se encuentren en perfecto estado para que no se produzcan pérdidas de disponibilidad. Se divide en cuatro subáreas:

* Equipamiento electromecánico de la planta.
* Maquinaria móvil.
* Obra civil e instalaciones asociadas.
* Gestión de repuestos.

Se prevé para equipos o sistemas muy específicos la contratación de mantenimiento externo (pe: puentes grúa, gran mantenimiento de turbina, aire acondicionado de oficinas etc.).

Programación operativa

A continuación se hace una descripción de los calendarios laborales previstos para las áreas y sub áreas previamente descritas:

Servicios Generales:

* En todas las sub áreas anteriormente descritas se prevé que se trabaje de lunes a viernes en el turno de la mañana.
El servicio de vigilancia trabajará 365 días al año, 24 horas al día.

Producción:
- Control de accesos: todos los días del año excepto domingos y festivos (estimativamente 300 días/año) con los horarios que se establezcan con la AGU de la CDMX de aportación de RSU a la planta.
- Gestión del foso y alimentación al proceso: todos los días del año (365 días), 24 horas al día, por lo que existirán 5 turnos operativos que irán rotando entre ellos.
- Personal de control de la operación en sala de control: todos los días del año (365 días), 24 horas al día, por lo que existirán 5 turnos operativos que irán rotando entre ellos.
- Gestión de escorias: todos los días del año excepto domingos y festivos (estimativamente 300 días/año), durante 2 turnos de trabajo de Lunes a Viernes y 1 turno el Sábado.
- Gestión de cenizas de depuración: todos los días del año excepto domingos y festivos (estimativamente 300 días/año), durante 2 turnos de trabajo de Lunes a Viernes y 1 turno el Sábado.

Mantenimiento:
- En todas las subáreas anteriormente descritas se prevé que se trabaje de lunes a viernes en el turno de la mañana existiendo un retén de personal para el resto del horario, fines de semana y días festivos.
II.5.3 Personal

II.5.3.1 Personal de servicios generales.

El Director General organizará las instalaciones y su correcta gestión, para lo cual contará con un equipo de nivel de mando intermedio, constituido por:

- Secretaria/Recepcionista que realizará las tareas de apoyo general a la Dirección.
- Un Director de Medio Ambiente, Calidad y Seguridad y Salud
- Un Administrativo para las tareas de Administración y Compras de Administración.
- Un Jefe de Planta.
- Un Gerente de Almacenes, Compras y Oficina Técnica.

El Director de Medio Ambiente, Calidad y Seguridad y Salud dispondrá de un Técnico de Laboratorio.

El Jefe de Planta dispondrá como adjunto a la operación de un Técnico Asistente de procesos.

El Gerente de Almacenes/ Oficina Técnica /Compras tendrá la asistencia de un Técnico Asistente de Oficina Técnica / Gestión de Compras e Informática

Se prevé asimismo un Asistente de almacén.

II.5.3.2 Personal de producción

En el caso del Personal de turno se calcula en base a la necesidad de cubrir unos determinados puestos de trabajo, teniendo en cuenta que el régimen de trabajo de la
Planta es continuo. Así para cubrir un puesto 24 horas al día los 365 días del año se necesitarán 5 turnos de trabajo.

Una vez establecidas los turnos de personal que cubrirán cada necesidad se determinan las necesidades de puestos de trabajo para el correcto funcionamiento de las instalaciones.

El equipo de turno debe asegurar el buen funcionamiento de la instalación y poder hacer frente a cualquier potencial incidente, garantizando la operatividad de la planta con total seguridad para el personal. Se ha previsto que cada uno de los turnos estará compuesto por 6 personas:

- 1 Jefe de Turno.
- 2 Operador equipos manutención y alimentación de residuos a las líneas de aprovechamiento térmico.
- 1 Supervisor de planta que realizará labores de apoyo en campo al Jefe de Turno y personal de mantenimiento, limpieza de Planta y apoyo a conductor expedición escorias.
- 2 Operadores de Sala de Control

Tal y como ya se ha indicado el control de accesos a la entrada de la Planta y el pesaje de los residuos deberá ser cubierto igualmente las 24 horas al día los 365 días del año.
Para ello se ha previsto la presencia contínua de un operador de básculas por turno en la Caseta de Control de Accesos. Además, se prevé un operario/conductor sólo durante el día, es decir 2 turnos de trabajo, cuyas principales tareas son:

- Supervisión de las operaciones de descarga de residuos en el foso. Durante las noches y los fines de semana, estas operaciones serán realizadas por el propio personal de turno.
- Gestión de las descargas de reactivos (hidróxido cálcico, carbón activo, amoníaco...).
- Gestión de la expedición de cenizas, escorias y metales.

II.5.3.3 Personal de mantenimiento

El equipo de Mantenimiento dependerá del Jefe de Mantenimiento. El personal de mantenimiento trabajará en turno de día, de lunes a viernes, con disponibilidad fuera de este horario. Estará constituido por un total de 12 personas entre Oficiales y Operarios de las especialidades mecánica, eléctrica, y de instrumentación/control y se prevé la siguiente estructura:

- 1 Oficial de mantenimiento Mecánico.
- 1 Oficial de mantenimiento eléctrico y de supervisión y control.
- 5 Operarios de mantenimiento Mecánicos.
- 5 Operarios de mantenimiento eléctrico y de supervisión y control.
Capítulo II

Tabla II-29. Estimación del personal de operación.

