tel+55 42 3271-5778 Cel+55 42 999199364 hlsilva@klabin.com.br

Enga Ivonete Coelho da Silva Chaves

Diretoria de Monitoramento Ambiental e Controle da Poluição - DIMAP

IAP - Instituto Ambiental do Paraná Rua Engenheiro Rebouças, 1206

80215-100 Curitiba, PR.

Ofício: CORP-0003

Ref.: Justificativa de alteração dos quantitativos das capacidades produtivas entre RAP e PCA no processo de licenciamento da ampliação do Puma.

27 de março de 2019

Prezada Senhora,

Enviamos abaixo as justificativas das alterações das capacidades produtivas entre o Relatório Ambiental Preliminar (RAP) e o Plano de Controle Ambiental (PCA) no processo de licenciamento da ampliação do Puma 2.

Processos:

Descrição Processo	RAP (dados apenas da ampliação)	PCA (dados apenas da ampliação)	Avaliação da mudança
Estocagem de Madeira	66.000 m2	110.930 m2	Para suprir a demanda de produção, foi necessário aumentar o estoque de madeira na fábrica.
Linhas de Preparo de Madeira	2 linhas (13.600 t/d)	2 linhas (11.900 t/d)	Houve uma pequena redução na capacidade das linhas, mantendo a produção das demais linhas já instaladas.
Sistema BCTMP (Branqueamento)	400 t/d	-	Como não teremos mais a máquina de cartão, não iremos necessitar de sistema BCTMP (Não ter esta planta, melhora na qualidade do efluente geral).
Nova Linha de Fibras – Fibra Curta	2.200 t/d	2.200 t/d	Não teve alteração.
Nova Linha de Fibras – Longa e Curta (Branca)	2 linhas (4.800 t/d)	-	Não será mais necessária a nova linha de fibras branqueada e nem a instalação de um novo branqueamento. (Não ter esta

tel+55 42 3271-5778 Cel+55 42 999199364 hlsilva@klabin.com.br

			planta, melhora na
			qualidade do efluente geral).
Nova linha de fibra curta e fibra longa (marrom)	-	900 t/d	Com isso, para atender à necessidade das máquinas kraft, haverá um aumento na linha de fibras (curta e longa).
Máquina Kraftliner	1 máquina (450.000 t/ano)	2 máquinas (925.000 t/ano)	Devido às demandas de mercado, a Klabin optou pela construção de 2 máquinas kraftliner.
Máquina de papel cartão	1 máquina (440.000 t/ano)	-	Devido às demandas de mercado, a Klabin optou pela construção de 2 máquinas kraftliner.
Caldeira de Biomassa	170 t/h	220 t/h	Devido ao maior consumo de madeira, teremos maior quantidade de biomassa para queima, aumentando a produção da Caldeira.
Turbogeradores	90 MW	140 MW	Devido ao aumento da geração de vapor pelo aumento da produção das caldeiras, foi necessário aumentar a capacidade do Turbogerador.
Geração Total de Energia	Atual: 250 MW + 90 MW (ampliação) = Total: 340 MW	Atual: 250 MW + 140 MW (ampliação) = Total: 390 MW	Na página 18 do PCA há uma informação de que a capacidade atual dos Turbogeradores é 384 MW mas o valor correto é 250 MW. Portanto, com a ampliação prevista, esse valor aumenta em 140 MW, totalizando 390 MW.
ETAC	1.000 m3/h	1.000 m3/h	Não houve alteração.
ETA	1.800 m3/h	2.500 m3/h	Devido à presença de mais uma máquina de papel kraft, houve um aumento da necessidade de água, mas os parâmetros outorgados não serão alterados.
ETE	1.800 m3/h	2.100 m3/h	Devido à presença de mais uma máquina de papel kraft, houve um aumento na geração de efluentes, mas os parâmetros outorgados não serão alterados.
Evaporação	1.000 t/h	1.300 t/h	Como teremos maior geração de licor negro nas linhas de fibras, foi necessário aumentar a produção da evaporação.
Caldeira de Recuperação	3.100 tss/d	3.300 tss/d	Com o aumento do digestor, será gerado mais licor negro demandando uma maior Caldeira de Recuperação que

tel+55 42 3271-5778 Cel+55 42 999199364 hlsilva@klabin.com.br

		gerará uma maior quantidad		
			de energia.	
			Com o aumento da geração	
			de vapor na CDR, haverá	
Caustificação	4.100 m3/d	5.000 m3/d	aumento de smelt e	
Caustilicação	330 t/d	3.000 m3/u	consequentemente haverá	
			aumento da produção de licor	
			branco.	
			Com esse incremento na	
			Caustificação, haverá	
Fornos de Cal		Cal 330 t/d 4	450 t/d	aumento da queima
Fornos de Car			450 t/u	bicarbonato de cálcio nos
			fornos para recuperação da	
			cal.	

• Resíduos:

Descrição Resíduos	RAP (dados apenas da ampliação)	PCA (dados apenas da ampliação)	Avaliação da mudança
Areia	15.000 kg/d	25.000 kg/d	Com as ampliações dos processos, teremos aumento na geração de alguns resíduos.
Óleo Lubrificante usado	100 l/d	300 l/d	Com as ampliações dos processos, teremos aumento na geração de alguns resíduos.
Resíduos de Construção Civil	600 kg/d	2.000 kg/dia	Com as ampliações dos processos, teremos aumento na geração de alguns resíduos.
Lodo de decanter	50.000 kg/d	100.000 kg/d	Com as ampliações dos processos, teremos aumento na geração de alguns resíduos.
Fibras	12.000 kg/d	20.000 kg/d	Com as ampliações dos processos, teremos aumento na geração de alguns resíduos.
Lama de alto forno seca	66.000 kg/d	100.000 kg/d	Com as ampliações dos processos, teremos aumento na geração de alguns resíduos.

tel+55 42 3271-5778 Cel+55 42 999199364 hlsilva@klabin.com.br

A página 18 do PCA contém um erro na capacidade de geração de energia pelos turbogeradores apresentada na Tabela 2. A capacidade atual é 250 MW e não 384 MW conforme apresentado. Assim, a página 18 com o valor corrigido segue em anexo.

Estamos à disposição para esclarecimentos adicionais que se façam necessários.

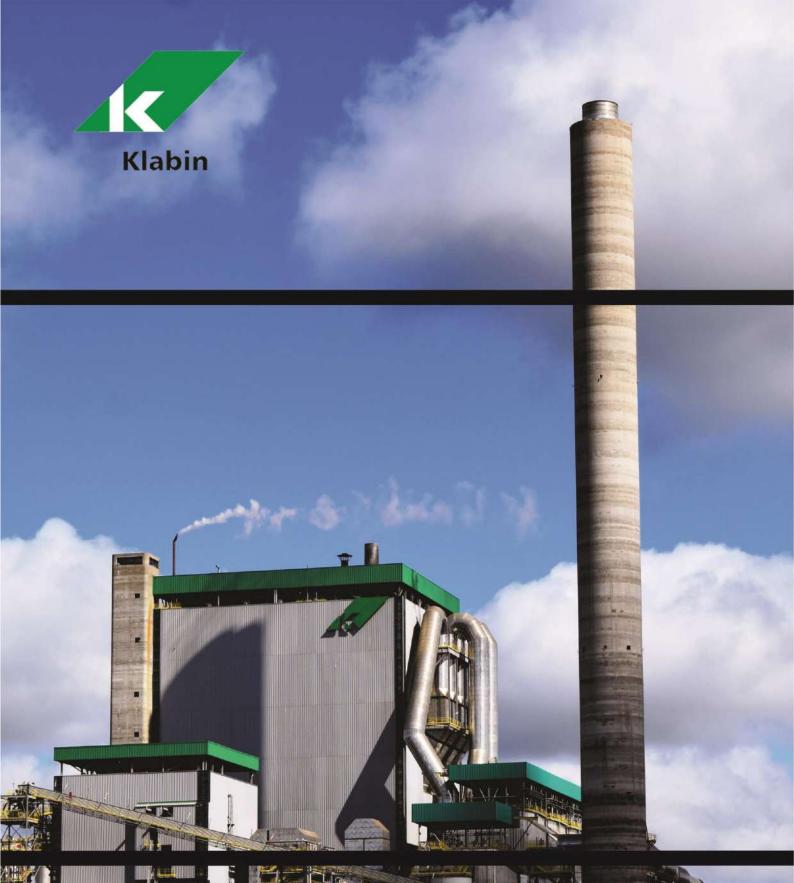
Atenciosamente,

Henrique Luvison

Henrique Luvison Gomes da Silva

Coordenador de Sustentabilidade e Meio Ambiente Klabin S.A.

HLGS



Complementarmente, na segunda etapa da ampliação (fase 2) o empreendimento prevê a instalação de uma nova linha de preparo de madeira, de um segundo digestor, uma máquina de *Kraftliner* de fibra curta e longa, uma nova linha de fibra marrom curta e longa (alternadamente), bem como equipamentos auxiliares aos processos.

As tabelas a seguir apresentam os processos e capacidades consideradas a partir desse detalhamento de projeto. Em resumo serão ampliados os processos apresentados na tabela 2, enquanto que os novos processos previstos, que ainda não existem na atual planta industrial, constam na tabela 3 e na tabela 4.

Tabela 2 - Processos a serem ampliados no empreendimento durante a fase 1.

Processos	Quantidade existente	Capacidade atual	Quantidade a ser instalada	Capacidade ampliação – projeto prévio	Capacidade ampliação – projeto atualizado	Capacidade total – projeto atualizado
Estocagem de madeira	-	100.000 m ²	-	66.000 m ²	110.930 m²	210.930 m ²
Linhas de preparo de madeira	4	23.800 t/dia	2	13.600 t/dia	11.900 t/dia	35.700 t/dia
Caldeira de biomassa	1	280 t/h	1	170 t/h	220 t/h	500 t/h
Turbogeradores	2	250 MW	1	90 MWh	140 MW	524 MW
ETA para caldeiras	1	1.300 m ³ /h	1	1.000 m ³ /h	1.000 m ³ /h	2.300 m ³ /h
ETA	1	5.900 m ³ /h	1	1.800 m ³ /h	2.500 m ³ /h	8.400 m ³ /h
ETE	1	5.300 m ³ /h	1	1.800 m ³ /h	2.100 m ³ /h	7.400 m ³ /h
Evaporação	1	1.700 t/h	1	1.000 t/h	1.300 t/h	3.000 t/h
Caldeira de recuperação	1	7.000 tss/dia	1	3.100 tss/dia	3.300 tss/dia	10.300 tss/dia
Caustificação	1	16.000 m ³ /dia	1	4.100 m ³ /dia	5.000 m ³ /dia	21.000 m ³ /dia
Fornos de cal	2	1.300 t/dia	1	330 t/dia	450 t/dia	1.750 t/dia
Linhas de fibras - longa e curta (branca)	2	4.952 t/dia	-	568 t/dia	265 t/dia	5.217 t/dia

RAP

Relatório Ambiental Preliminar da Ampliação da Unidade Puma em Ortigueira-PR Set/2018

KLABIN ORTIGUEIRA – PR

RELATÓRIO AMBIENTAL PRELIMINAR Ampliação Unidade Puma

<u>1.</u>	OBJETO DE LICENCIAMENTO	15
1.1.	EMPREENDEDOR E EMPREENDIMENTO	17
1.2.	Empresa responsável pelos estudos ambientais	20
1.2.1.	EQUIPE TÉCNICA	21
<u>2.</u>	JUSTIFICATIVA DO EMPREENDIMENTO	24
2.1.	Análise de alternativas tecnológicas e locacionais	25
<u>3.</u>	CARACTERIZAÇÃO DO EMPREENDIMENTO	27
 3.1.	Localização	27
3.2.	DESCRIÇÃO DO EMPREENDIMENTO	29
3.2.1.	Preparo de madeira (primeira fase da ampliação)	35
3.2.2.	CALDEIRA DE BIOMASSA (PRIMEIRA FASE DA AMPLIAÇÃO)	37
3.2.3.	LINHAS DE FIBRA MARROM (PRIMEIRA FASE DA AMPLIAÇÃO)	39
3.2.4.	BCTMP (SEGUNDA FASE DA AMPLIAÇÃO)	41
3.2.5.	MÁQUINA DE <i>KRAFTLINER</i> (PRIMEIRA FASE DA AMPLIAÇÃO)	46
3.2.6.	MÁQUINA DE PAPEL CARTÃO (SEGUNDA FASE DA AMPLIAÇÃO)	48
3.2.7.	SISTEMA DE EVAPORAÇÃO (PRIMEIRA FASE DA AMPLIAÇÃO)	56
3.2.8.	CALDEIRA DE RECUPERAÇÃO (PRIMEIRA FASE DA AMPLIAÇÃO)	57
3.2.9.	SISTEMA DE COGERAÇÃO DE ENERGIA ELÉTRICA (PRIMEIRA FASE DA AMPLIAÇÃO)	59
3.2.10.	SISTEMA DE CAUSTIFICAÇÃO (PRIMEIRA FASE DA AMPLIAÇÃO)	60
3.2.11.	FORNO DE CAL (PRIMEIRA FASE DA AMPLIAÇÃO)	61
3.2.12.	ESTAÇÃO DE TRATAMENTO DE ÁGUA - ETA (PRIMEIRA FASE DA AMPLIAÇÃO)	62
3.2.13.	ESTAÇÃO DE TRATAMENTO DE EFLUENTES - ETE (PRIMEIRA FASE DA AMPLIAÇÃO)	64
3.3.	MATÉRIA PRIMAS E PRODUTOS AUXILIARES	68
3.4.	Descrição das obras	69
3.5.	ESTIMATIVA DA MÃO DE OBRA	71
3.6.	ESTIMATIVA DO CUSTO TOTAL	71
3.7.	Cronograma de implantação	71
<u>4.</u>	<u>DIAGNÓSTICO AMBIENTAL PRELIMINAR DA ÁREA</u>	DE
INFLU	JÊNCIA	72
4.1.	DELIMITAÇÃO DAS ÁREAS DE INFLUÊNCIA	72
4.1.1.	ÁREA DIRETAMENTE AFETADA (ADA)	72
4.1.2.	ÁREA DE INFLUÊNCIA DIRETA (AID)	74
4.1.2.1	. Área de influência direta dos meios físico e biótico	74
4.1.2.2	. Área de influência direta do meio socioeconômico	76