<table>
<thead>
<tr>
<th>Referencia</th>
<th>Descripción</th>
<th>Unidades</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>STAFF GENERAL</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Director general</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Director financiero y administrativo</td>
<td>1</td>
</tr>
<tr>
<td>1.3</td>
<td>Director de compras</td>
<td>1</td>
</tr>
<tr>
<td>1.4</td>
<td>Director de Medio Ambiente, Calidad y Seguridad y Salud</td>
<td>2</td>
</tr>
<tr>
<td>1.5</td>
<td>Director de Relaciones Públicas</td>
<td>1</td>
</tr>
<tr>
<td>1.6</td>
<td>Gerente de Almacenes y Oficina Técnica</td>
<td>1</td>
</tr>
<tr>
<td>1.7</td>
<td>Gerente de servicios de soporte</td>
<td></td>
</tr>
<tr>
<td>1.8</td>
<td>Técnico de laboratorio</td>
<td>1</td>
</tr>
<tr>
<td>1.9</td>
<td>Asistente oficina técnica</td>
<td>1</td>
</tr>
<tr>
<td>1.10</td>
<td>Asistente almacén</td>
<td>1</td>
</tr>
<tr>
<td>1.11</td>
<td>Administrativo</td>
<td>1</td>
</tr>
<tr>
<td>1.12</td>
<td>Secretaria/Recepcionista</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>PERSONAL OPERACION</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Jefe de Planta</td>
<td>1</td>
</tr>
<tr>
<td>2.2</td>
<td>Jefe de Turno (especificar número de turnos previstos)</td>
<td>1</td>
</tr>
<tr>
<td>2.3</td>
<td>Personal de control de entradas y pesaje</td>
<td>2</td>
</tr>
<tr>
<td>2.4</td>
<td>Operador equipos manutención y alimentación</td>
<td>2</td>
</tr>
<tr>
<td>2.5</td>
<td>Operador en sala de control</td>
<td>1</td>
</tr>
<tr>
<td>2.6</td>
<td>Supervisor de planta</td>
<td>1</td>
</tr>
<tr>
<td>2.7</td>
<td>Oficial de mantenimiento mecánico</td>
<td>7</td>
</tr>
<tr>
<td>2.8</td>
<td>Oficial de mantenimiento eléctrico y de I&C</td>
<td>6</td>
</tr>
<tr>
<td>2.9</td>
<td>Personal de mantenimiento mecánico</td>
<td></td>
</tr>
<tr>
<td>2.10</td>
<td>Personal de mantenimiento eléctrico y de I&C</td>
<td></td>
</tr>
<tr>
<td>2.11</td>
<td>Personal de taller</td>
<td>1</td>
</tr>
<tr>
<td>2.12</td>
<td>Personal de limpieza</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>OTROS</td>
<td></td>
</tr>
<tr>
<td>Staff General</td>
<td>Responsable de optimización de procesos</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Ingeniero de procesos</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Químico</td>
<td>1</td>
</tr>
<tr>
<td>Personal de Operación</td>
<td>Responsable de descarga</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Asistente a Jefe Turno</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Vigilancia</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Conductor Maquinista</td>
<td>2</td>
</tr>
<tr>
<td>Personal de mantenimiento</td>
<td>Director de mantenimiento</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Personal de almacén de repuestos</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Ingeniero GMAO</td>
<td>1</td>
</tr>
</tbody>
</table>
Figura II—136. Organigrama del personal.
II.5.3.4 Descripción de los puestos de trabajo

A continuación se hace una descripción de las principales funciones de los distintos puestos de trabajo de la Planta.

- **Director General o Gerente de Planta**

El titular de este puesto de trabajo tiene a su cargo todo el personal de las instalaciones, con las siguientes funciones:

 - Organización de las instalaciones de forma que se cumplan los objetivos técnicos fijados para la gestión de la planta.
 - Supervisión de los recursos financieros.
 - Supervisión de la gestión de recursos humanos y del cumplimiento de toda la normativa laboral aplicable, tomando en su caso las decisiones pertinentes.
 - Organización de las instalaciones desde el punto de vista técnico.
 - Disposición de medios adecuados para el control de situaciones de emergencia.
 - Gestión de los trabajos comerciales pertinentes en referencia a todos los subproductos obtenidos en la Planta y susceptibles de ser comercializados.
 - Supervisión de la gestión directa de las instalaciones y atribución de funciones al personal de explotación.
 - El Director General será la persona física representante de la SPV y bajo la responsabilidad y dirección de la que se prestará el servicio y responsable por tanto de la explotación de las instalaciones y de todas las actividades derivadas.
• **Jefe de Operación**

El titular de este puesto de trabajo depende directamente del Director General, y tiene a su cargo todo el personal de las instalaciones en ausencia del Director General y sus funciones principales serán:

- Responsable de la legislación y documentación legal a nivel ambiental y de seguridad industrial.
- Responsable a nivel técnico de las instalaciones, previendo la supervisión a nivel de compras y contacto con proveedores cuando la suma de la compra así lo requiera.
- Gestión de recursos humanos y del cumplimiento de toda la normativa laboral aplicable, tomando en su caso las decisiones pertinentes.
- Organización de las instalaciones desde el punto de vista técnico.
- Disposición de medios adecuados para el control de situaciones de emergencia.
- Gestión de los trabajos comerciales pertinentes en referencia a todos los subproductos obtenidos en Planta y susceptibles de ser comercializados.
- Será a nivel Técnico el responsable del perfecto funcionamiento de la instalación siendo una pieza de coordinación y planificación entre las diferentes áreas de responsabilidad, dando parte al Director General de todos los eventos relevantes.

• **Jefe de mantenimiento/oficina técnica/compras**

El titular de este puesto de trabajo depende directamente del Jefe de Operación y tendrá a su cargo el personal de mantenimiento (mecánico, eléctrico e instrumentistas). Sus funciones principales serán:
APROVECHAMIENTO DEL PODER CALORÍFICO DE LOS RESIDUOS SÓLIDOS URBANOS PARA LA GENERACIÓN DE ENERGÍA ELÉCTRICA

- Dirigir al personal de mantenimiento controlando sus trabajos y organizando los servicios de dependencias.
- Realización de un Plan de Mantenimiento preventivo de los equipos, a fin de que éstos se encuentren operativos en condiciones óptimas de explotación.
- Gestión de las fichas técnicas de los equipos.
- Atención a las necesidades de la Planta en cuanto a los repuestos y material fungible para obtener la mayor disponibilidad posible de los equipos.
- Atención a las averías inesperadas o situaciones de emergencia. Estudiando las causas técnicas de las averías, remitiendo los correspondientes informes al Director General.
- Control del mantenimiento subcontratado y de su eficacia. Control del mantenimiento preventivo y correctivo.
- Es el responsable de la fiabilidad de los equipos del Centro, de modo que éstos estén siempre en perfecto estado de funcionamiento; en caso de avería es el responsable de que los equipos estén nuevamente en funcionamiento en el menor tiempo posible, también es responsable del personal del departamento de mantenimiento.
- Es el responsable máximo de la existencia de repuestos y material fungible para dotar a la Planta de la mayor disponibilidad posible.

- Jefe de turno

El titular de este puesto de trabajo depende directamente del Jefe de Operación y tendrá a su cargo el personal de operación de la Planta y sus funciones principales serán:

- Organización de la instalación de aprovechamiento térmico desde el punto de vista técnico.
Control y supervisión de la Seguridad y Salud en el Trabajo.

Disposición de medios adecuados para el control de situaciones de emergencia.

Realizará y actualizará los procedimientos de trabajo para cada uno de los trabajos que se realicen en la instalación y hará la supervisión del personal de explotación.

Control del funcionamiento, manteniéndolo dentro de los parámetros de diseño.

Anotación de los datos horarios que considere más significativos, a fin de disponer de información histórica del control.

El titular de este puesto de trabajo es responsable del correcto funcionamiento de la instalación aprovechamiento térmico y del cumplimiento de los objetivos marcados.

Responsable de medio ambiente/calidad/seguridad y salud

El titular de este puesto de trabajo depende directamente del Jefe de Operación y sus funciones principales serán:

- Atender a los aspectos medioambientales exigidos en la Planta, como son: emisión de gases, control de olores aguas y sólidos, los cuales deberán cumplir con las normas y prescripciones de las administraciones públicas.
- Control de las condiciones medioambientales.
- Promoción medioambiental de la Planta mediante la realización de comunicados y conferencias en Administraciones, Universidades, Asociaciones profesionales, Comunidades de vecinos, etc.
- Control y supervisión de la Calidad y prevención de riesgos en el Trabajo.
o Realizar las caracterizaciones de los residuos en cualquier punto del proceso y siempre que sea necesario o lo requiera el Director General.

o Comprobación de los requisitos del reglamento de explotación.

o El titular de este puesto de trabajo, es el responsable de que los ensayos y toma de muestras se lleven a cabo según los protocolos aprobados de actuación.

o Coordinar al equipo de supervisión ambiental externo, a efecto de dar cumplimiento a los Terminos y Condicionantes de la autorización de impacto ambiental y demás licencias y permisos que en materia ambiental se requiere para la operación de la planta.

o El titular de este puesto de trabajo, será el responsable del seguimiento medioambiental del complejo, y está facultado para detener la instalación si los resultados pueden suponer un peligro para la salud pública o el medio ambiente.

- **Supervisor Ambiental**

 o Verificar y supervisar el cumplimiento de las disposiciones en materia ambiental, de aquellas obras y actividades que puedan producir el deterioro al ambiente.

 o Verificar la correcta ejecución de las medidas ambientales propuestas en el estudio de impacto ambiental y en la autorización de impacto ambiental para las distintas etapas del proyecto.

 o Controlar la evolución de los impactos previstos y la eficacia de las medidas propuestas, a través del control de los valores alcanzados por los indicadores ambientales propuestos.
Controlar la evolución de los impactos o la aparición de otros no previstos y proponer las medidas de control pertinentes.

- Garantizar el cumplimiento de la normativa ambiental vigente relacionada con el proyecto.
- Garantizar la conservación de la calidad ambiental del área de influencia del proyecto.

• **Técnico asistente de laboratorio**

El titular de este puesto de trabajo depende del Responsable de Medio Ambiente/Calidad/Seguridad y Salud y sus funciones principales serán:

- Desarrollará los procedimientos para el análisis de los datos de seguimiento ambiental.
- Se encargará de que el material de laboratorio a su cargo se encuentre en perfecto estado y correctamente calibrado.
- Informará de las necesidades de reactivos o material fungible con la debida antelación para coordinar la política de compras.
- Colaborará en la formación medioambiental del personal de explotación del complejo.
- Organizará y gestionará el laboratorio para llevar a cabo todas las mediciones y controles medioambientales que deban llevarse a cabo en la instalación, salvo aquellos que por su naturaleza deban ser realizados por laboratorios acreditados.
- Llevará un registro informático de las actuaciones realizadas, parámetros analizados, fecha, etc.
- Emitirá los informes medioambientales de la instalación.
CAPÍTULO II

- El titular de este puesto de trabajo, será el responsable de que los ensayos y toma de muestras se lleven a cabo según los protocolos aprobados de actuación.

- **Secretario/a de dirección y administrativo**

 Los titulares de estos puestos de trabajo dependen directamente del Director General y sus funciones principales serán:

 - Organización de la agenda del Director General.
 - Se encargarán, de realizar aquellos trabajos administrativos que requieren cálculo, estudio, preparación y condiciones adecuadas.
 - Realización de nóminas.
 - Coordinación del trabajo del personal administrativo.
 - Los titulares de estos puestos de trabajo, se responsabilizan de cumplir sus funciones de la mejor forma posible, con especial atención a la confidencialidad de la información manipulada.
 - Los titulares de estos puestos de trabajo serán responsables de la correcta emisión de la documentación administrativa.

- **Basculista/control de accesos**

 El titular de este puesto de trabajo depende directamente del Jefe de Turno y sus funciones principales serán:

 - Atención a la báscula ya su sistema informatizado de gestión de entradas, así como indicar a los camiones los puntos de descarga y la ruta a realizar.
 - Control de accesos e identificación de camiones.
• Eventualmente información de anomalías al Jefe de Turno.
• Información al Jefe de Mantenimiento de cualquier anomalía de funcionamiento en la báscula, de manera que se puedan prevenir posibles paros en la báscula por averías o mantenimiento no programado.
• Atención de los instrucciones del Encargado, las cuales en caso de necesidad, pueden implicar operaciones en cualquier punto de la Planta.
• El titular de este puesto de trabajo es responsable de ejecutar su trabajo de la mejor forma posible, así como de ejecutar las instrucciones recibidas del Jefe de Turno.