4.1.3.	ÁREA DE INFLUÊNCIA INDIRETA (AII)	78
4.1.3.1.	Área de influência indireta dos meios físico e biótico	78
4.1.3.2.	Área de influência indireta do meio socioeconômico	80
4.2.	COMPATIBILIDADE DO EMPREENDIMENTO COM A LEGISLAÇÃO	83
4.2.1.	RESTRIÇÕES À OCUPAÇÃO (ÁREAS DE INTERESSE AMBIENTAL)	104
4.3.	MEIO FÍSICO	105
4.3.1.	CLIMA E CONDIÇÕES METEOROLÓGICAS	105
4.3.1.1.	Classificação climática de Köppen	105
4.3.1.2.	Caracterização do clima com dados de monitoramento	108
4.3.2.	QUALIDADE DO AR	118
4.3.2.1.	Metodologia	120
4.3.2.1.1.	Pontos de coleta para monitoramento da qualidade do ar	121
4.3.2.1.2.	Parâmetros de coleta	123
4.3.2.1.3.	Análise das condições meteorológicas	123
4.3.2.1.4.	Padrões de qualidade do ar	125
4.3.2.2.	Resultados	128
4.3.3.	RECURSOS HÍDRICOS	133
4.3.3.1.	Inserção regional	133
4.3.3.2.	Detalhamento da rede de drenagem	136
4.3.3.3.	Usos da água	139
4.3.3.4.	Qualidade da água	141
4.3.4.	CARACTERIZAÇÃO GEOLÓGICA-GEOTÉCNICA	149
4.3.4.1.	Aspectos geológicos	149
4.3.4.2.	Aspectos do relevo	156
4.3.4.3.	Aspectos pedológicos	157
4.3.5.	HIDROGEOLOGIA	159
4.3.6.	SUSCETIBILIDADE À OCORRÊNCIA DE PROCESSOS DE DINÂMICA SUPERFICIAL	160
4.4.	Мето втоттсо	162
4.4.1.	Caracterização da vegetação existente	162
4.4.1.1.	Ambientes ecologicamente significativos	167
4.4.1.1.1.	Unidades de conservação	167
4.4.1.1.2.	Áreas prioritárias para conservação	169
4.4.1.1.3.	Áreas estratégicas para conservação e restauração da biodiversidade	171
4.4.1.1.4.	Áreas de preservação permanente	173
4.4.1.1.5.	Reserva legal	175
4.4.2.	ÁREAS DE INTERESSE ESPECÍFICO PARA A FAUNA	177
4.4.2.1.	Fauna da área de influência	178

5.1.	METODOLOGIA DE AVALIAÇÃO DE IMPACTOS	279
<u>5. ID</u>	ENTIFICAÇÃO DOS IMPACTOS AMBIENTAIS	<u> 278</u>
4.6.4.2.	Resultados e discussões	275
4.6.4.1.3.	Avaliação dos resultados	275
4.6.4.1.2.	Medição dos níveis de ruído	272
4.6.4.1.1.	Requisitos legais	271
4.6.4.1.	Metodologia	271
4.6.4.	Ruídos	271
4.6.3.	Resíduos sólidos	267
4.6.2.	EMISSÕES ATMOSFÉRICAS	264
4.6.1.	EFLUENTES LÍQUIDOS	260
	• • • • • • • • • • • • • • • • • • •	260
4.6.	CARACTERÍSTICAS DO EMPREENDIMENTO COM RELAÇÃO A EFLUENTES E EMISSÕE	
4.5.4.	SÍNTESE DAS CONDIÇÕES DE VIDA (IDH-M E IPDM)	256
4.5.3.	ATIVIDADES SOCIOECONÔMICAS E MERCADO DE TRABALHO	249
4.5.2.6.	Estabelecimentos de hospedagem	248
4.5.2.5.	Comunicação	248
4.5.2.4.	Saúde	244
4.5.2.3.	Educação	240
4.5.2.2.4.	· · · · ·	237
4.5.2.2.3.	-	236
4.5.2.2.2.		235
4.5.2.2.1.	-	234
4.5.2.2.	Energia e saneamento básico	234
4.5.2.1.	Sistema viário regional e local	229
4.5.2.	Infraestrutura e serviços existentes	229
4.5.1.4.	Território de comunidades e povos tradicionais e assentamentos agrários	226
4.5.1.3.	ADA e entorno	220
	Uso do solo da AID	217
4.5.1.1.	Uso do solo da AII	212
4.5.1.	USO E OCUPAÇÃO DO SOLO ATUAL	212
4.5.	MEIO SOCIOECONÔMICO	212
4.4.2.1.5.		209
4.4.2.1.4.		204
4.4.2.1.3.	Aves	185
4.4.2.1.2.	·	181
4.4.2.1.1.	Répteis	178

5.1.1.1.	Critérios de avaliação para impactos reais positivos e negativos	285
5.1.1.1.1.	Avaliação de significância para impactos reais positivos e negativos	287
5.1.1.2.	Critérios de avaliação para impactos potenciais	287
5.1.1.2.1.	Avaliação de significância para impactos potenciais (P)	288
5.1.1.3.	Matriz de impactos	289
5.2.	IDENTIFICAÇÃO E CARACTERIZAÇÃO DE IMPACTOS AMBIENTAIS	289
5.2.1.	Alteração da qualidade do ar	289
5.2.2.	EMISSÕES DE GASES DE EFEITO ESTUFA	300
5.2.3.	ALTERAÇÃO DO AMBIENTE SONORO	303
5.2.4.	ACELERAÇÃO DOS PROCESSOS EROSIVOS	306
5.2.5.	POSSIBILIDADE DE CONTAMINAÇÃO DO SOLO, ÁGUA SUPERFICIAL E SUBTERRÂNEA	308
5.2.6.	Alteração da dinâmica hídrica	312
5.2.7.	ALTERAÇÃO NA QUALIDADE DA ÁGUA SUPERFICIAL	314
5.2.8.	CONFLITOS NOS USOS MÚLTIPLOS DA ÁGUA	317
5.2.9.	REMOÇÃO DE COBERTURA VEGETAL	319
5.2.10.	PERDA DE HABITAT E RISCO DE ACIDENTES À FAUNA	321
5.2.11.	ALTERAÇÃO NOS ECOSSISTEMAS AQUÁTICOS	324
5.2.12.	GERAÇÃO DE EXPECTATIVAS	326
5.2.13.	INTERFERÊNCIA SOBRE INFRAESTRUTURA/SERVIÇOS EXISTENTES (RISCO SOCIOAMBI	ENTAL)
		328
5.2.14.	CONFLITO DE USO DO SOLO/ENTORNO	332
5.2.15.	ACRÉSCIMO NA GERAÇÃO DE TRÁFEGO	332
5.2.16.	VALORIZAÇÃO/DESVALORIZAÇÃO IMOBILIÁRIA	334
5.2.17.	GERAÇÃO DE EMPREGOS	335
5.2.18.	AUMENTO NA GERAÇÃO DE TRIBUTOS	338
5.2.19.	AUMENTO DA PRODUÇÃO DE CELULOSE	340
5.2.20.	AUMENTO DA GERAÇÃO DE ENERGIA ELÉTRICA	342
5.2.21.	RISCO DE ACIDENTES	343
5.3.	MATRIZ DE IMPACTOS	345
<u>6.</u> <u>M</u> E	EDIDAS MITIGADORAS	353
6.1.	PROGRAMAS AMBIENTAIS	365
6.1.1.	PROGRAMA DE GESTÃO AMBIENTAL DO EMPREENDIMENTO	367
6.1.2.	Plano Ambiental de Construção - PAC	368
6.1.2.1.	Subprograma de gerenciamento de resíduos sólidos	370
6.1.2.2.	Subprograma de gerenciamento e controle de efluentes	371
6.1.2.3.	Subrograma de gerenciamento de ruídos	372
6.1.2.4.	Subprograma de gerenciamento de emissões atmosféricas	373

9. A	NEXOS	401
<u>8.</u> RI	FERÊNCIAS BIBLIOGRÁFICAS	390
<u>7.</u> <u>CC</u>	ONCLUSÕES	<u> 386</u>
6.1.3.3.	Programa de gerenciamento de risco	384
6.1.3.2.	Programa de acompanhamento e monitoramento da fauna aquática	384
6.1.3.1.	Programa de acompanhamento e monitoramento antrópico	382
6.1.3.	PROGRAMAS AMBIENTAIS EM EXECUÇÃO	381
6.1.2.9.	Subprograma de desmobilização da obra	380
obra		379
6.1.2.8.	Subprograma de comunicação e educação ambiental aos colaboradore	s da
6.1.2.7.	Subprograma de saúde e segurança dos trabalhadores	377
6.1.2.6.	Subprograma de contratação e capacitação dos trabalhadores	376
6.1.2.5.	Subprograma de monitoramento e controle de processos erosivos	375

LISTA DE FIGURAS

FIGURA 1 - LOCALIZAÇÃO DAS UNIDADES INDUSTRIAIS DA KLABIN.	18
FIGURA 2 - PROCESSOS PRODUTIVOS DA KLABIN.	19
FIGURA 3 - LOCALIZAÇÃO DO EMPREENDIMENTO.	28
FIGURA 4 - FLUXOGRAMA DOS PROCESSOS EXISTENTES E A SEREM INSTALADOS NO EMPREENDIM	ENTO.32
FIGURA 5 - LOCALIZAÇÃO DAS ESTRUTURAS DA AMPLIAÇÃO FASE 1.	34
FIGURA 6 - PÁTIOS DE ARMAZENAMENTO DE TORAS.	35
FIGURA 7 - DESCARREGAMENTO DE TORAS NAS MESAS RECEPTORAS.	36
FIGURA 8 - CALDEIRA DE BIOMASSA IMPLANTADA.	38
FIGURA 9 – FLUXOGRAMA DO PROCESSO DE PREPARO DE MADEIRA E CALDEIRA DE BIOMASSA.	38
FIGURA 10 - LINHA DE FIBRAS MARROM.	41
FIGURA 11 - DETALHE DO PROCESSO BCTMP - LINHA PRINCIPAL DE REFINAÇÃO	DE A LTA
CONSISTÊNCIA.	46
FIGURA 12 - ÁREA ONDE SERÁ IMPLANTADA A MÁQUINA DE KRAFTLINER.	46
FIGURA 13 - DETALHE DO PROCESSO DE FABRICAÇÃO DE PAPEL CARTÃO.	55
FIGURA 14 - ÁREA ONDE SERÁ IMPLANTADO O NOVO SISTEMA DE EVAPORAÇÃO.	56
FIGURA 15 - CALDEIRA DE RECUPERAÇÃO EXISTENTE.	58
FIGURA 16 - SISTEMA DE EVAPORAÇÃO E CALDEIRA DE RECUPERAÇÃO.	59
FIGURA 17 - SISTEMA DE CAUSTIFICAÇÃO ATUAL.	60
FIGURA 18 - FORNO DE CAL INSTALADO.	61
FIGURA 19 - SISTEMA DE CAUSTIFICAÇÃO E FORNO DE CAL.	62
FIGURA 20 - ESTAÇÃO DE TRATAMENTO DE ÁGUA ATUAL.	63
FIGURA 21 - LOCALIZAÇÃO DA NOVA ETE.	66
FIGURA 22 - ESTAÇÃO DE TRATAMENTO DE EFLUENTES ATUAL.	67
FIGURA 23 - ESTAÇÃO DE TRATAMENTO DE EFLUENTES.	68
FIGURA 24 - LIMITES DA ÁREA DIRETAMENTE AFETADA (ADA) PELO EMPREENDIMENTO.	73
FIGURA 25 – DELIMITAÇÃO DA ÁREA DE INFLUÊNCIA DIRETA DOS MEIOS FÍSICO E BIÓTICO.	75
FIGURA 26 - DELIMITAÇÃO DA ÁREA DE INFLUÊNCIA DIRETA DO MEIO SOCIOECONÔMICO.	77
FIGURA 27 – DELIMITAÇÃO DA ÁREA DE INFLUÊNCIA INDIRETA DOS MEIOS FÍSICO E BIÓTICO.	79
FIGURA 28 - DELIMITAÇÃO DA ÁREA DE INFLUÊNCIA INDIRETA DO MEIO SOCIOECONÔMICO.	81
FIGURA 29 - DELIMITAÇÃO DA ÁREA DE INFLUÊNCIA ESTRATÉGICA DO MEIO SOCIOECONÔMICO.	82
FIGURA 30 - CLASSIFICAÇÃO CLIMÁTICA DE KÖPPEN PARA A ÁREA DE INFLUÊNCIA DIRETA.	107
FIGURA 31 - LOCALIZAÇÃO DAS ESTAÇÕES METEOROLÓGICAS DE SUPERFÍCIE ÚTEIS AO DIAGNÓ	STICO DE
CLIMA.	110
Figura 32 - Normais climatológicas da Estação Ivaí do INMET (OMM	83811)
CORRESPONDENTES À VARIÁVEL TEMPERATURA.	113

FIGURA 33 - MÉDIAS HISTÓRICAS DA ESTAÇÃO TELÊMACO BORBA DO IAPAR (024500)11)
CORRESPONDENTES À VARIÁVEL TEMPERATURA.	113
FIGURA 34 - NORMAIS CLIMATOLÓGICAS DA ESTAÇÃO IVAÍ DO INMET (OMM 838	311)
CORRESPONDENTES À VARIÁVEL PRECIPITAÇÃO.	114
FIGURA 35 - MÉDIAS HISTÓRICAS DA ESTAÇÃO TELÊMACO BORBA DO IAPAR (024500)11)
CORRESPONDENTES À VARIÁVEL PRECIPITAÇÃO.	114
FIGURA 36 - NORMAIS CLIMATOLÓGICAS DA ESTAÇÃO IVAÍ (OMM 83811) CORRESPONDENTE	≣S A
PERÍODOS DE DIAS CONSECUTIVOS SEM PRECIPITAÇÃO.	114
FIGURA 37 - DEMAIS NORMAIS CLIMATOLÓGICAS DA ESTAÇÃO IVAÍ (OMM 83811).	115
FIGURA 38 - DEMAIS MÉDIAS HISTÓRICAS DA ESTAÇÃO TELÊMACO BORBA (02450011).	115
FIGURA 39 - LOCALIZAÇÃO DOS PONTOS DE AMOSTRAGEM DO AR.	122
FIGURA 40 - ESTAÇÃO METEOROLÓGICA DA LENTZ INSTALADA NOS QUATRO PONTOS	DE
MONITORAMENTO.	124
FIGURA 41 - LOCALIZAÇÃO DO EMPREENDIMENTO EM RELAÇÃO À BACIA HIDROGRÁFICA.	135
FIGURA 42 - REDE DE DRENAGEM NA AID DO EMPREENDIMENTO.	138
FIGURA 43 - DEMANDAS HÍDRICAS NA BACIA DO RIO TIBAGI E NA AID E SEU ENTORNO.	139
FIGURA 44 - RESULTADOS DE MONITORAMENTO DA ESTAÇÃO BARRA RIBEIRÃO DAS ANTAS.	143
FIGURA 45 - RESULTADOS DE MONITORAMENTO DE QUALIDADE DA ÁGUA - UNIDADE PUMA.	145
FIGURA 46 - RESULTADOS DE MONITORAMENTO DE QUALIDADE DA ÁGUA - UNIDADE P	PUMA
(CONTINUAÇÃO).	146
FIGURA 47 – PONTOS DE MONITORAMENTO DE QUALIDADE DA ÁGUA.	148
FIGURA 48 - MAPA GEOLÓGICO REGIONAL SIMPLIFICADO PARA A AID E ADA DO EMPREENDIMENTO.	150
FIGURA 49 - REPRESENTAÇÃO ESQUEMÁTICA DAS UNIDADES GEOLÓGICAS IDENTIFICADAS NAS ÁREA	S DE
INFLUÊNCIA CONFORME A IDADE.	152
FIGURA 50 - REGISTRO FOTOGRÁFICO DE AFLORAMENTO ROCHOSO DA FORMAÇÃO RIO BONITO.	153
FIGURA 51 - ASPECTOS GERAIS DO RELEVO NA REGIÃO EM ESTUDO.	157
FIGURA 52 - MAPA PEDOLÓGICO SIMPLIFICADO PARA AID DO EMPREENDIMENTO.	158
FIGURA 53 - PORÇÕES COM SOLO EXPOSTO IDENTIFICADAS NA AID.	161
Figura 54 - Classificação de uso do solo na AID.	164
FIGURA 56 - ASPECTO DA VEGETAÇÃO PRESENTE NA ADA.	165
FIGURA 57 - USO DO SOLO NA AID.	166
FIGURA 59 - UNIDADES DE CONSERVAÇÃO DA NATUREZA EM RELAÇÃO ÀS ÁREAS DE INFLUÊNCIA.	168
FIGURA 60 - ÁREAS PRIORITÁRIAS PARA CONSERVAÇÃO.	170
FIGURA 61 - ÁREAS ESTRATÉGICAS PARA CONSERVAÇÃO E RESTAURAÇÃO DA BIODIVERSIDADE.	172
FIGURA 62 - ÁREAS DE PRESERVAÇÃO PERMANENTE.	174
FIGURA 63 - ÁREAS DE RESERVA LEGAL REGISTRADAS NO CAR.	176
FIGURA 64 – USO DO SOLO DA AII.	213