Supervisor de planta

El titular de este puesto de trabajo depende directamente del Jefe de Turno y sus funciones principales serán:

• Organización de los trabajos en el área de su responsabilidad.
• Información de todos los aspectos técnicos que sean de su competencia o especialidad.
• Atender las señales de alarma o emergencias de acuerdo con las normas de actuación o instrucciones correspondientes.
• Coordinación con el personal de mantenimiento en la resolución de averías o situaciones anómalas.
• El titular de este puesto de trabajo es responsable de ejecutar su trabajo de la mejor forma posible, dada la importancia técnico que tiene su puesto de trabajo.
• **Operadores de las grúas**

El titular de este puesto de trabajo depende directamente del Jefe de Turno y sus funciones principales serán:

- Alimentación de los residuos en las líneas de tratamiento mediante el manejo de la grúa y pulpo.
- Selección en fosa de elementos voluminosos a retirar.
- Información al encargado de cualquier anomalía que se produzca en la zona de recepción de residuos.
- Realización eventual de cualquier tarea que le sea solicitada por su inmediato superior y en concordancia con su categoría y formación profesional.
- Limpieza de su puesto de trabajo.
- El titular de este puesto de trabajo, es responsable de la adecuada alimentación de residuos en las líneas.

• **Técnico de oficina técnica**

El titular de este puesto de trabajo depende del Jefe de Mantenimiento/Oficina Técnica/Compras y sus funciones principales serán:

- Desarrollará los procedimientos para el análisis de los datos de mantenimiento.
- Estudio de las causas técnicas de las averías.
- Contribuir a solucionar las posibles averías que puedan producirse en la planta.
o El titular de este puesto de trabajo es responsable de ejecutar su trabajo de la mejor forma posible, así como de ejecutar las instrucciones recibidas del Jefe de Mantenimiento.

o Ayudará al Responsable de la Oficina Técnica en desarrollo de mejoras en la Planta.

o Estudio de las causas técnicas de las averías.

o Contribuir a solucionar las posibles averías que puedan producirse en la planta.

o Contribuir al desarrollo del mantenimiento predictivo.

o El titular de este puesto de trabajo es responsable de ejecutar su trabajo de la mejor forma posible, así como de ejecutar las instrucciones recibidas del Jefe de Mantenimiento.

- **Operario de mantenimiento mecánico**

El titular de este puesto de trabajo depende del Jefe de Mantenimiento y sus funciones principales serán:

- Auxilio a los Técnicos de Mantenimiento en la manipulación de los equipos.

- Ejecución de trabajos de mantenimiento asignados por el Jefe de Mantenimiento.

- Información de todos los aspectos técnicos que sean de su competencia o especialidad.

- El titular de este puesto de trabajo es responsable de ejecutar su trabajo de la mejor forma posible, así como de ejecutar las instrucciones recibidas del Jefe de Mantenimiento.
• Operario de mantenimiento eléctrico y supervisión y control

El titular de este puesto de trabajo depende del Jefe de Mantenimiento y sus funciones principales serán:

- Ejecución de los trabajos de mantenimiento preventivo en los equipos dentro de su especialidad que le sean asignados por el Jefe de Mantenimiento.
- Preparación de las revisiones periódicas, inspecciones, etc.
- Contribución a solucionar las averías técnicas que puedan presentarse en la Planta (detección de causas, designación del personal y sustitución de los equipos para su reparación, comprobación de sistemas, etc.).
- Información de todos los aspectos técnicos que sean de su competencia o especialidad.
- El titular de este puesto de trabajo es responsable de ejecutar su trabajo de la mejor forma posible, así como de ejecutar las instrucciones recibidas del Jefe de Mantenimiento.

• Responsable del almacén

El titular de este puesto de trabajo depende directamente del Jefe de Mantenimiento y sus funciones principales serán:

- Gestión de las existencias del almacén, llevará el registro de entradas y salidas del almacén.
- Gestionará el archivo de documentación y el registro.
- El titular de este puesto de trabajo, se responsabiliza de cumplir sus funciones de la mejor forma posible, con especial atención a la confidencialidad de la información manipulada.
APROVECHAMIENTO DEL PODER CALORÍFICO DE LOS RESIDUOS SÓLIDOS URBANOS PARA LA GENERACIÓN DE ENERGÍA ELÉCTRICA

El titular de este puesto de trabajo es el responsable máximo del correcto funcionamiento del almacén.

- **Operario/conductor**

El titular de este puesto de trabajo depende directamente del Jefe de Turno y sus funciones principales serán:

- Movimiento de contenedores por el interior de la Planta.
- Eventualmente información de anomalías al Jefe de Turno.
- Información al Jefe de Mantenimiento de cualquier anomalía de funcionamiento en los camiones/bulldozers, de manera que se puedan prevenir posibles paros en esta por averías o mantenimiento no programado.
- Atención de las instrucciones del Jefe de Turno, que en caso de necesidad, pueden implicar operaciones en cualquier punto de la Planta.
- El titular de este puesto de trabajo es responsable de ejecutar su trabajo de la mejor forma posible, así como de ejecutar las instrucciones recibidas del Jefe de Turno.

II.5.4 Insumos

En la etapa de operación de la Planta se requerirán los siguientes insumos y consumibles:

II.5.4.1 Maquinaria

Se prevé la existencia en operación de la maquinaria que se enlista a continuación:
2 Bulldozers o palas cargadoras.
2 Barredoras.
2 Vehículos (pick-ups).
2 Camiones.
2 Plataformas elevadoras de tijera.
Todo tipo de utillaje y herramientas apto para obras.

El uso principal de la maquinaria será el siguiente:

- Trasiego de escorias, subproductos, cenizas volantes y residuos de depuración de gases.
- Limpieza de las instalaciones.
- Transporte de piezas de mantenimiento en el interior de la Planta.
- Limpieza de las instalaciones.
- Uso para mantenimiento (plataformas elevadoras).

II.5.4.2 Consumo de combustibles

Los combustibles que están previstos consumir en la instalación son:

- Diésel para el arranque de las instalaciones ya sea para la primera puesta en marcha o tras realizar las paradas de mantenimiento.
- Diésel para los distintos equipos móviles que existirán en la planta.
II.5.4.3 Consumibles

A continuación se enlistan los distintos consumibles de proceso que se prevé serán requeridos en las instalaciones:

- Para el proceso de depuración de gases:
 1. \(\text{Ca(OH)}_2 \): hidróxido cálcico.
 2. Carbón activo.

- Para el proceso de depuración de agua de calderas:
 3. \(\text{Na}_2\text{SO}_3 \) (sulfito de sodio) y/o \(\text{NaOH} \) (sosa caustica).
 4. \(\text{Ca(OH)}_2 \): hidróxido cálcico como ablandador.
 5. \(\text{Al}_2(\text{SO}_4)_3 \): Sulfato de aluminio como floculante.

II.6 RESIDUOS

II.6.1 Estimación del número de camiones de entrada/salida a la planta

II.6.1.1 Entradas y salidas de residuos y materias primas a la planta

Entradas a la planta:

- R.S.U.: 4,500 Ton/día ≈ 1,500,000 Ton/año (para un funcionamiento de 8,000 horas equivalentes de la planta a plena carga).
- Cal Hidratada: 42 Ton/día ≈ 14,000 Ton/año.
- Carbón activo: 1.1 Ton/día ≈ 360 Ton/año.
- Amoniaco acuoso: 5.57 Ton/día ≈ 1,860 Ton/año.
Salidas de la planta:

- Escorias: 1,070 Ton/día ≈ 360,000 Ton/año.
- Cenizas y residuos de depuración de gases: 121 Ton/día ≈ 40,250 Ton/año.

Se han considerado las entradas y salidas de residuos y materias primas más representativos. Para el resto de materiales de entrada/salida a la planta (otros reactivos, diésel, aceites...) no se espera una aportación conjunta de más de 20 camiones/año.

II.6.1.2 Estimación del número de camiones de entrada/salida a la planta

Estimación de la capacidad de carga de camiones:

- Capacidad de carga camiones de transferencia de residuos: 21 Ton/viaje lleno.
- Capacidad de carga camiones para gestión de escorias: 20 Ton/viaje lleno.
- Capacidad de carga camiones “pipa” para gestión de cenizas y residuos de depuración de gases: 20 Ton/viaje lleno.
- Capacidad de carga camiones “pipa” para entrega de cal hidratada: 20 Ton/viaje lleno.
- Capacidad de carga camiones “pipa” para entrega de carbón activo: 20 Ton/viaje lleno.
- Capacidad de carga camiones “pipa” para entrega de amoníaco acuoso: 20 Ton/viaje lleno.
Estimación de camiones de entrada:

- **RSU:**
 4,500 Ton/día / 21 Ton viaje lleno ≈ 215 camiones / día (430 viajes/día).
 1'500,000 Ton/año / 21 Ton viaje lleno ≈ 71,430 camiones/ año (142,860 viajes/año).

- **Cal Hidratada:**
 42 Ton/día 20 Ton viaje lleno ≈ 2.1 camiones /día (4.2 viajes/día).
 14,000 Ton/año / 20 Ton viaje lleno ≈ 700 camiones/año (1,400 viajes/año).

- **Carbón activado:**
 360 Ton/año / 20 Ton viaje lleno≈ 18 camiones/año (36 viajes/año).

- **Amoniaco acuoso:**
 1,860 Ton/año / 20 Ton viaje lleno ≈ 93 camiones/año (186 viajes/año).

Estimación de camiones de salida:

- **Escorias:**
 1,070 Ton/día / 20 Ton viaje lleno ≈ 53.5 camiones /día (107 viajes/día).
 360,000 Ton/día / 20 t viaje lleno ≈ 18,000 camiones/año (36,000 viajes/año).
Cenizas y residuos depuración de gases:

121 Ton/día / 20 Ton viaje lleno ≈ 6.05 camiones /día (12.1 viajes/día).

40,250 Ton/año / 20 Ton viaje lleno ≈ 2,012.5 camiones/año (4,025 viajes/año).

II.6.2 Solidos

II.6.2.1 Sistema de disposición final de escorias

Los servicios de disposición final de escorias se prevén realizar mediante tractocamiones y cajas de transferencia de volumen de 90 yd3 con capacidad máxima de 28 toneladas por viaje.

Los sitios de disposición final son 2 rellenos sanitarios que cumplen con la normatividad ambiental vigente y operados por Veolia Mx, mismo que se citan a continuación:

- RS Veolia Tlalnepantla: Es un relleno sanitario situado en Tlalnepantla Estado de México a 40 km de distancia de la planta y operado por Veolia desde el 23 de junio de 1997 hasta el 31 de mayo de 2024, con capacidad de 3 millones de toneladas remanentes. El tiempo del ciclo completo desde la carga, traslado, descarga regreso se estima en 3 hrs 24 min. Se tiene programado disponer los años 1 y 2 de operación en éste sitio y posteriormente se utilizará el RS Veolia Tulantepec. A continuación se muestra su ubicación.
Figura II—137. Localización del RS Veolia Tlalnepantla, Estado de México.
• RS Veolia Tulantepec: Es un relleno sanitario situado en Santiago Tulantepec Hidalgo a 123 km de distancia de la planta y operado por Veolia desde el 12 de marzo del 2008 hasta el 11 de marzo de 2031 con capacidad de 4.5 millones de toneladas remanentes. El tiempo del ciclo completo desde la carga, traslado, descarga regreso se estima en 4 hrs 30 min. Se tiene programado disponer los años posteriores del año 2 de operación en éste sitio.
CAPÍTULO II

Figura II—138. Ruta de Localización del RS Veolia Tulantepec, Estado de México.
II.6.2.2 Sistema de disposición final de cenizas

El servicio de disposición final de los residuos peligrosos propuesto es el Centro de Tratamiento y Disposición Final ubicado en Mina, Nuevo León con autorización SEMARNAT No. 19-37-PS-VII-01-93 operado por Veolia RIMSA.