Figura 65 – Área urbana de Imbaú.	214
Figura 66 – Área urbana de Ortigueira.	215
Figura 67 – Área urbana de Telêmaco Borba.	215
Figura 68 – Áreas de silvicultura em Imbaú, Ortigueira e em Telêmaco Borba.	216
FIGURA 69 - AGRICULTURA INTENSIVA E PASTAGEM EM ORTIGUEIRA-PR.	217
FIGURA 71 - EMPRESA DE USINA DE ASFALTO (A), EMPRESA DE RESÍDUOS (B) E UMA CHURRASC	CARIA
(C).	220
FIGURA 72 - PROPRIEDADES AGROPECUÁRIAS NO ENTORNO (A), COMO TAMBÉM UMA CAPELA E S	ALÃO
COMUNITÁRIO (B).	221
FIGURA 73 - RESIDÊNCIAS NA PORÇÃO SUDESTE DO EMPREENDIMENTO.	222
FIGURA 74 - ESTRUTURAS DE CAPTAÇÃO DE ÁGUA (A) E DO EMISSÁRIO (B).	222
FIGURA 75 – COMUNIDADE DE LAJEADO BONITO.	223
FIGURA 76 - ESTRUTURAS E EDIFICAÇÕES NO ENTORNO DO EMPREENDIMENTO.	224
FIGURA 77 - LOCALIZAÇÃO DE COMUNIDADES TRADICIONAIS E ASSENTAMENTOS RURAIS.	228
FIGURA 78 - SISTEMA VIÁRIO REGIONAL E ACESSOS À UNIDADE PUMA.	231
FIGURA 79 – ACESSO À UNIDADE PUMA A PARTIR DE ORTIGUEIRA.	232
FIGURA 80 – ACESSO À UNIDADE PUMA A PARTIR DE CURIÚVA.	232
FIGURA 81 - ACESSO À UNIDADE PUMA A PARTIR DE TELÊMACO BORBA.	233
FIGURA 82 - RAMAL FERROVIÁRIO DA UNIDADE PUMA KLABIN, COM DESTAQUE PARA A PASSAGE	M EM
DESNÍVEL (VIADUTO COM A FERROVIA NA PARTE SUPERIOR).	233
FIGURA 83 - SUBESTAÇÃO DE ENERGIA ELÉTRICA DA COPEL EM TELÊMACO BORB	3A E
BARRAMENTO/VERTEDOURO DA UHE MAUÁ NA DIVISA ENTRE TELÊMACO BORBA E ORTIGUEIRA.	234
FIGURA 84 - ESTRUTURAS DA SANEPAR NOS MUNICÍPIOS DA AII. (A) ORTIGUEIRA; (B) IMBAÚ;	; (C)
TELÊMACO BORBA.	236
FIGURA 85 - CAMINHÕES DE COLETA DE RESÍDUOS SÓLIDOS URBANOS EM IMBAÚ E TELÊMACO BO)RBA.
	238
FIGURA 86 - INFRAESTRUTURAS DE ENERGIA, ABASTECIMENTO DE ÁGUA, TRATAMENTO E DESTINAÇÃ	(O DE
EFLUENTES, SEPARAÇÃO, REAPROVEITAMENTO, RECICLAGEM, COMPOSTAGEM E DESTINAÇÃO FINA	L DE
resíduos sólidos da Unidade Puma.	239
FIGURA 87 - EVOLUÇÃO DO NÚMERO DE MATRÍCULAS POR ENSINO NOS MUNICÍPIOS DA AII ENTRE 2	2010
E 2017.	242
FIGURA 88 - ESTABELECIMENTOS DE EDUCAÇÃO BÁSICA EM ORTIGUEIRA (AID).	243
FIGURA 89 - ESTABELECIMENTOS DE SAÚDE EM ORTIGUEIRA (AID).	245
FIGURA 90 - ESTABELECIMENTOS DE SAÚDE EM TELÊMACO BORBA (AII).	245
FIGURA 91 - NÚMERO DE INTERNAÇÕES DO SUS POR LOCAL DE ATENDIMENTO NA AII ENTRE 20	08 E
2017.	246

FIGURA 92 - NÚMERO DE INTERNAÇÕES DO SUS POR LOCAL DE RESIDÊNCIA NA AII ENTRE	2008 E
2017.	247
FIGURA 93 - NÚMERO DE ESTABELECIMENTOS DE HOSPEDAGEM NA AII E POR MUNICÍPIO ENTRE	± 2006 E
2016.	249
FIGURA 94 – EVOLUÇÃO DO PIB (EM MIL R\$) DOS MUNICÍPIOS DA AII – 2006 A 2015.	250
FIGURA 95 - COMPOSIÇÃO SETORIAL DO PIB DOS MUNICÍPIOS DA AII - 2006 A 2015.	251
FIGURA 96 - IPDM DOS MUNICÍPIOS DA AII ENTRE 2010 E 2015.	258
FIGURA 97 - IPDM - VARIÁVEL EMPREGO, RENDA E PRODUÇÃO AGROPECUÁRIA DOS MUNICÍPIO	S DA AII
ENTRE 2010 E 2015.	258
FIGURA 98 - IPDM - VARIÁVEL EDUCAÇÃO DOS MUNICÍPIOS DA AII ENTRE 2010 E 2015.	259
FIGURA 99 - IPDM - VARIÁVEL SAÚDE DOS MUNICÍPIOS DA AII ENTRE 2010 E 2015.	259
FIGURA 100 – ETE PROVISÓRIA.	260
FIGURA 101 - ÁREA DE ARMAZENAMENTO DE RESÍDUOS.	270
FIGURA 102 - LOCAL ONDE É REALIZADA A COMPOSTAGEM.	271
FIGURA 103 - LOCALIZAÇÃO DOS PONTOS DE MEDIÇÃO DE RUÍDOS NO ENTORNO DO EMPREENI	DIMENTO.
	274
FIGURA 102 - FLUXOGRAMA DA METODOLOGIA DE AVALIAÇÃO DE IMPACTOS AMBIENTAIS.	284
FIGURA 103 - VARIAÇÃO DA PEGADA DE CARBONO (CARBON FOOTPRINT) NA PRODUÇÃO	DE PAPEL
CARTÃO (CARTÃO LPB)NA UNIDADE MONTE ALEGRE.	302
FIGURA 104 - REGISTRO DE ALOJAMENTOS JÁ EXISTENTES (UTILIZADOS NA IMPLANTAÇÃO DO	PROJETO
PUMA) EM ORTIGUEIRA E TELÊMACO BORBA.	330
FIGURA 105 – ALOJAMENTO CAPITAL DO PAPEL EM TELÊMACO BORBA.	334
FIGURA 106 - GERAÇÃO DE ICMS E DE RECEITAS EM ORTIGUEIRA ENTRE 2010 E 2017.	339

LISTA DE TABELAS

TABELA 1 - PROCESSOS A SEREM AMPLIADOS NO EMPREENDIMENTO DURANTE A FASE 1.	30
TABELA 2 - NOVOS PROCESSOS A SEREM INSTALADOS NO EMPREENDIMENTO DURANTE A FASE 1.	30
TABELA 3 - NOVOS PROCESSOS A SEREM INSTALADOS NO EMPREENDIMENTO DURANTE A FASE 2.	31
TABELA 4 - FLUXOGRAMA DO SISTEMA DE TRATAMENTO DE ÁGUA EXISTENTE NA PLANTA INDUSTRIA	AL. 64
Tabela 5 - Características do efluente bruto e depois de tratado - primeira f	ASE DE
AMPLIAÇÃO.	66
Tabela 6 - Características do efluente bruto e depois de tratado - segunda f	ASE DE
AMPLIAÇÃO.	67
Tabela 6 - Matéria prima e insumos que serão utilizados nos processos a serem ampi	_IADOS.
	69
Tabela 7 - Descrição das classes climáticas de Köppen na AID do empreendimento.	106
Tabela 8 - Estações meteorológicas cujos dados de monitoramento são ú	TEIS À
CARACTERIZAÇÃO DO CLIMA DA REGIÃO DO EMPREENDIMENTO.	109
Tabela 9 - Resumo das normais climatológicas (1961-1990) das principais variáv	/EIS DA
ESTAÇÃO IVAÍ (OMM 83811).	111
Tabela 10 - Resumo das médias históricas (1977-2015) das principais variáveis da E	STAÇÃO
TELÊMACO BORBA (02450011).	112
TABELA 11 - LOCALIZAÇÃO DOS PONTOS DE AMOSTRAGEM DO AR.	121
Tabela 12 - Resumo dos parâmetros considerados na amostragem do ar.	123
Tabela 13 - Padrões de qualidade do ar (Resolução CONAMA № 003/90 e Resolução	SEMA
Nº 16/2014).	125
TABELA 14 - CLASSIFICAÇÃO DA QUALIDADE DO AR POR MEIO DO IQA.	127
TABELA 15 - RESUMO DAS CONCENTRAÇÕES OBTIDAS NOS PONTOS P1 E P2 NA CAMPAN	NHA DE
MONITORAMENTO DA QUALIDADE DO AR REALIZADA ENTRE ABRIL E MAIO DE 2018 NO ENTOR	RNO DA
Unidade Puma.	129
TABELA 16 - RESUMO DAS CONCENTRAÇÕES OBTIDAS NOS PONTOS P3 E P4 NA CAMPAN	NHA DE
MONITORAMENTO DA QUALIDADE DO AR REALIZADA ENTRE ABRIL E MAIO DE 2018 NO ENTOF	RNO DA
Unidade Puma.	130
TABELA 17 - CORPOS HÍDRICOS IDENTIFICADOS NA AID DO EMPREENDIMENTO.	137
TABELA 18 - DEMANDAS HÍDRICAS NA BACIA DO RIO TIBAGI E NA AID E SEU ENTORNO.	139
Tabela 19 - Levantamento de outorgas de direito emitidas pelo ÁGUASPARANÁ até n	1AIO DE
2016.	141
Tabela 20 - Classificação de uso do solo na AID.	164
Tabela 22 – Espécies de répteis come ocorrência para a região do empreendimento.	179
TABELA 23 – ESPÉCIES DE ANFÍBIOS COM OCORRÊNCIA PARA A REGIÃO DO EMPREENDIMENTO.	182

TABELA 24 - ESPÉCIES DE AVES COM OCORRÊNCIA PARA A REGIÃO DO EMPREENDIMENTO.	186
TABELA 25 - ESPÉCIES DE MAMÍFEROS COM OCORRÊNCIA PARA A REGIÃO DO EMPREENDIMENTO.	205
TABELA 26 - ESPÉCIES DE PEIXES COM OCORRÊNCIA PARA A REGIÃO DO EMPREENDIMENTO.	210
TABELA 27 – USO E OCUPAÇÃO DO SOLO DE ORTIGUEIRA-PR (AID).	219
Tabela 28 - Taxa municipal de domicílios particulares permanentes segundo a existênc	IA DE
ENERGIA ELÉTRICA E FONTE DE OBTENÇÃO, EM 2010.	234
Tabela 29 - Taxa municipal de domicílios particulares permanentes segundo a form	1A DE
OBTENÇÃO DE ÁGUA, EM 2010.	235
Tabela 30 - Taxa municipal de domicílios particulares permanentes segundo a form	1A DE
DESTINAÇÃO DO ESGOTO SANITÁRIO, EM 2010.	237
Tabela 31 - Taxa municipal de domicílios particulares permanentes segundo a form	1A DE
DESTINAÇÃO DOS RESÍDUOS SÓLIDOS, EM 2010.	237
Tabela 32 - Número de estabelecimentos de educação básica nos municípios da AII por	NÍVEL
ADMINISTRATIVO ENTRE 2010 E 2017.	240
Tabela 33 - Estabelecimento de saúde na AII.	244
Tabela 34 – Existência de cobertura das operadoras de telefonia móvel por município.	248
TABELA 35 - ESTABELECIMENTOS ECONÔMICOS NOS MUNICÍPIOS DA AII, POR SETOR, ENTRE 20)10 E
2016.	252
Tabela 36 - Indivíduos em idade ativa por nível de instrução nos municípios da AII, 2	2010.
	254
TABELA 37 - VÍNCULOS FORMAIS DE TRABALHO NA AII ENTRE 2010 E 2015.	255
Tabela 38 – IDH-M dos municípios da AII.	257
Tabela 39 - Estimativa de geração de efluentes após a ampliação do empreendimento.	263
Tabela 40 – Parâmetros avaliados na saída da ETE.	264
Tabela 41 - Resumo das emissões da caldeira de recuperação atual e prevista para a fáe	BRICA.
	265
TABELA 42 - RESUMO DAS EMISSÕES DA CALDEIRA DE BIOMASSA ATUAL E PREVISTA PARA A FÁBRICA	. 266
TABELA 43 - RESUMO DAS EMISSÕES DOS FORNOS DE CAL ATUAIS E DO PREVISTO PARA A FÁBRICA.	266
Tabela 44 – Estimativa de geração de resíduos durante a implantação.	269
Tabela 45 – Estimativa de geração de resíduos durante a operação.	270
TABELA 46 - NCA POR TIPOLOGIA DE ÁREA CONSTANTE NA NBR 10.151:2000, EM DB(A).	272
Tabela 47 - Localização e classificação da tipologia de área dos pontos de mediçã	ÁO DE
RUÍDOS ADOTADOS.	273
Tabela 48 – Resumo dos resultados de L_{Aeq} obtidos no entorno da Unidade Puma.	276
TABELA 49 - MODELO DE QUADRO DE AIA PARA IMPACTOS REAIS.	280
TABELA 50 - MODELO DE QUADRO DE AIA PARA IMPACTOS POTENCIAIS.	281
TABELA 51 - CÓDIGOS PARA PREENCHIMENTO DO QUADRO DE AIA.	281