El traslado a Mina Nuevo León está situado a 1,000 Km de la planta cuyas cenizas se contemplan full tolvias de capacidad 45 toneladas.
Figura II—139. Localización del Centro de Tratamiento y Disposición Final Veolia RIMSA en Mina, Nuevo León.
II.6.3 Aguas

Red de distribución de agua

Los distintos tipos de agua se distribuirán de la siguiente manera en el interior de la zona de proceso:

- **Agua potable**: la red de distribución partirá del grupo de presión colocado junto al depósito de agua potable. Al estar su consumo asociado únicamente a necesidades sanitarias, se dispondrán tomas de agua potable en la sala de control, así como en las salas de descanso del personal. La red de distribución será radial, con una presión de suministro de 3 bar.

- **Agua filtrada**: la red de distribución partirá de un grupo de presión colocado junto a los depósitos de agua filtrada. La red de distribución será radial, con tres ramales de distribución situados entre las líneas de tratamiento, más otros dos ramales perimetrales. Se dispondrán en general tomas de agua cada 50 m, con una presión de suministro de 3 bar.

- **Agua contra incendios**: El suministro de agua en cantidad y calidad, se dispondrá mediante dos tanques de almacenamiento que dará el servicio a la planta. Cada tanque tendrá la capacidad para satisfacer la demanda de 2 horas para los dos conceptos (a) y (b) que se enuncian a continuación:
 - Cualquiera de los conceptos que se describen a continuación, el que resulte mayor:
 1. La demanda del sistema fijo de extinción de incendios que requiera el mayor gasto.
 2. Cualquier combinación de flujos de sistemas fijos de extinción que sean factibles de operar simultáneamente durante un evento.
El gasto para mangueras.

- **Agua desmineralizada**: la red de distribución partirá de un grupo de presión colocado junto al depósito de agua desmineralizada, desde donde se distribuirá al desgasificador (aporte de ciclo), a las calderas y al sistema de refrigeración auxiliar.

En la siguiente tabla se muestra el balance de agua durante la operación de la Planta, el cual se puede observar en el diagrama que se presenta en la figura siguiente.

Tabla II-30. Caudal por corriente (m³/h, punto de operación - capacidad de trabajo de diseño (LP1)).

<table>
<thead>
<tr>
<th>Num.</th>
<th>Denominación</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Entrada de agua bruta</td>
<td>18.89</td>
</tr>
<tr>
<td>1</td>
<td>Demanda de PTA</td>
<td>14.11</td>
</tr>
<tr>
<td>2</td>
<td>Reposición de agua de escorias</td>
<td>4.32</td>
</tr>
<tr>
<td>3</td>
<td>Sistema de limpieza de ACC</td>
<td>0.10</td>
</tr>
<tr>
<td>4</td>
<td>Limpieza de paso radiante</td>
<td>0.31</td>
</tr>
<tr>
<td>5</td>
<td>Retorno de PTA a agua de servicios</td>
<td>1.59</td>
</tr>
<tr>
<td>6</td>
<td>Efluente de PTA</td>
<td>4.16</td>
</tr>
<tr>
<td>7</td>
<td>Reposición ciclo agua-vapor</td>
<td>7.93</td>
</tr>
<tr>
<td>8</td>
<td>Reposición sistema de refrigeración auxiliar</td>
<td>0.43</td>
</tr>
<tr>
<td>9</td>
<td>Pérdidas de ciclo</td>
<td>2.40</td>
</tr>
<tr>
<td>10</td>
<td>Sopladores de hollín</td>
<td>3.60</td>
</tr>
<tr>
<td>11</td>
<td>Purga a la atmósfera</td>
<td>0.00</td>
</tr>
<tr>
<td>12</td>
<td>Purga a efluente</td>
<td>1.33</td>
</tr>
<tr>
<td>13</td>
<td>Estación de muestreo</td>
<td>0.60</td>
</tr>
<tr>
<td>14</td>
<td>Reposición de extractor de escorias</td>
<td>11.77</td>
</tr>
</tbody>
</table>

*Excluida Agua potable, cuyo consumo es por el personal de la Planta y se estima en 2,500 m³/año.
*Consumo esperado agua bruta aprox. 151,000 m³/año.
*Consumo máximo en situación más desfavorable 250,000 m³/año.
II.6.3.1 Planta de Tratamiento de Aguas Residuales

Como anteriormente descrito, se prevé el tratamiento de las aguas residuales a través de una PTAR prefabricada para el reúso del agua en la limpieza, riego y muebles sanitarios, así como para descarga al cuerpo receptor, de acuerdo a la normatividad aplicable.

Dicha infraestructura contará con capacidad suficiente para procesar un caudal de aguas sanitarias de 2,500 m3/año.

II.6.3.2 Conexión a Cauce Público excedente Pluviales Limpias

El agua pluvial excedente (limpia o tratada) almacenada que no pueda ser reutilizada en la planta será vertida al Río Churubusco, de acuerdo a la NOM-001-SEMARNAT-1996 y NOM-002-SEMARNAT-1996. El límite de batería de suministro se establece en el límite del predio de pretendida ubicación del proyecto.

Con el fin de facilitar la monitorización de dichas aguas, se establecerá una arqueta de vertido.

II.6.3.3 Efluentes generados

Los efluentes líquidos generados durante la operación de la planta y sus destinos se resumen en:

- Lixiviados del foso de residuos. Se bombean e inyectan en las líneas de tratamiento, por tanto no se produce vertido o descarga.
- Purgas de caldera. Se colectan en el depósito de aguas usadas para su uso en proceso.
- Lixiviados de escorias. Se colectan en el depósito de aguas usadas para su uso en proceso.
- Aguas de baldeo y limpiezas. Se colectan en el depósito de aguas usadas para su uso en proceso.
- Aguas residuales provenientes de los sanitarios. Se vierten a la PTAR prefabricada para su reuso en el proceso de la planta y áreas jardinadas.
- Aguas pluviales excedentes. Serán vertidas al sistema de aguas residuales existentes en el borde poniente, es importante precisar que se trata de aguas limpias colectadas de áreas sin tratamiento alguno, mientras que las grises tras separación de aceites, decantación y neutralización serán tratadas en la planta modular que se desarrollará para tal efecto.