Tabela 52 - Critério de avaliação de impactos ambientais: frequência.	285
TABELA 53 - CRITÉRIO DE AVALIAÇÃO DE IMPACTOS AMBIENTAIS: IMPORTÂNCIA OU SEVERIDADE.	285
Tabela 54 - Critério de avaliação de impactos ambientais: continuidade ou reversibilid	DADE.
	286
Tabela 55 - Critério de avaliação de impactos ambientais: abrangência.	286
Tabela 56 - Critério de avaliação de impactos ambientais: duração.	286
Tabela 57 - Critério para a classificação final do impacto real através do IS.	287
Tabela 58 - Critério de avaliação de impactos ambientais: probabilidade.	287
Tabela 59 - Critério de avaliação de impactos ambientais: severidade.	288
TABELA 60 - CRITÉRIO PARA A CLASSIFICAÇÃO FINAL DO IMPACTO POTENCIAL ATRAVÉS DO IS.	288
TABELA 61 - RESUMO DAS CONCENTRAÇÕES MÁXIMAS (ATUAIS E FUTURAS) DE CO PASSÍVEI	S DE
COMPARAÇÃO COM PADRÕES DE QUALIDADE DO AR.	292
Tabela 62 - Resumo das concentrações máximas (atuais e futuras) de NO_x passíves	IS DE
COMPARAÇÃO COM PADRÕES DE QUALIDADE DO AR.	293
TABELA 63 - RESUMO DAS CONCENTRAÇÕES MÁXIMAS (ATUAIS E FUTURAS) DE PTS PASSÍVEI	IS DE
COMPARAÇÃO COM PADRÕES DE QUALIDADE DO AR.	294
Tabela 64 - Resumo das concentrações máximas (atuais e futuras) de SO_X passívei	IS DE
COMPARAÇÃO COM PADRÕES DE QUALIDADE DO AR.	295
TABELA 65 - RESUMO DAS CONCENTRAÇÕES MÁXIMAS (ATUAIS E FUTURAS) DE ERT PASSÍVEI	IS DE
COMPARAÇÃO COM LPO.	296
Tabela 66 - Resumo da variação das emissões de GEE, em mil toneladas de ${\rm CO_2}$ eq	., DE
ACORDO COM O RELATÓRIO DE SUSTENTABILIDADE DE 2017.	301
TABELA 67 - MATRIZ DE IMPACTOS AMBIENTAIS REAIS PARA A FASE DE PLANEJAMENTO.	346
Tabela 68 - Matriz de impactos ambientais potenciais para a fase de implantação.	347
TABELA 69 - MATRIZ DE IMPACTOS AMBIENTAIS REAIS PARA A FASE DE IMPLANTAÇÃO.	348
TABELA 70 - MATRIZ DE IMPACTOS AMBIENTAIS POTENCIAIS PARA A FASE DE OPERAÇÃO.	350
TABELA 71 - MATRIZ DE IMPACTOS AMBIENTAIS REAIS PARA A FASE DE OPERAÇÃO.	351
TABELA 72 - ASPECTOS, IMPACTOS E MEDIDAS POR FASE DO EMPREENDIMENTO.	354

1. OBJETO DE LICENCIAMENTO

Apresenta-se neste documento o Relatório Ambiental Preliminar (RAP) para a ampliação da indústria de papel e celulose da Klabin Celulose S.A., empresa de porte excepcional localizada no município de Ortigueira/PR, nas coordenadas UTM 525.989,80 m E e 7.318.788,20 m S, fuso 22 J (SIRGAS 2000).

Com o início da operação em março de 2016, o licenciamento da Unidade Puma previu a produção de 1.800.000 t/ano de celulose e 500.000 t/ano de papel. A Licença de Operação (LO) nº 108821 foi emitida em 03 de março de 2016, com validade de 2 anos. O pedido de renovação da mesma foi solicitado em 18 de outubro de 2017, dentro do prazo de 120 dias antes do vencimento da LO. Atualmente apenas a celulose está em produção, em um montante de 1.500.000 t/ano, das quais 1.100.000 t/ano de fibra curta e 400.000 t/ano de fibra longa e fluff.

A ampliação objeto deste estudo consiste na instalação de uma máquina de *kraftliner* de fibra curta, com capacidade de produção de 450.000 t/ano. Para isso, a ampliação compreende também a instalação de duas novas linhas de preparo de madeira e uma nova linha de fibras marrom, bem como dos equipamentos necessários para o fluxo de recuperação, como sistemas de evaporação, caustificação e forno de cal, além das caldeiras de biomassa e de recuperação e do turbogerador para geração de energia. Consequentemente, será necessária a ampliação da estação de tratamento de água e de efluentes do empreendimento.

Posteriormente, o empreendimento prevê uma segunda etapa da ampliação, que consiste na instalação de máquina de cartão e sistema BCTMP (*Bleached Chemi-Thermomechanical Pulp*), que transforma cavacos de madeira em polpa de celulose por processo

predominantemente mecânico. Nesta etapa é previsto o aumento de 16% da produção de fibra longa e 13% da produção de fibra curta, além da instalação de uma máquina de papel cartão para produção de 440.000 t/ano.

Toda a ampliação não deve ultrapassar o volume de captação de água e de descarte de efluentes já outorgados (8.400 m³/h e 7.400 m³/h, respectivamente), mas a necessidade de novas autorizações será avaliada de acordo com o comportamento da operação da primeira fase, com previsão de instalação no horizonte de 2019/2020. A segunda etapa está prevista para instalação nos anos seguintes 2021/2022.

A elaboração deste estudo atende ao termo de referência disponibilizado pelo Instituto Ambiental do Paraná (IAP) associado ao processo de licenciamento prévio da ampliação do empreendimento.

1.1. Empreendedor e empreendimento

Nome fantasia: Klabin

Razão social: Klabin Celulose S.A. **CNPJ:** 89.637.490/0165-72

Inscrição estadual: 90642154-23

Número do CTF IBAMA: 6354343

Atividade: Indústria de papel e celulose

Endereço: Fazenda Apucarana Grande, s/n

Telefone: (42) 3271-5031

Representante legal: Pablo Cadaval Santos

CPF: 988.018.800-49

Cargo: Gerente de Fibras e Qualidade

Endereço: Fazenda Apucarana Grande, s/nº, Km 2, Distrito

de Natingui, Ortigueira, PR.

Telefone: (42) 31285148

Responsável técnico e contato: Elder Dettenborn

Formação: Engenheiro ambiental **Registro profissional:** CREA-PR 166415/D **Telefone:** (42) 3271-5031

A Klabin é a maior produtora e exportadora de papéis para embalagens do Brasil, única no país a oferecer ao mercado solução em celulose de fibra longa, curta e *fluff*, e líder nos mercados nacionais de embalagem de papelão ondulado e sacos industriais. Foi fundada em 1899, tem sede administrativa na cidade de São Paulo e possui 18 unidades industriais, sendo 17 no Brasil e uma na Argentina. Possui escritórios comerciais em oito estados brasileiros, uma filial nos Estados Unidos, um escritório na Áustria, além de representantes e agentes comerciais em vários países (KLABIN, 2018a).

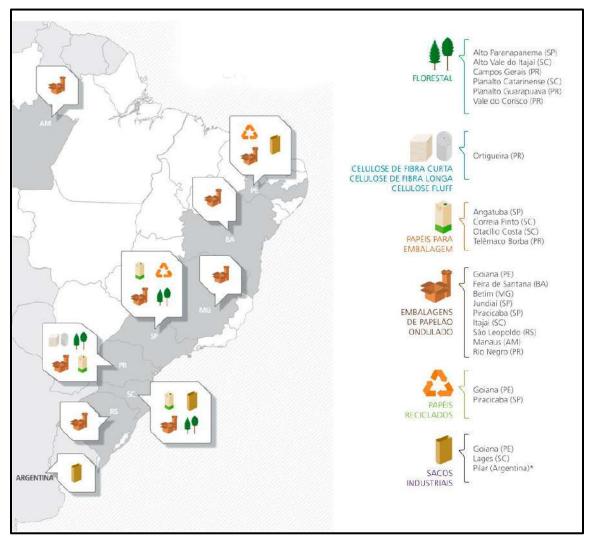


Figura 1 - Localização das unidades industriais da Klabin.

Fonte: KLABIN, 2018a.

As florestas da empresa são cultivadas em três estados – Paraná, Santa Catarina e São Paulo e os produtos da Klabin são voltados, principalmente, às indústrias dos segmentos de alimentos (leite, carnes frigorificadas, frutas, entre outros), saúde e higiene pessoal, higiene e limpeza, construção civil e eletroeletrônicos. Além de atender ao mercado brasileiro, onde é líder nos segmentos em que atua, a empresa exporta para 86 países em todo o mundo (KLABIN, 2018a).

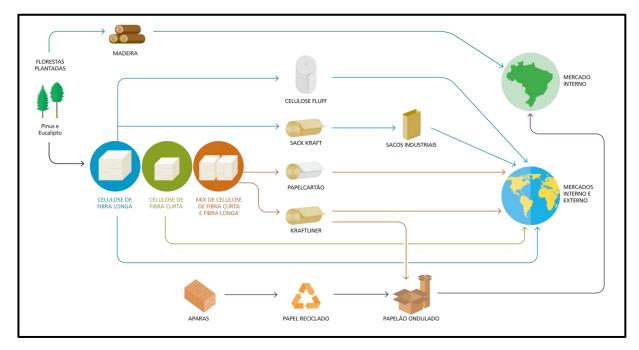


Figura 2 - Processos produtivos da Klabin.

Fonte: KLABIN, 2018a.

Com o início da operação da Unidade Puma, localizada no município de Ortigueira, no Paraná, há dois anos, a Klabin dobrou sua produção e tornou-se a única empresa do Brasil a oferecer, simultaneamente, celulose de fibra longa, curta e *fluff*. O empreendimento de cerca de R\$ 8,5 bilhões, incluindo infraestrutura, impostos e correções contratuais, representa o maior investimento privado da história no Paraná (KLABIN, 2018a).

1.2. Empresa responsável pelos estudos ambientais

Razão social: Assessoria Técnica Ambiental Ltda.

Nome fantasia: Cia Ambiental

CNPJ: 05.688.216/0001-05

Inscrição estadual: Isenta

Inscrição municipal: 07.01.458.871-0

Registro no CREA-PR: 41043 Número do CTF IBAMA: 2997256

Rua Marechal José Bernardino Bormann, nº 821, Endereço:

Curitiba/PR CEP: 80.730-350.

Telefone/fax: (41) 3336-0888

E-mail: ciaambiental@ciaambiental.com.br

Representante legal, responsável

técnico e coordenador geral:

Pedro Luiz Fuentes Dias

CPF: 514.620.289-34

Registro no CREA-PR: 18.299/D Número do CTF IBAMA: 100593

Coordenador geral e contato: Clarissa Oliveira Dias

e-mail: clarissa.dias@ciaambiental.com.br

Registro no CREA-PR: 106.422/D Número do CTF IBAMA: 4892607

1.2.1. Equipe técnica

Coordenação geral

Pedro Luiz Fuentes Dias

Engenheiro florestal, especialista em análise ambiental

mestre em agronomia: ciência do solo

CREA-PR: 18.299/D CTF IBAMA: 100593 ART nº 20183866294

Corresponsabilidade na coordenação

Clarissa Oliveira Dias

Engenheira ambiental

Engenheira ambiental

CREA-PR 106.422/D

CTF IBAMA 4892607

ART nº 20183901928

Supervisão

Fernando Alberto Prochmann

Engenheiro bioquímico e de segurança especialista em gestão e engenharia ambiental

CREA-PR 86.218/D

CTF IBAMA 1728257

ART nº 20183905508

Meio físico

Clarissa Oliveira Dias

Engenheira ambiental

CREA-PR 106.422/D

CTF IBAMA 4892607

ART nº 20183901928

Ana Lucia Twardowsky Ramalho do Vale

Engenheira química e de segurança do trabalho, especialista em gestão dos recursos naturais

CREA-PR: 90.865/D CTF IBAMA 1889954 ART no 20183894697

Fábio Manassés

Geólogo, mestre em geologia ambiental/ hidrogeologia

CREA-PR 79.674/D

CTF IBAMA 5011173

ART nº 20183923670

Meio biótico

Denilson Roberto Jungles de Carvalho Biólogo especialista em gestão ambiental mestre em ecologia e conservação

CRBio 25892/07-D

CTF IBAMA 572124

ART nº 07-1861/18

Meio socioeconômico

Orestes Jarentchuk Junior

Geógrafo, mestre e doutorando em geografia

CREA-PR: 110.236/D CTF IBAMA: 5083633 ART nº 20183910250

Equipe de apoio

Diandra Christine Vicente de Lima, engenheira ambiental e de segurança do trabalho (caracterização do empreendimento e estudos do meio físico)

Flávio Eduardo Amaral Herzer, engenheiro ambiental (estudos do meio físico)

Lucas Mansur Schimaleski, bacharel em geografia (apoio na elaboração dos itens do meio socioeconômico)

Jackson Goldbach, bacharel em geografia (mapeamento temático ambiental)

Thiago Moriggi, engenheiro ambiental e de segurança do trabalho (estudos de meio físico)

Tiago Machado de Souza, biólogo (estudos do meio biótico)

2. JUSTIFICATIVA DO EMPREENDIMENTO

O Brasil está entre os principais produtores de papel e celulose do mundo, com exportações que contribuem significativamente para a balança comercial. De acordo com as estatísticas da Indústria Brasileira de Árvores (IBÁ), o ano de 2017 teve um incremento de 0,5% nas exportações de papel se comparadas ao ano de 2016. Contudo, as importações de papel tiveram aumento de 10,2% de um ano para outro (de 688 mil toneladas para 758 mil toneladas). Das 70 toneladas importadas a mais, 13 são papéis para embalagens e 10 são de papelcartão (IBÁ, 2018).

A Klabin é a maior produtora e exportadora de papéis para embalagens do Brasil, única do país a oferecer ao mercado solução em celuloses de fibra curta, fibra longa e *fluff*, e líder nos mercados nacionais de embalagens de papelão ondulado e sacos industriais. Das 3.220 mil toneladas de produtos vendidos em 2017, 49% foram para o mercado interno (KLABIN, 2018a).

O segundo trimestre de 2017 marcou a finalização do período de *ramp-up* da Unidade Puma, após o início de operações da fábrica em março do ano anterior. A Klabin utilizou-se de sua flexibilidade e do bom posicionamento nos mercados de conversão para direcionar uma maior porção da produção de *kraftliner* para suas fábricas de papelão ondulado e sacos industriais, principalmente na primeira metade do ano. Nesse cenário, o volume de vendas de *kraftliner* da Klabin em 2017 foi de 351 mil toneladas, 12% abaixo do ano anterior. É válido destacar, porém, que, com a aceleração da demanda no mercado global, que gerou altas nos preços lista ao longo do segundo semestre, houve evolução da receita de vendas de *kraftliner* na comparação com a receita do segundo semestre de 2016 (KLABIN, 2018a).

Também cabe mencionar que, em 2017, o bom desempenho das economias da China e dos Estados Unidos, aliado a restrições de uso de

aparas mistas por questões ambientais em mercados asiáticos, impulsionou a demanda de kraftliner e de celulose (KLABIN, 2018a).

2.1. Análise de alternativas tecnológicas e locacionais

As opções locacionais foram avaliadas quando da implantação do Projeto Puma, através de estudo de microlocalização da unidade industrial apresentado no Estudo de Impacto Ambiental (PÖYRY, 2012). Tal estudo seguiu quatro premissas básicas:

- Existência de base florestal e/ou espaço para o desenvolvimento de parque florestal capaz de suprir as necessidades de madeira para a indústria de celulose;
- Existência de características regionais adequadas para permitir o desenvolvimento de um projeto economicamente viável;
- Situação socioeconômica que possa ser melhorada e potencializada,
 a partir do desenvolvimento do projeto;
- Características ambientais favoráveis ao projeto e em conformidade com a legislação ambiental.

O estudo de microlocalização também levou em conta critérios técnicos operacionais, como malha rodoferroviária, rede elétrica, aspectos geológicos, geomorfológicos e pedológicos, direção de ventos, recursos hídricos, e restrições ambientais, para seleção da melhor opção locacional para a Unidade Puma.

As estruturas para a ampliação da produção, escopo do presente estudo, serão implantadas em locais disponíveis na Unidade Puma, não sendo necessárias ações de supressão de vegetação nativa ou grandes movimentações de solo. Além disso, neste local já são realizados diferentes monitoramentos no âmbito da operação, fornecendo informações importantes sobre o meio ambiente da região.

Apesar da máquina de *kraftliner* e a linha de fibras marrom serem as primeiras deste tipo implantadas na Unidade Puma, elas já são operadas em outras unidades da Klabin. Além disso, os demais equipamentos a serem implantados terão os mesmos moldes daqueles já utilizados na unidade (no caso das linhas de preparo de madeira, caldeira de biomassa, sistema de evaporação, caldeira de recuperação, sistema de cogeração de energia elétrica e turbogeradores, sistema de caustificação e forno de cal). Da mesma forma, as novas linhas na ETE (Estação de Tratamento de Efluentes) e na ETA (Estação de Tratamento de Água) serão implantadas no mesmo local daquelas já existentes, onde já são realizados monitoramentos constantes dos parâmetros de qualidade.

Ainda, no que se refere às alternativas tecnológicas, a Klabin adota em seus processos produtivos as melhores tecnologias disponíveis (BAT – Best Available Technologies) e melhores práticas de gerenciamento ambiental (BPEM – Best Practice Environmental Management). Neste sentido, o projeto prevê em sua ampliação a continuidade da utilização das melhores práticas e tecnologias disponíveis para proteção do meio ambiente incluindo uso racional de água, minimização da geração de efluentes líquidos, controle das emissões atmosféricas e redução, reuso e reciclagem de resíduos sólidos.

As unidades industriais da Klabin contam com sistema de gestão ambiental certificado com ISO 14.001 e uma forte política de sustentabilidade que se fundamenta em princípios relacionados a: pesquisa e desenvolvimento, inovação, processos e produtos sustentáveis, redução de impactos ambientais e prevenção da poluição, governança corporativa, desenvolvimento socioambiental e responsabilidade social (KLABIN, 2018b).

3. CARACTERIZAÇÃO DO EMPREENDIMENTO

3.1. Localização

O empreendimento localiza-se no município de Ortigueira, no Estado do Paraná, adjacente à divisa com o Município de Telêmaco Borba, nas coordenadas UTM 525.989,80 m E e 7.318.788,20 m S, fuso 22 J (SIRGAS 2000). Esta região está compreendida na bacia hidrográfica do Rio Tibagi. O principal acesso rodoviário é dado pela rodovia BR-376, que interliga a capital com a região norte do estado, seguindo pela rodovia estadual PR-160 a partir do trevo no Município de Imbaú, ou pela rodovia PR-340 a partir do centro urbano de Ortigueira.

O perímetro do empreendimento é localizado às margens do Rio Tibagi e seus afluentes, contudo, são respeitadas as áreas de proteção ambiental do rio para a implantação da unidade fabril. A localização do empreendimento é apresentada na figura a seguir.

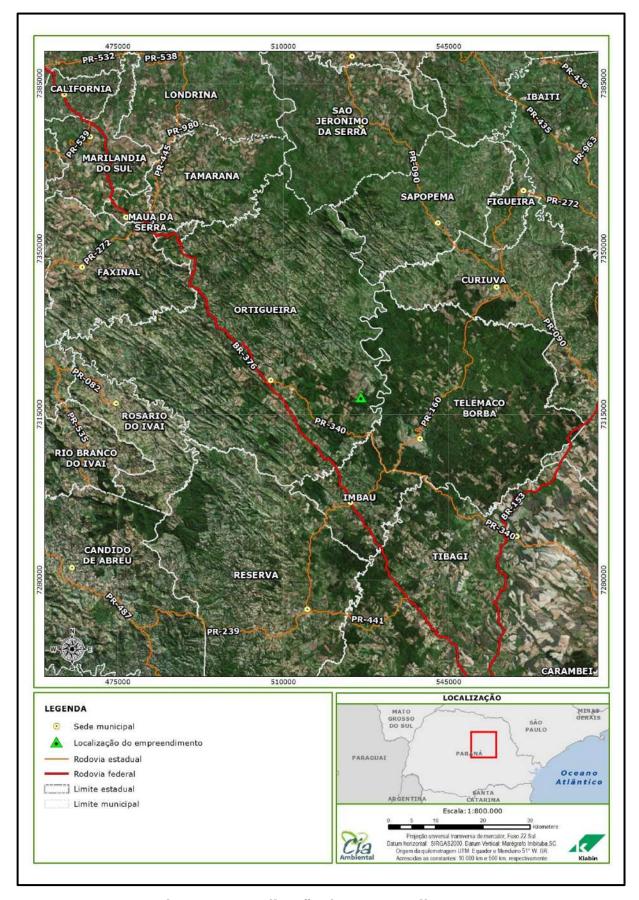


Figura 3 - Localização do empreendimento.

3.2. Descrição do empreendimento

O empreendimento consiste em uma fábrica de celulose e papel, com capacidade atual de fabricação de 1.100.000 t/ano de BHKP e 400.000 BSKP t/ano, totalizando 1.500.000 t/ano de celulose. A fábrica atual possui licença para fabricação de 1.800.000 t/ano de celulose e 500.00 t/ano de papel. Solicita a ampliação para produção de 450.000 toneladas anuais de papel *kraftliner* (primeira fase) e 440.000 toneladas anuais de papel cartão, bem como o aumento de 16% da produção de celulose de fibra longa e 13% da produção de celulose de fibra curta (segunda fase).

Para isso, serão instalados na primeira etapa de ampliação, prevista para 2019/2020:

- 01 máquina de Kraftliner com capacidade de produção de 450.000 toneladas por ano, usando 100% de fibra curta (eucalipto);
- 01 linha de fibras marrom, curta e longa alternadamente (ou seja, com operação em pinus e eucalipto), com capacidade de 2.200 t/d;
- 02 linhas de preparo de madeira, uma nova pilha de cavacos;
- 01 caldeira de recuperação com capacidade de 3.100 tss/d;
- 01 sistema de evaporação com capacidade de 1.000 t/h;
- 01 forno de cal com capacidade de 330 t/d;
- 01 sistema de caustificação com capacidade de 4.100 m³/d;
- 01 caldeira de biomassa com capacidade de 170 t/h;
- 01 turbogerador com capacidade de 90 MWh;
- 01 linha de estação de tratamento de água da caldeira com capacidade de 300 m³/h;
- Novas linhas na estação de tratamento de água e na estação de tratamento de efluente (1.800 m³/h cada);
- Ampliação da central de resíduos.

Na segunda etapa da ampliação (2021/2022) são previstas as instalações dos seguintes equipamentos:

- Máquina de papel cartão com capacidade de 440.000 t/ano;
- Sistema BCTMP com capacidade de 400 t/d;
- Ampliação da ETA e ETE.

Em resumo serão ampliados os processos apresentados na tabela 1 com as seguintes capacidades atuais e da ampliação em sua fase 1.

Tabela 1 - Processos a serem ampliados no empreendimento durante a fase 1.

Processos	Quantidade existente	Capacidade atual	Quantidade a ser instalada	Capacidade ampliação	Capacidade total
Linhas de preparo de madeira	4	23.800 t/dia	2	13.600 t/dia	37.400 t/dia
Caldeira biomassa	1	260 t/dia	1	170 t/dia	430 t/dia
Turbogeradores	2	250 MWh	1	90 MWh	340 t/dia
ETA para caldeiras	1	600 m3/h	1	1.000 m ³ /h	1.600 m ³ /dia
ETA	1	5.900 m ³ /h	1	1.800 m ³ /h	7.700 m ³ /h
ETE	1	5.900 m ³ /h	1	1.800 m ³ /h	7.700 m ³ /h
Evaporação eucalipto e pinus	1	1.800 t/h	1	1.000 t/h	2.800 t/h
Caldeira de recuperação	1	7.500 tss/dia	1	3.100 tss/dia	10.600 tss/dia
Caustificação	1	16.000 m³/dia	1	4.100 m ³ /dia	20.100 m³/dia
Fornos de cal	2	1.300 t/dia	1	330 t/dia	1.630 t/dia

Na tabela a seguir são apresentados os novos processos que serão instalados no empreendimento, que ainda não existem na atual planta industrial.

Tabela 2 – Novos processos a serem instalados no empreendimento durante a fase 1.

Novos processos	Quantidad e	Capacidade ampliação
Nova linha de fibras - fibra longa e fibra curta (marrom)	1	2.278 t/dia
Máquina de papel <i>kraft</i>	1	1.450 t/dia

Tabela 3 – Novos processos a serem instalados no empreendimento durante a fase 2.

Novos processos	Quantidade	Capacidade ampliação
Linhas de fibras - longa e curta (branca)	2	4.800t/dia
Planta de BCTMP - fibra longa ou fibra curta (marrom ou branca)	1	334 t/dia
Máquina de papel cartão	1	1.593 t/dia

No fluxograma apresentado a seguir é possível verificar os novos processos a serem instalados.

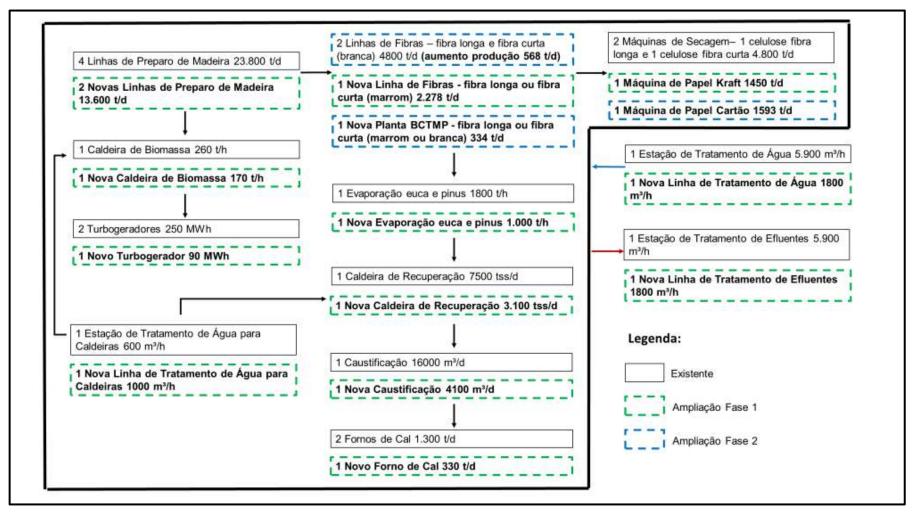


Figura 4 – Fluxograma dos processos existentes e a serem instalados no empreendimento.

Ressalta-se que a fase 2, apresentada em azul no fluxograma, está prevista para ocorrer futuramente e terá como objetivo a instalação de máquina de cartões (440.000 t/ano), fibras curtas e longas, marrom e branqueadas, com aumento da produção nas linhas de fibras branqueadas, sendo 16% na fibra longa e 13% fibra curta, com investimentos dentro das linhas atuais, sem novos processos ou grandes equipamentos. A produção futura após a implantação da fase 1 e fase 2 será de 2.597.000 t/ano, considerando a operação atual de 1.243.000 BHKP e 464.000 BSKP/Fluff, ampliação fase 1 com produção de 450.000 Kraftliner e ampliação fase 2 com produção de 440.000 cartões.

A localização das estruturas previstas nas ampliações é apresentada no mapa a seguir e na planta em anexo.

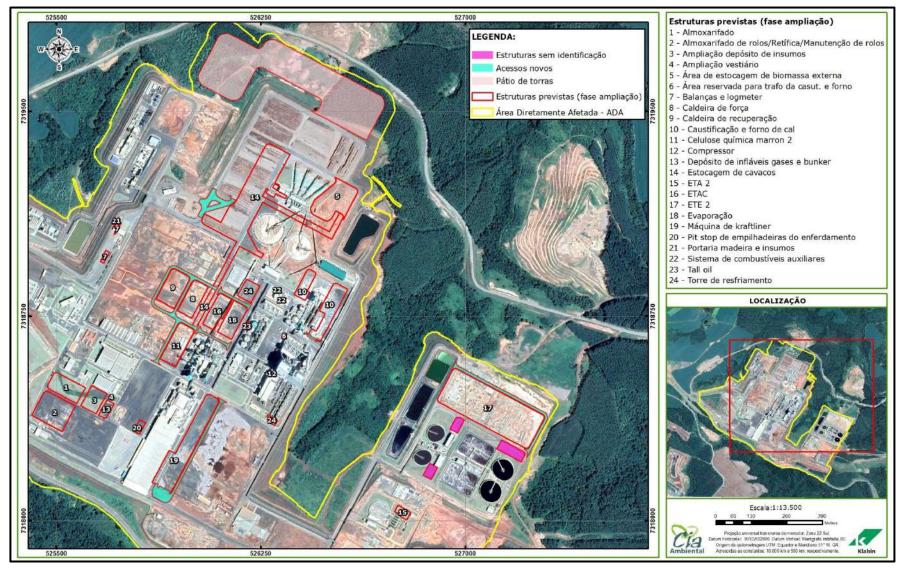


Figura 5 - Localização das estruturas da ampliação fase 1.

O processo de produção das atividades previstas na ampliação é descrito a seguir.

3.2.1. Preparo de madeira (primeira fase da ampliação)

Atualmente existem no empreendimento quatro linhas de preparo de madeira com capacidade de 23.800 t/dia. Com a ampliação haverá a instalação de mais duas linhas (13.600 t/dia), totalizando seis linhas de preparo de madeira, com capacidade de 37.400 t/dia após a ampliação.

A madeira a ser processada consiste em toras de *Eucalyptus grandis*, *E. saligna*, clones de *urograndis* e *saligna*, além de toras de pinus como *pinus taeda*, *elliotti*, *caribaea*, *tecunumani* e outros. As toras possuem 2,4 m, 3,6 m e 7,2 m e são transportadas por via rodoviária em bitrens florestais.

As toras serão estocadas em pátio de estocagem pavimentado próximo das mesas de receptoras. O descascamento de toda a madeira será feito na fábrica, mas também poderão ser recebidas toras já descascadas.

Figura 6 - Pátios de armazenamento de toras.

As novas linhas de descascamento e picagem de madeira terão capacidade horária unitária de 350 m³/s no processamento do eucalipto,

ou 400 m³/s por hora no processamento do pinus. As toras serão descarregadas nas mesas receptoras das linhas, seguidas por descascadores, transportadores de correntes, correia e rolos para remoção da casca residual e outros contaminantes, estações de lavagem de toras e detectores de metais para proteção dos picadores.

A alimentação de madeira nas novas linhas será feita por gruas estacionárias elétricas ou por carregadeiras ou gruas móveis, conforme melhor logística.

Figura 7 - Descarregamento de toras nas mesas receptoras.