A continuación se presenta el Diagrama de proceso de captación, tratamiento y reutilización de aguas en la Planta.
Aprovechamiento del Poder Calorífico de los Residuos Sólidos Urbanos para la Generación de Energía Eléctrica

CAPÍTULO II

Figura II—140. Diagrama de proceso de captación, tratamiento y reutilización de aguas.
II.6.4 Emisiones

Las emisiones equivalentes de CO₂ asociadas a la Planta, se han estimado en base al CO₂, CH₄ y N₂O que se emiten en los gases de combustión. Se toma como base el aprovechamiento térmico de 1'500,000 ton/año de residuos sólidos urbanos.

II.6.4.1 Asociadas a la planta

II.6.4.1.1 Emisiones de CO₂

Según informes internacionales y de la Agencia Europea del Medio Ambiente, se considera que los gases de efecto invernadero emitidos por la combustión o biodegradación de las fracciones biodegradables del residuo (materia orgánica biodegradable contenida en los restos de comida, restos de poda y jardinería, papel y cartón), no se debe contabilizar, puesto que anteriormente fue capturado por los organismos vivos, y por tanto pertenece a un ciclo neutro de carbono. Por lo tanto, se considera que tiene un factor de emisión de cero (t CO₂/TJ ó t ó Nm³).

En el caso de algunas fracciones, en particular los plásticos, el origen del carbono procede de fuentes de carbono fósil. Para las emisiones de “CO₂ fósil”, el impacto a efectos de calentamiento global es de 1. Estas fracciones son prácticamente no biodegradables y la única vía en la que el carbono que contienen se puede liberar a la atmósfera como CO₂ es mediante combustión u otros procesos térmicos. De acuerdo al Protocolo de Kyoto de la Convención Marco de las Naciones Unidas sobre el Cambio Climático, sólo el componente fósil del residuo debe tenerse en cuenta para calcular las emisiones netas de carbono.
El método utilizado para el cálculo de las emisiones de CO$_2$ es el que se indica en el IPCC (2006 *IPCC Guidelines for National Greenhouse Inventories; Volume 5. Waste; Chapter 5. Incineration and open burning of waste*). Este método de cálculo se realiza a partir de la composición del residuo. La ecuación para calcular las emisiones de CO$_2$ es la siguiente:

$$\text{Emisiones CO}_2 \left(\frac{Mg}{año} \right) = MSW \times \sum (WF_j \times dm \times CF_j \times FCF_j \times OF_j) \times \frac{44}{22}$$

Donde:
- MSW = residuos sólidos urbanos incinerados en base húmeda, Mg/año
- WF_j = fracción del residuo j en MSW (en base húmeda), siendo $\sum WF_j = 1$
- dm_j = fracción de la materia seca en el residuo j
- CF_j = fracción de carbono en el residuo j (en base seca)
- FCF_j = fracción de carbono fósil en el carbono total del residuo j
- OF_j = fracción del factor de oxidación
- $\frac{44}{12}$ = factor de conversión de C a CO$_2$

Se ha considerado la composición de los Residuos Sólidos Urbanos prevista para el Proyecto, que corresponde al promedio de las caracterizaciones de los residuos de Ciudad de México realizadas en Abril de 2016.

Tabla II-31. Composición de residuos de la Ciudad de México.

<table>
<thead>
<tr>
<th>Componente</th>
<th>Aportación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materia Orgánica</td>
<td>10.22 %</td>
</tr>
<tr>
<td>Papel/Cartón</td>
<td>23.47 %</td>
</tr>
<tr>
<td>Vidrio</td>
<td>3.55 %</td>
</tr>
</tbody>
</table>
Aprovechamiento del poder calorífico de los residuos sólidos urbanos para la generación de energía eléctrica

CAPÍTULO II

<table>
<thead>
<tr>
<th>Componente</th>
<th>Aportación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plásticos</td>
<td>26.17 %</td>
</tr>
<tr>
<td>Metales</td>
<td>1.27 %</td>
</tr>
<tr>
<td>Misceláneos madera</td>
<td>0.78 %</td>
</tr>
<tr>
<td>Misceláneos textil</td>
<td>4.05 %</td>
</tr>
<tr>
<td>Misceláneos Combustible</td>
<td>7.18 %</td>
</tr>
<tr>
<td>Gomas/Cuero</td>
<td>0.05 %</td>
</tr>
<tr>
<td>Inertes</td>
<td>0.99 %</td>
</tr>
<tr>
<td>Residuos Peligrosos del Hogar</td>
<td>0.09 %</td>
</tr>
<tr>
<td>Finos</td>
<td>18.11 %</td>
</tr>
<tr>
<td>Otros</td>
<td>4.06 %</td>
</tr>
<tr>
<td></td>
<td>100.00%</td>
</tr>
</tbody>
</table>

En base a la composición anterior y aplicando la ecuación de cálculo de emisiones de CO₂, se obtiene una emisión anual de **1'075,000 ton/año de CO₂**.

II.6.4.1.2 Emisiones de CH₄

El cálculo de las emisiones de CH₄ en los gases de combustión se realiza en base al factor de emisión de referencia indicado por la Guía *2006 IPCC Guidelines for National Greenhouse Inventories* (0.0002 kg CH₄/Ton de MSW).

En base a lo anterior, para el aprovechamiento térmico de 1'500,000 Ton/año de MSW, se estima una emisión de 300 kg/año de CH₄. Asumiendo que la emisión de 1 kg de CH₄ equivale a 25 kg de CO₂, se tiene una emisión equivalente de **7.5 Ton/año de CO₂**.
II.6.4.1.3 Emisiones de N$_2$O

El cálculo de las emisiones de N$_2$O en los gases de combustión se realiza en base al factor de emisión de referencia indicado por la Guía *2006 IPCC Guidelines for National Greenhouse Inventories* (0.02 kg CH$_4$/Ton de MSW). En base a lo anterior, para el aprovechamiento térmico de 1’500,000 Ton/año de MSW, se estima una emisión de 30.0 kg/año de CH$_4$. Asumiendo que la emisión de 1 kg de N$_2$O equivale a 298 kg de CO$_2$, se tiene una emisión equivalente de 8.940 Ton/año de CO$_2$.