As estocagens de cavaco a céu aberto serão separadas para pinus e eucalipto, com capacidade de cerca de 89.000 m³ para eucalipto, e 47.000 m³ para pinus. As estações de peneiramento para cavacos de eucalipto e pinus serão instaladas após as respectivas estocagens. Os cavacos aceitos serão enviados por linhas transportadoras de correia até os cozimentos para produção de celulose, enquanto os demais são repicados e recuperados para aproveitamento das fibras, opcionalmente, usados como biomassa para queima na caldeira. O material a ser utilizado como biomassa será enviado para uma pilha de biomassa coberta com capacidade de cerca de 25.000 m³ (capacidade de estocagem de aproximadamente 2 dias).

As novas estruturas para recebimento e preparo da madeira serão instaladas a oeste e paralelamente às linhas existentes, em área atualmente ocupada por pátios de estocagem de toras. Em função da ampliação com instalação das novas linhas haverá também um acréscimo no recebimento de matéria-prima florestal de 18.000 t/dia para 24.000 t/dia. Assim, o projeto também prevê uma nova área de estocagem de toras para comportar o aumento de produção da fábrica e a relocação da estocagem no local que futuramente será ocupado pelas novas linhas.

Os resíduos gerados e efluentes gerados no preparo da madeira serão os mesmos já gerados atualmente, como cascas de madeira que será enviada para compostagem e areia da bacia de sedimentação que será destinada para construção civil; e o efluente gerado na lavagem da madeira que será destinado para estação de tratamento de efluentes.

3.2.2. Caldeira de biomassa (primeira fase da ampliação)

A nova caldeira de biomassa será do mesmo tipo já existente, com leito fluidizado e fonte de alimentação a biomassa produzida através do descascamento da madeira. As frações de madeira e cascas não aproveitadas no processo de celulose serão queimadas para produção de vapor para a geração de energia.

A nova caldeira será implantada em área atualmente desocupada, próxima à nova linha de fibras marrom, e terá capacidade de 170 t/h.

Figura 8 - Caldeira de biomassa implantada.

Com a caldeira de biomassa, será necessária a instalação de nova linha de tratamento de água para caldeiras (ETAC), com capacidade de 1.000 m³/h, que será instalada ao lado do novo turbogerador.

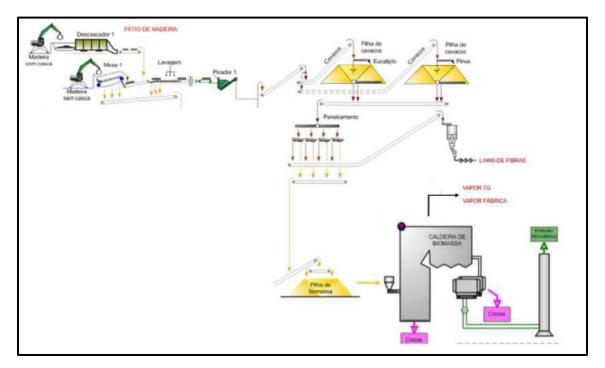


Figura 9 – Fluxograma do processo de preparo de madeira e caldeira de biomassa.

As emissões atmosféricas geradas na caldeira serão tratadas por meio de um precipitador eletrostático de elevada eficiência. Os resíduos gerados

no processo como cinza e areia serão enviados para uso agrícola e na construção civil.

3.2.3. Linhas de fibra marrom (primeira fase da ampliação)

Para o abastecimento da máquina *Kraftliner* será instalada uma nova linha de fibras, que produzirá polpa não branqueada, com capacidade de produção de 2.278 t/dia. Essa linha será constituída de cozimento, refinação, depuração e lavagem, processará madeira de eucalipto e de pinus alternadamente. Será instalada a oeste do sistema de cozimento e branqueamento, em área atualmente desocupada no empreendimento.

O processo de cozimento consiste de sistema contínuo com vaso de préimpregnação, digestor e sistema de recuperação de calor. Os cavacos provenientes do setor de preparação da madeira serão aquecidos pelo vapor, proporcionando com que e as células da madeira fiquem saturadas pela umidade. Serão, em seguida, carregados para o topo do impregnador por licor à alta velocidade, conhecido como circulação de topo.

Os cavacos passarão através do separador do topo para o vaso de impregnação, onde serão impregnados pelo licor preto quente, que será retirado da zona de cozimento. O aquecimento final para a temperatura de cozimento desejada será feito através da adição de vapor direto no topo do digestor.

O licor de lavagem será bombeado por uma bomba de alta pressão para o fundo do digestor. Isto resfriará a polpa quente abaixo de 100°C, antes que seja descarregada para lavagem intermediária e para o tanque de estocagem de polpa. Na parte inferior do digestor, a polpa será retirada da coluna de massa e enviada para a linha de descarga.

O licor preto será extraído do digestor, enviado a um reboiler e bombeado para produção de água quente antes de ser levado ao tanque de armazenamento na planta de evaporação. O vapor será utilizado para préaquecer os cavacos no silo.

A deslignificação é onde ocorre a retirada da lignina branda através da aplicação de agente oxidante em meio alcalino. A polpa será bombeada para um misturador de oxigênio, e retirada para um tanque de alimentação da depuração, onde será diluída antes de ser bombeada para um separador de nós / depurador combinados no mesmo equipamento.

A polpa sofrerá, então, um processo de depuração, onde serão removidas impurezas indesejáveis dentro das características da celulose. O aceite das peneiras será conduzido para a lavagem pós-oxigênio, e o rejeito final será bombeado ao lavador de rejeitos e ao tanque de alimentação de deslignificação com oxigênio ou alternativamente descarregados em contêiner, para posterior incineração e/ou disposição em aterro industrial.

A lavagem pós-oxigênio consistirá de dois estágios de lavagem, situados antes das torres de armazenagem, em alta consistência da polpa não branqueada. A polpa será transferida dos lavadores para um tanque de bombeamento, e, posteriormente, bombeada para uma torre de armazenamento. A polpa será transferida dos lavadores para um tanque de bombeamento, e, posteriormente, bombeada para uma torre de armazenamento.

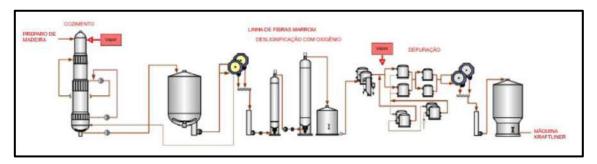


Figura 10 - Linha de fibras marrom.

Os efluentes gerados neste processo possuem alta carga orgânica (licor) e serão enviados para evaporação. As emissões de GNCC (gases não condensáveis diluídos, que são gases de baixas concentrações e altos volumes) geradas no digestor serão queimadas na caldeira de recuperação, sendo o forno de cal e o *flare*, processos alternativos de segurança, que poderão receber estas emissões. Já as emissões de GNCD (gases não condensáveis concentrados, que são gases de muito alta concentração e baixos volumes) serão enviados para caldeira de recuperação ou caldeira de foça (como *backup* de emergência). O rejeitos de celulose serão enviados para compostagem.

3.2.4. BCTMP (segunda fase da ampliação)

A planta de CTMP/BCTMP transforma cavacos de madeira em polpa de celulose, mas ao contrário da planta kraft, a polpa aqui é obtida por processo predominantemente mecânico em vez de químico como ocorre no processo kraft.

Para a produção dos cartões objetivados pela Klabin, a planta produzirá ambas as polpas: não branqueada e branqueada. As principais etapas deste processo são descritas a seguir.

Na fase de lavagem os cavacos são separados de rejeitos pesados por lavagem com água quente. Os cavacos lavados são desaguados e

enviados ao silo de préaquecimento. A água suja retirada é depurada de seus contaminantes principais e recirculada para a lavagem.

No silo de pré-aquecimento os cavacos recebem vapor e em seguida são comprimidos pelo alimentador e introduzidos na parte inferior do impregnador. A compressão dos cavacos retira a água e o ar residuais que ainda existam. Os cavacos são conduzidos verticalmente para o alto do impregnador, desaguando parcialmente e absorvendo os produtos químicos (caso haja algum) neste processo.

Após o desaguamento, os cavacos são descarregados para o silo de homogeneização de onde são descarregados para o alimentador do refinador do primeiro estágio. O alimentador regula a produção a ser refinada. Pela ação do alimentador, os cavacos são forçados a passar entre os discos (ou cones) do refinador, onde são desfibrados. Esta separação das fibras é controlada pela potência absorvida no motor elétrico de acionamento que por sua vez é tanto maior quanto maior for a produção e menor a distância entre os discos/cones.

O desfibramento gera grande quantidade de calor e vapor que é a força motriz que empurra as fibras produzidas para fora do refinador em direção ao ciclone separador de fibras e vapor. O vapor separado é descarregado pelo topo do ciclone enquanto as fibras são retiradas por um transportador de rosca para o tanque de latência onde ela é diluída e agitada.

Após a refinação, as fibras passam por um tratamento adicional, feito por depuradores pressurizados com fendas estreitas. Do tanque de latência a polpa é novamente diluída e bombeada para a depuração primária As fibras aceitas são enviadas ao filtro de discos enquanto as fibras rejeitadas

(palitos, feixes, etc.) são enviadas para tratamento posterior no refinador de rejeitos.

Os rejeitos da refinação primária são engrossados antes da refinação. A polpa desaguada/engrossada alimenta o refinador de rejeitos. A refinação dos rejeitos é feita de forma análoga à refinação primária. O vapor separado se junta ao vapor gerado na refinação primária e a polpa é descarregada no tanque de rejeitos refinados que funciona como tanque agitado de latência dos rejeitos da mesma forma como descrito anteriormente.

Mesmo nesta etapa ainda há fibras em tamanho inadequado, ou agrupadas em feixes, ou emaranhadas, e por isso são depuradas novamente com nova depuração pressurizada com fendas. Os aceites juntam-se aos aceites da depuração primária e daí para o filtro de discos e os rejeitos são depurados novamente ou descartados para o efluente.

Os aceitos das refinações, principal e de rejeitos são engrossados em um filtro de discos. Em seguida são diluídos novamente e vão alimentar o primeiro estágio de lavagem. Para este tipo de matéria prima e produto final, teremos três estágios de lavagem de polpa.

O conceito geral, independentemente do equipamento utilizado para a lavagem é alimentar o lavador que engrossa a polpa para consistências entre 12 e 20%, dependendo do equipamento utilizado e, na descarga desta polpa engrossada ocorre uma nova diluição, alimentando o estágio de lavagem subsequente.

A lavagem é feita em contracorrente e a água usada para a lavagem em cada estágio é:

- Antes do primeiro estágio a diluição é com água clarificada do filtro de discos;
- A diluição entre o primeiro e o segundo estágios é feita com água desaguada no terceiro estágio;
- A diluição entre o segundo e o terceiro estágios é feita com água fresca quente;
- A diluição final, antes da estocagem, é feita com água branca da máguina de papel.

Após estes estágios de processo, a fabricação de polpa não branqueada está finalizada e seguirá para estocagem.

A polpa diluída na saída do terceiro estágio de lavagem cai em um *stand pipe* de onde é bombeada com uma bomba MC para a torre de estocagem. A estocagem da polpa é feita a 10 – 12%.

No evento de produção de polpa branqueada, a polpa saída do terceiro estágio de lavagem será enviada para um estágio de engrossamento (prensa de dupla tela ou prensa de rosca, dependendo da tecnologia) para o branqueamento a alta consistência com peróxido de hidrogênio.

Para o branqueamento da polpa mecânica é necessária o acerto do pH da polpa para a condição básica (geralmente com NaOH, mas pode-se ainda utilizar $Ca(OH)_2$ ou $Mg(OH)_2$) e também a adição de agentes quelantes (EDTA ou DTPA) para evitar a decomposição do peróxido de hidrogênio por reações concorrentes com metais presentes na polpa.

Após o engrossamento, peróxido de hidrogênio é adicionado à polpa em um misturador de alta consistência e é enviada à torre de branqueamento a alta consistência através de transportadores de rosca.

A torre de branqueamento é munida de um raspador de fundo e sistema de diluição para a descarga da polpa em um standpipe para bombeamento posterior da polpa branqueada para uma nova prensa de lavagem, onde a lavagem e diluição para estocagem deverão ser feitas com água branca da máquina de papel.

A polpa diluída na saída do prensa de lavagem após o branqueamento cai em um stand pipe de onde é bombeada com uma bomba MC para a torre de estocagem. A estocagem da polpa é feita a 10 – 12%.

O sistema de recuperação de calor será definido quando da efetiva implantação da planta de BCTMP.

O processo produz como efluente o filtrado das lavagens com característica de licor devido à carga de químicos (tanto da impregnação de cavacos quanto do branqueamento). Este licor será enviado diretamente à evaporação para mistura com os demais licores da fábrica. O efluente da planta BCTMP que irá para o tratamento de efluentes será apenas o referente à lavagem de cavacos.

Os rejeitos de celulose gerados no processo serão enviados para valorização ou compostagem.

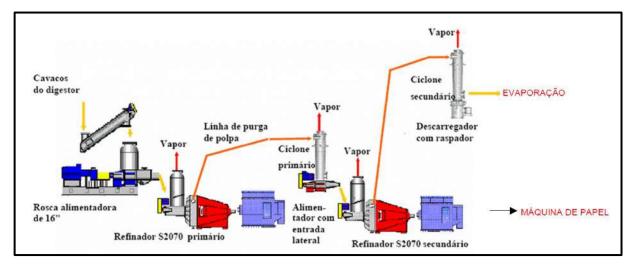


Figura 11 – Detalhe do processo BCTMP – Linha Principal de Refinação de Alta Consistência.

3.2.5. Máquina de *Kraftliner* (primeira fase da ampliação)

Trata-se de uma máquina de papel *kraftliner*, cujo produto possui porção fibrosa composta por duas camadas (base e cobertura) e revestimento de amido. A máquina será instalada ao lado do setor de secagem, enfardamento e embalagem de celulose, em área atualmente desocupada, e terá capacidade de produzir 450.000 t/ano.

Figura 12 - Área onde será implantada a máquina de Kraftliner.

A preparação da massa começa com o recebimento de polpa das linhas de celulose Kraft, que passa por um tratamento de refinação, controle de

consistência e controle de proporcionamento antes de serem adicionadas ao tanque de mistura.

A máquina de papel terá as seguintes seções principais: seção de formação (duas mesas planadas combinadas para a formação das duas camadas do papel, com caixas de entrada hidráulicas); seção das prensas (prensas de sapata em série); seção de pré-secagem (múltiplas seções de secagem com cilindros secadores, com capota completamente fechada); scanner para medições de gramatura e umidade; prensa aplicadora de revestimento; calandra do tipo hard nip; e enroladeira para formação de rolos jumbos. Após a enroladeira, haverá uma estocagem de rolos jumbos e uma bobinadeira que produzirá bobinas para o cliente final.

Além dos sistemas principais descritos acima, o sistema completo possui auxiliares necessários para máquina de papel e a preparação de massa, entre eles: sistema de clarificação de água e recuperação de fibras, sistema de refugo, sistema de vácuo, sistema de chuveiros, sistema de vapor e condensado, ventilação da capota, sistema de preparação de químicos, ventilação do prédio e ar condicionado nas salas elétricas e de controle, sistema de refrigeração de água, sistema de lubrificação, sistemas hidráulicos e pneumáticos, ar comprimido, sistemas de controle e cozinha de amido e químicos.

O efluente gerado neste processo será enviado para filtros, para recuperação da fibra que retornará para o processo, e em seguida será enviado para estação de tratamento de efluentes do empreendimento. Os resíduos gerados no processo, como aparas e refugos de papel serão gerenciados de acordo com a gestão atual já realizada no empreendimento.

3.2.6. Máquina de papel cartão (segunda fase da ampliação)

Cabe indicar que por se tratar de processo a ser instalado na segunda fase de ampliação a descrição a seguir é conceitual e pode variar em função das tecnologias ofertadas e selecionadas ao final da engenharia básica.

Preparação da massa

Trata-se de uma máquina de papel cartão onde a porção fibrosa é composta por três camadas: camada de cobertura, camada do meio e camada de base. Além da porção fibrosa o cartão também recebe três camadas de revestimento (coating).

Estas três camadas são unidas na parte úmida da máquina de papel, a qual possui três mesas de formação e, portanto três caixas de entrada. Cada uma das caixas de entrada possui seu próprio circuito de aproximação e preparação de massa.

A camada de cobertura é composta de 100% de celulose branqueada química (Kraft). Em princípio, considera-se que 80% serão de fibra curta (BKHW) e 20% serão de fibra longa (BKSW).

A camada do meio é a que recebe a maior variedade de matérias primas fibrosas:

- Refugos próprios da máquina;
- Massa recuperada do sistema de clarificação de água;
- Pasta de alto rendimento (CTMP ou BCTMP);
- Polpa química de fibra longa branqueada;
- Polpa química de fibra curta branqueada;
- Polpa química de fibra longa marrom;
- Polpa química de fibra curta marrom e
- Fibra longa marrom refinada ou não para massa adicional (sweetener) do sistema de clarificação de água.

A camada de base é composta de 100% de celulose química (Kraft) não branqueada de fibra longa ou 70% + 30% de celulose química (Kraft) branqueada de fibra curta + longa, respectivamente.

A preparação de massa de todas as linhas começa com o recebimento de polpa das linhas de celulose Kraft de fibra longa ou curta, branqueada ou não. A polpa mecânica vem da planta de BCTMP e as polpas de refugo e fibras recuperadas vêm da própria máquina de cartão. As fibras virgens passam por um processo de refinação. Todos os componentes passam por um controle de consistência e um controle de proporcionamento ao serem adicionadas ao tubo de pré-mistura de cada linha. Finalmente, no tubo de pré-mistura, que antecede o tanque de mistura, ocorre uma última diluição de 3,5 para 3,0%.

Circuito de aproximação

A partir do tubo de pré-mistura cada uma das camadas (cobertura, meio e base) passa por processos de homogeneização, controle de consistência e depuração idênticos, conforme descrito a seguir.

O nível do tanque de mistura é controlado pela massa adicionada ao tubo de pré-mistura. O nível do tanque da máquina é controlado por vaso comunicante com o tanque de mistura e é por este mesmo processo que a massa passa do tanque de mistura para o tanque da máquina da linha de cobertura.

Do tanque da máquina a massa é bombeada para a sucção da bomba de mistura 1 cuja vazão é regulada em função do produto e da produção e das leituras dos QCSs da máquina. Esta bomba estará instalada no silo de água branca 1. Esta bomba alimentará os depuradores centrífugos (cleaners) do primeiro estágio cujos rejeitos são encaminhados para o segundo estágio e os aceites deste para a sucção da bomba de mistura 2.

Este sistema em cascata se repete até o último estágio, cujos rejeitos são enviados ao tanque de rejeitos e finalmente descartados.

As bombas de mistura 2 que estarão instaladas nos respectivos silos de água branca 2 e alimentarão cada uma das caixas de entrada da máquina de papel passando antes pelo primeiro estágio de depuração pressurizada de cabeça de máquina. Os rejeitos vão para os estágios de depuração análogo ao dos *cleaners* cujo rejeito final junta-se aos rejeitos dos cleaners no tanque de rejeitos de onde são descartados.

A vazão de cada bomba de mistura 2 é controlada pela pressão da respectiva caixa de entrada.

A caixa de entrada da camada do meio terá um sistema de controle transversal de gramatura por diluição que executará este controle pelo SDCD com as leituras do QCS com água da calha de água branca da própria camada do meio. Para proteção das válvulas de diluição e da própria caixa de entrada, a água também passará por um depurador pressurizado.

Máquina de papel

A seção de formação da máquina de papel será constituída de três mesas planas combinadas para a formação das três camadas do cartão. Todas as três caixas de entrada serão do tipo hidráulico.

A seção das prensas será formada por suas prensas de sapata em série e uma prensa alisadora na saída das prensas. A folha será completamente suportada, sem "tiros livres".

A seção de secagem será composta por múltiplas seções de secagem com cilindros secadores com a primeira em tela única com elementos estabilizadores de folha (rolos de sustentação). A secagem terá capota completamente fechada com ventilação nos bolsões (pocket ventilation). O sistema de vapor e condensado será do tipo em cascata, minimizando a perda de vapor de flash e de energia térmica. O sistema operará com pressões da ordem de 10 barg no distribuidor dos cilindros secadores.

Após a secagem, será instalado um scanner (QCS) para medições de gramatura e umidade cartão. Em seguida, haverá uma calandra do tipo hard nip de um único nip. Em seguida, haverá uma prensa aplicadora de revestimento que aplicará tinta na face de impressão e amido na face de verso do cartão. Após o pré-revestimento haverá um contornador de folha a ar (*air turn*) e um pré-secador infravermelho.

Em seguida haverá uma máquina aplicadora revestimento em linha com a própria máquina de papel. A revestidora terá dois cabeçotes aplicadores de tintas. Todas as três aplicações de revestimento serão aplicados na face branca do cartão.

Após a revestidora serão instalados:

- outra calandra de nip simples, mas aqui, do tipo soft;
- cilindros resfriadores;
- scanner (QCS) para medições finais do cartão (gramatura, umidade e espessura) e
- enroladeira do papel para jumbos de 3 800 mm ou maior.

Após a enroladeira, haverá uma estocagem de rolos jumbo iniciando na saída da enroladeira e terminando na estação de desenrolamento da bobinadeira.

A bobinadeira terá desenho simples, mas adequado e robusto para produzir bobinas pesadas a partir de jumbos pesados em alta velocidade, sem danificar a superfície revestida do cartão.

Sistema de refugos

A máquina terá cinco (05) desagregadores sob a máquina:

- Desagregador úmido (couch pit);
- Desagregador entre prensas e secagem;
- Desagregador na saída da secagem e calandra dura;
- Desagregador da calandra macia e enroladeira;
- Desagregador da bobinadeira.

O sistema de refugos será composto de:

- Torre de estocagem de refugos;
- Engrossador de refugos e
- Depuração de refugos.

Com tanques de estocagem de refugos recuperador e de água turva e clarificada. O refugo recuperado e depurado será adicionado ao tubo de pré-mistura da camada do meio.

Sistema de clarificação de água e recuperação de fibras

A água branca excedente dos circuitos de aproximação se junta às águas do sistema de vácuo e turva gerada nos equipamentos de engrossamento de refugos e de clarificação de água.

Essa água recebe massa adicional (*sweetener*) no bombeamento para o filtro de discos para corrigir a consistência da suspensão. Este processo produz:

 polpa recuperada, composta da massa adicional e de fibras recuperadas;

- água turva, que requer nova filtração e, por isso retorna à filtragem;
- água clarificada e/ou super clarificada.

Esta última é estocada em uma torre específica e pode ser reutilizada em diversos pontos do processo, por exemplo, em chuveiros da máquina e de outros equipamentos.

A massa recuperada é diluída de 10% para cerca de 4,0% na rosca de descarga do clarificador de onde cai para o tanque de massa recuperada (50 m³).

Finalmente, deste tanque a massa é bombeada para o tubo de prémistura da camada do meio (ver descrição da preparação de massa) com uma consistência controlada a 3,0%.

Sistemas Auxiliares

Além dos sistemas principais descritos até agora, o sistema completo da máquina de cartão terá alguns sistemas auxiliares que ajudam a máquina de papel e a preparação de massa trabalharem de forma estável e controlada. Os principais sistemas auxiliares são:

- Sistema de vácuo;
- Sistema de chuveiros;
- Sistema de vapor e condensado;
- Ventilação da capota;
- Sistemas de preparação de químicos, de massa, de revestimento,
- Aauxiliares (controle de pH, microbiológico, etc.);
- Ventilação do prédio e ar condicionado das salas elétricas e de controle;
- Sistema de refrigeração de água;
- Sistema de lubrificação;
- Sistemas hidráulicos;

- Sistemas pneumáticos;
- Ar comprimido;
- Sistemas de controle; etc.

Acabamento de papel

Preliminarmente, consideremos os seguintes sistemas de acabamento de papel:

- 1 embaladeira de bobinas para venda no mercado (com kraft);
- 1 linha de aplicação de filme plástico (polietileno) nas duas faces do cartão.

Cozinha de Tintas e Aditivos

Será instalada uma cozinha de tintas e aditivos completa para atender a Máquina de Papel, incluindo planta de dispersão de pigmentos com todas as estocagens de pigmentos e químicos, sistemas de fabricação de tintas para revestimento, sistemas de manuseio de químicos para wet end e sistemas de circulação das tintas de revestimento da máquina dimensionados de acordo com a demanda de produção da máquina de papel.

Todos os sistemas serão totalmente automatizados para permitir maior flexibilidade de operação.

Efluentes e resíduos

Os efluentes da máquina de cartão conterão fibras, as quais serão recuperadas em sistema de filtro de discos e retornarão para máquina. O efluente seguirá então para a ETE.

Os resíduos da máquina de cartão serão aqueles de aparas e refugos de papel, os quais serão enviados para reciclagem.

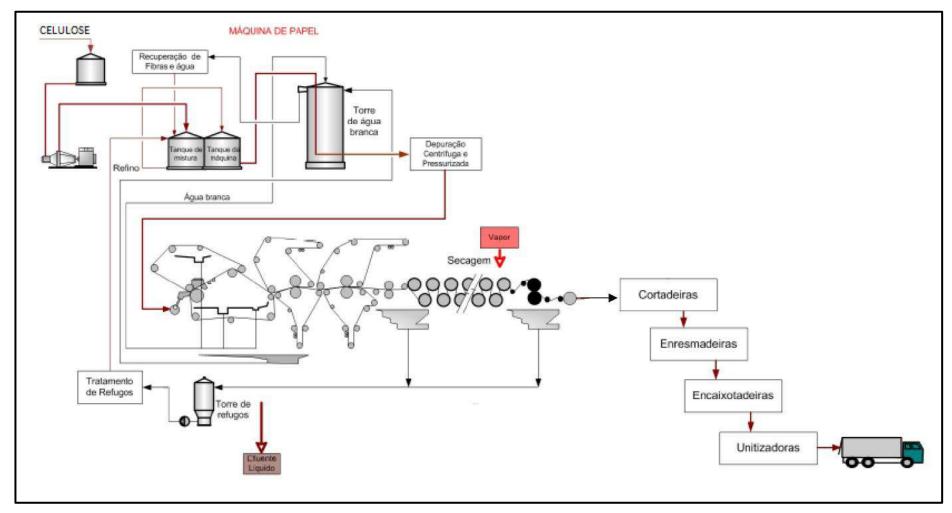


Figura 13 - Detalhe do processo de fabricação de papel cartão.

3.2.7. Sistema de evaporação (primeira fase da ampliação)

O sistema de evaporação consiste na concentração do licor preto gerado no processo de cozimento das fibras a 80 % de sólidos. Será implantado em área atualmente desocupada, e terá os mesmos moldes do já existente, do tipo película descendente com vários efeitos e coluna de *stripping* integrada, com capacidade para tratar o condensado da evaporação e do cozimento, com capacidade de 1.000 t/h.

Figura 14 - Área onde será implantado o novo sistema de evaporação.

O metanol liquefeito, retirado na coluna de metanol, será queimado na caldeira de recuperação ou no forno de cal. Os gases concentrados serão incinerados na caldeira de recuperação.

De todo o condensado produzido na evaporação, o mais limpo será utilizado na lavagem de polpa na linha de fibras e o condensado intermediário será usado na caustificação. Os condensados contaminados da evaporação e do cozimento serão tratados em coluna *stripper*, e o condensado limpo poderá ser utilizado no processo.

Durante a evaporação, será extraída terebentina nas fases em que forem utilizados pinus como matéria prima, a qual pode ser incinerada como

combustível auxiliar nos fornos de cal ou também pode ser comercializadas.

O sabão proveniente do cozimento de pinus será retirado em dois pontos do circuito, e pode ser enviado para a queima na caldeira de recuperação, no forno de cal, venda ou transformado em *tall oil* para venda.

O efluente gerado neste processo recirculará na planta, e o excedente com a menor carga orgânica será enviado para tratamento na ETE. As emissões de GNCC (gases não condensáveis diluídos, que são gases de baixas concentrações e altos volumes) geradas no digestor serão queimadas na caldeira de recuperação, sendo o forno de cal e o *flare*, processos alternativos de segurança, que poderão receber estas emissões. Já as emissões de GNCD (gases não condensáveis concentrados, que são gases de muito alta concentração e baixos volumes) serão enviados para caldeira de recuperação ou caldeira de foça (como *backup* de emergência).

3.2.8. Caldeira de recuperação (primeira fase da ampliação)

A caldeira de recuperação, com capacidade de 3.100 tss/d, será instalada ao lado da nova caldeira de biomassa, e será construída nos mesmos moldes daquela já existente, do tipo alta eficiência, baixo odor, com sistema de ar tipo *multilevel* para queima de licor a 80%. Os gases não condensáveis concentrados e diluídos da nova linha, assim como os coletados em diversas fontes nas áreas de processo, serão incinerados na caldeira de recuperação.

Figura 15 - Caldeira de recuperação existente.

Os gases do tanque de dissolução serão lavados e injetados na fornalha e os gases de combustão serão tratados em precipitador eletrostático de elevada eficiência. Os ventiladores de tiragem induzida serão acionados por motor elétrico com VFD. Os gases não condensáveis diluídos, coletados em diversas fontes nas áreas de processo, serão introduzidos como ar terciário na caldeira de recuperação.

Na caldeira de recuperação o licor negro é transformado em carbonato de sódio (Na₂CO₃) e sulfeto de hidrogênio (Na₂S).

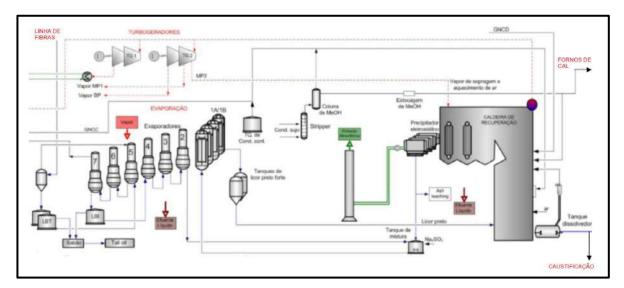


Figura 16 - Sistema de evaporação e caldeira de recuperação.

Todo o efluente gerado neste processo recirculará para caldeira. As emissões de GNCD (gases não condensáveis concentrados, que são gases de muito alta concentração e baixos volumes) serão enviadas para lavador de gases e posteriormente para queima na caldeira de recuperação. As cinzas geradas no processo serão enviadas para uso em solo agrícola.

3.2.9. Sistema de cogeração de energia elétrica (primeira fase da ampliação)

O sistema de cogeração tem por finalidade transformar a energia térmica dos vapores de alta pressão produzidos na caldeira de recuperação e na caldeira de biomassa em energia mecânica para acionar o gerador de energia elétrica (turbogeradores). O novo turbogerador, com potência de 90 MWh, será implantado entre o novo sistema de evaporação e a nova caldeira de recuperação.