II.6.4.1.4 Emisiones totales de CO$_2$ asociadas a la Planta

Las emisiones totales de CO$_2$ equivalentes asociadas a la Planta, considerando un aprovechamiento térmico de 1’500,000 Ton/año de MSW, son:

- Emisiones CO$_2$ = 1´075,000 + 7.5 + 8.940 = 1’083,947.5 Ton/año de CO$_2$.

Tabla II-32. Resumen de las emisiones totales de CO$_2$ asociadas a la planta.

<table>
<thead>
<tr>
<th>Método IPCC</th>
<th>Emisiones de CO$_2$</th>
<th>Emisiones de CH$_4$</th>
<th>Emisiones de N$_2$O</th>
<th>Total de emisiones asociadas a la planta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Método IPCC</td>
<td>Emisiones CO$_2$ Mgaño=MSWx WFj x dm x CFj x FCFj x OFj x 44/22</td>
<td>0.0002 kg CH$_4$/Ton de MSW</td>
<td>0.02 kg CH$_4$/Ton de MSW</td>
<td></td>
</tr>
<tr>
<td>Equivalencia</td>
<td>la emisión de 1 kg de CH$_4$ equivale a 25 kg de CO$_2$</td>
<td>la emisión de 1 kg de N$_2$O equivale a 298 kg de CO$_2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emisiones de CO$_2$</td>
<td>1’075,000 ton/año de CO$_2$</td>
<td>7.5 Ton/año de CO$_2$</td>
<td>8.940 Ton/año de CO$_2$</td>
<td>1’083,947.5 Ton/año de CO$_2$.</td>
</tr>
</tbody>
</table>
II.6.4.2 Flujo neto de emisiones GEI asociados a la Planta

El ahorro de las emisiones para el aprovechamiento térmico mediante incineración se asocia a la electricidad generada y exportada a la red que sustituirá la necesidad de generación de ésta en otros centros de producción.

El ahorro de estas emisiones depende de la tecnología de producción de energía eléctrica considerada, siendo tanto mayor el ahorro cuanto más contaminante sea la fuente.

En este caso se asume un factor de emisión (kg CO$_2$) por unidad de energía (kWh) para la media del mix de producción eléctrica de México de 0.4525 kg CO$_2$/kWh11. En base a los datos del Proyecto, la generación eléctrica exportada prevista por la planta de aprovechamiento térmico es de 965’000.00 kWh/año, por lo que las emisiones de CO$_2$ ahorradas equivaldrían a 436,662.50 Ton/año de CO$_2$.

El flujo neto de emisiones GEI asociadas al aprovechamiento térmico de residuos, se calcularía como diferencia entre las emisiones asociadas a la Planta menos las emisiones ahorradas por la generación eléctrica en otros centros de producción.

- Flujo neto emisiones GEI = 1’083,947.5 Ton/año – 436’662.50 Ton/año = 647,285 Ton/año de CO$_2$.

II.6.4.3 Emisiones de GEI asociadas al vertido de residuos

Las emisiones equivalentes de CO$_2$ asociadas a la disposición final de residuos se han determinado en base valores típicos de bibliografía.

Se considera que los residuos se depositan en un relleno sanitario controlado, asumiendo dos posibles escenarios12 en función de la existencia o no de recuperación de energía del biogás captado:

- Relleno sanitario controlado sin recuperación de energía, para lo cual se toma un valor de 900 kg de CO$_2$ equivalente emitido por tonelada de MSW depositado.
- Relleno sanitario controlado con recuperación de energía, para lo cual se toma un valor de 700 kg de CO$_2$ equivalente emitido por tonelada de MSW depositado.

Tomando como base una cantidad de 1’500,000 Ton/año de MSW depositado en los sitios de disposición final, las emisiones anuales de CO$_2$ por sitio se estiman en 1’050,000 Ton/año de CO$_2$ para el caso del sitio de disposición final con recuperación de energía y 1’350,000 Ton/año de CO$_2$ para el caso del sitio de disposición final sin recuperación de energía.

12 Guía de valorización energética de residuos (Fundación de la Energía de la Comunidad de Madrid, por la Consejería de Economía y Hacienda de la Comunidad de Madrid y el IDAE, Instituto para la Diversificación y Ahorro Energético). Valores sin considerar el impacto evitado por secuestro de carbón.
II.6.4.4 Balance de emisiones con aprovechamiento térmico de RSU y disposición en relleno sanitario

En base a lo indicado en los dos puntos anteriores, la solución mediante aprovechamiento térmico supone un ahorro de emisiones GEI, estimándose entre 402,715 y 702,715 Ton/año de CO₂ en función del tipo de relleno sanitario considerado.

Tabla II-33. Resumen balance de emisiones con aprovechamiento térmico de RSU y disposición en relleno sanitaria (Ahorro de emisiones GEI).

<table>
<thead>
<tr>
<th>Considerando 1,500,000 Ton/año de MSW depositado en Sitios de Disposición Final (SDF)</th>
<th>Emisiones anuales de CO₂ por vertido se estiman en:</th>
<th>Flujo neto de emisiones GEI asociadas al aprovechamiento térmico de residuos</th>
<th>Balance de emisiones con aprovechamiento térmico de RSU y disposición en relleno sanitario (ahorro de emisiones GEI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDF CON recuperación de energía</td>
<td>1,050,000 Ton/año de CO₂</td>
<td>647,285 Ton/año de CO₂</td>
<td>402,715 Ton/año de CO₂</td>
</tr>
<tr>
<td>SDF SIN recuperación de energía</td>
<td>1,350,000 Ton/año de CO₂</td>
<td>647,285 Ton/año de CO₂</td>
<td>702,715 Ton/año de CO₂</td>
</tr>
</tbody>
</table>