O vapor de alta pressão sofre expansão nas palhetas da turbina e é extraído em diferentes níveis de pressão para utilização no processo de fabricação de celulose. O vapor não consumido no processo será extraído da turbina através da condensação gerando dessa maneira energia

adicional, que será utilizada na fábrica e cujo excedente será distribuído no Sistema Interligado Nacional (SIN).

3.2.10. Sistema de caustificação (primeira fase da ampliação)

Será instalado um novo sistema de caustificação, semelhante a existente na planta industrial e ao lado da mesma, com capacidade de 4.100 m²/d. Inclui estocagem de licor verde bruto, filtração de licor verde, estocagem de licor verde filtrado, filtração e manuseio de *dregs*, extinção de cal, retirada de *grits*, caustificação, filtração e estocagem de licor branco, estocagem e lavagem de lama.

No extintor de cal, a cal virgem (CaO) é transformada em hidróxido de cálcio (Ca(OH)₂). Nos caustificadores o licor verde (Na₂CO₃) recebe a adição de hidróxido de cálcio (Ca(OH)₂) gerando hidróxido de sódio (NaOH) e carbonato de cálcio (CaCO₃).

Figura 17 - Sistema de caustificação atual.

O efluente gerado neste processo recirculará no processo de caustificação. As emissões geradas neste processo serão envidas para o forno de cal para ser utilizada como ar de combustão. Os resíduos gerados no processo serão enviados para uso em solo agrícola.

3.2.11. Forno de cal (primeira fase da ampliação)

O forno de cal a ser instalado na ampliação, com capacidade de 330 t/d, possuirá secador externo de lama e precipitador eletrostático para limpeza dos gases, semelhante aos dois fornos de cal que operam atualmente no empreendimento e ao lado dos mesmos.

Figura 18 - Forno de cal instalado.

No forno de cal haverá a transformação da lama de cal $(CaCO_3 + H_2O)$ em cal virgem (CaO). Filtros lavadores alimentarão a lama para o forno de cal, que possuirá também um sistema de descarga e transporte de cal virgem provido de sistema de despoeiramento.

O dimensionamento do forno considerou que não haverá perdas no processo e toda cal necessária para caustificação passará pelo forno, sem gerar sobras.

O forno de cal utilizará como combustível principal o óleo combustível, além da terabentina, metanol, *tail oil* e hidrogênio como combustíveis auxiliares, e queimarão também os gases não condensáveis diluídos (GNCD) provenientes da área da caustificação.

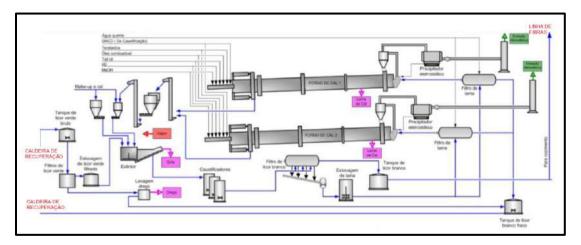


Figura 19 - Sistema de caustificação e forno de cal.

O resíduo gerado neste processo, constituído por lama de cal, é enviado para uso em solo agrícola.

3.2.12. Estação de tratamento de água – ETA (primeira fase da ampliação)

A Estação de tratamento de água – ETA tem por objetivo tratar a água que será utilizada nos processos do empreendimento e possui capacidade atual de 5.900 m³/h. Esta ampliação prevê uma nova linha de tratamento de água com elevação da capacidade em 1.800 m³/h, totalizando 7.700 m³/h. A água bruta será aduzida do Rio Tibagi e não ultrapassará os limites estabelecidos na vazão outorgada de 8.400 m³/h.

A água continuará a ser aduzida do Rio Tibagi por meio de uma estação elevatória por bombas centrífugas. A estação elevatória possui 4 grades mecanizadas para remoção de sólidos grosseiros. A vazão da água aduzida é controlada através de uma calha *Parshall*, onde é adicionado sulfato de alumínio (coagulante), soda caustica (ajuste do pH) polieletrólito (floculante) e hipoclorito de sódio, para promover a remoção de ferro, além de oxidar a matéria orgânica presente. Após a água é enviada para tanques de floculação visando melhorar o contato e diluição

dos produtos químicos na água bruta. Em seguida a água é enviada para clarificadores, onde ocorrerá a separação sólido - líquido. O sólido que consiste no lodo é enviado para centrífugas e disposto em aterro. A água é conduzida por gravidade a passar por 9 filtros de areia e após é armazenada em um reservatório com capacidade de 30.000 m³, de onde é distribuída água para os processos industriais.

Figura 20 - Estação de tratamento de água atual.

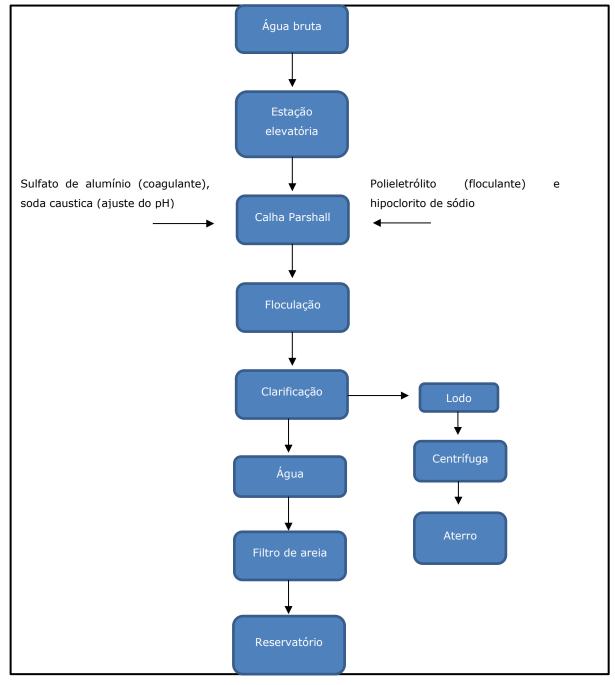


Tabela 4 – Fluxograma do sistema de tratamento de água existente na planta industrial.

3.2.13. Estação de tratamento de efluentes – ETE (primeira fase da ampliação)

A Estação de tratamento de efluentes - ETE tem por objetivo o tratamento dos efluentes industriais e sanitários, para o seu lançamento em corpo

hídrico (Rio Tibagi). Consiste do tratamento primário, secundário e terciário.

O tratamento primário será composto por:

- Remoção de sólidos grosseiros (gradeamento);
- Clarificação primária (separação de fibras) por meio de decantação;
- Ajuste de pH: realizado pela dosagem de soda cáustica e ácido sulfúrico;
- Resfriamento do efluente, em torres de resfriamento;
- Desaguamento de lodo primário (fibras) em centrífugas;
- Lagoa de emergência.

O tratamento secundário visa à redução de cargas orgânicas e inorgânicas tóxicas biologicamente degradadas por meio de sistema biológico aeróbico. Será composto por:

- Tratamento biológico aeróbico realizado em tanques com aeração;
- Clarificação secundária (separação de lodo biológico), realizada por meio de decantação;
- Desaguamento de lodo biológico em centrífugas;
- O efluente sanitário irá entrar no tanque de aeração como fonte de nutriente.

O tratamento terciário tem a função de, principalmente, reduzir a carga de DQO (Demanda Química de Oxigênio), que não é removida biologicamente. É realizado com a utilização de coagulante (sulfato de alumínio) e polímero, por processo de flotação. O lodo separado é desaguado em centrífugas.

Por sua vez, os efluentes pluviais incidentes diretamente nas áreas de processo serão gerenciados pelo sistema de efluentes de cada área. Aqueles provenientes dos arruamentos e áreas que não possuem contato

com o processo seguirão para as lagoas pluviais já existentes. Nas lagoas, há instrumentos online para a verificação de pH e condutividade, determinando o lançamento no corpo hídrico ou o envio para a ETE.

Figura 21 - Localização da nova ETE.

A nova linha da ETE está prevista na porção a norte da atual. Na tabela a seguir são apresentadas as características do efluente bruto e após tratado, evidenciando a eficiência da ETE existente. Ressalta-se que a vazão gerada após ampliação não ultrapassará a máxima vazão outorgada de 7.400 m³/h.

Tabela 5 – Características do efluente bruto e depois de tratado – primeira fase de ampliação.

Parâmetro	Unidade	Valor mensal efluente bruto fase 1	Valor mensal efluente tratado fase 1
Vazão de efluentes	m³/dia	146.328	146.328
Concentração de DBO	mg/L	567	16
Concentração de DQO	mg/L	1.468	193
Concentração de sólidos suspensos	mg/L	423	26

Tabela 6 – Características do efluente bruto e depois de tratado – segunda fase de ampliação.

		Valor mensal	Valor mensal
Parâmetro	Unidade	efluente bruto	efluente tratado
		fase 2	fase 2
Vazão de efluentes	m³/dia	175.416	175.416
Concentração de DBO	mg/L	599	17
Concentração de DQO	mg/L	1.551	203
Concentração de sólidos suspensos	mg/L	456	28

Figura 22 - Estação de tratamento de efluentes atual.

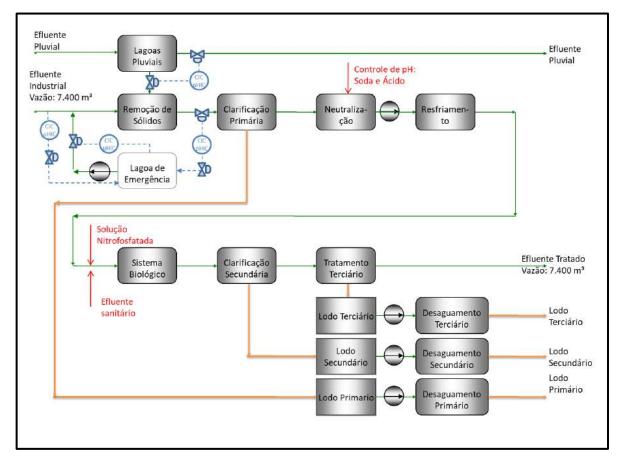


Figura 23 - Estação de tratamento de efluentes.

O lodo primário gerado na ETE é encaminhado para reutilização, o lodo secundário para compostagem e o lodo terciário para aterro industrial.

3.3. Matéria primas e produtos auxiliares

As matérias primas previstas para operação do empreendimento após a ampliação são basicamente as mesmas utilizadas atualmente na operação da planta como madeira, cal, hidróxido de sódio, peróxido de hidrogênio, etc. As estimativas de matéria-prima foram feitas com base na operação atual, considerando 354 dias de operação ao ano, conforme apresentado na tabela a seguir.

Tabela 7 – Matéria prima e insumos que serão utilizados nos processos a serem ampliados.

	Quantidade	Quantidade	Quantidade
Matéria prima e insumos	atual	ampliação	total
	t/dia	t/dia	t/dia
Madeira eucalipto e pinus	18.000,00	6.000,00	24.000,00
Ácido sulfúrico	120,00	30,00	150,00
Peróxido de hidrogênio	34,50	-	34,50
Cal	69,00	21,00	90,00
Metanol	12,80	-	12,80
Sulfato de magnésio	15,00	-	15,00
Dióxido de cloro	56,70	-	56,70
Metabissulfito de sódio	7,40	-	7,40
Hidróxido de sódio	140,00	20,00	160,00
Sulfato de alumínio	11,80	13,20	25,00
Oxigênio	135,00	-	135,00
Talco	12,30	-	12,30
Óleo combustível	165,00	85,00	250,00
Gás de liquefeito de petróleo (GLP)	4,90	1,10	6,00

A principal fonte de matéria prima, a madeira será proveniente das florestas plantadas de eucalipto e *pinus*, sendo a maior parte de propriedade da Klabin.

3.4. Descrição das obras

Considerando que a infraestrutura básica já foi implantada quando da construção da Unidade Puma, as obras de ampliação consistirão basicamente na etapa de construção civil (fundações, estruturas, edificações, etc), montagem dos equipamentos e interligação (ponte de tubulações e cabos, sistema de ventilação e ar condicionado, sistema de ar comprimido, chaminé, sistema elétrico de distribuição e proteção de baixa e média tensão, gerador de energia de emergência, combustíveis,

sistema de combate a incêndio e sistema de detecção e alarme contra incêndio).

Na preparação do terreno ocorrerá a retirada do solo orgânico para realização da terraplanagem, porém a maioria das áreas utilizadas para a ampliação já se encontra pronta para o recebimento dos equipamentos. A área onde haverá corte e aterro corresponde ao novo pátio de estocagem de toras. Haverá compensação de corte e aterro, evitando ao máximo destinação de material excedente. Além disso, o solo orgânico será armazenado para posterior utilização em uso mais nobre como paisagismo no próprio empreendimento. As águas pluviais serão conduzidas para o sistema de drenagem já existente na unidade.

Os canteiros de obras serão instalados em áreas próximas às frentes de obras em locais disponíveis dentro da estrutura atual da unidade. Os canteiros serão preparados para receber os trabalhadores e serão compostos por dois refeitórios, escritório, área de vivência e sanitários/vestiários.

Para a execução das atividades de implantação, serão implantados dois refeitórios temporários e duas portarias para atendimento às obras. Pode ocorrer a implantação de usinas de asfalto e concreto dentro do empreendimento, nos canteiros de obra, que serão de responsabilidade das empresas contratadas. Para acesso ao canteiro haverá ainda duas portarias.

Os equipamentos usados durante as obras consistem basicamente em tratores, pás carregadeiras, escavadeiras, caminhões basculantes, etc.

Após a desmobilização das obras todas as edificações e estruturas temporárias serão removidas, para realização do paisagismo da planta industrial.

3.5. Estimativa da mão de obra

A mão de obra prevista durante a implantação é de 10.500 pessoas no pico da obra.

A unidade conta atualmente com 1400 funcionários diretos para sua operação. Com a ampliação há previsão de um acréscimo de até 200 funcionários, chegando a 1600 colaboradores diretamente envolvidos na operação futura.

3.6. Estimativa do custo total

Os investimentos previstos para a ampliação da Unidade Puma serão de R\$ 6 bilhões.

3.7. Cronograma de implantação

A obra para a primeira fase da ampliação tem início previsto para janeiro de 2019, com previsão de 20 meses para a finalização da ampliação.

4. DIAGNÓSTICO AMBIENTAL PRELIMINAR DA ÁREA DE INFLUÊNCIA

4.1. Delimitação das áreas de influência

As delimitações de áreas de influência para a avaliação de um empreendimento permitem uma verificação mais criteriosa da atuação do mesmo sobre determinado cenário físico, biológico ou socioeconômico. Dessa forma, as áreas de influência caracterizam a abrangência de impactos positivos e negativos do empreendimento, e facilitam os dimensionamentos destes.

4.1.1. Área diretamente afetada (ADA)

A área diretamente afetada representa a área que sofre diretamente as intervenções de implantação e operação do empreendimento, considerando alterações físicas, biológicas, socioeconômicas e das particularidades da atividade em questão. Neste contexto a ADA abrange o espaço no qual são previstas as modificações efetivas relacionadas à ampliação da fábrica de papel e celulose da Klabin, ou seja, a área abrangida pela atual área ocupada pela fábrica em operação, onde ocorrerá a ampliação das atividades.

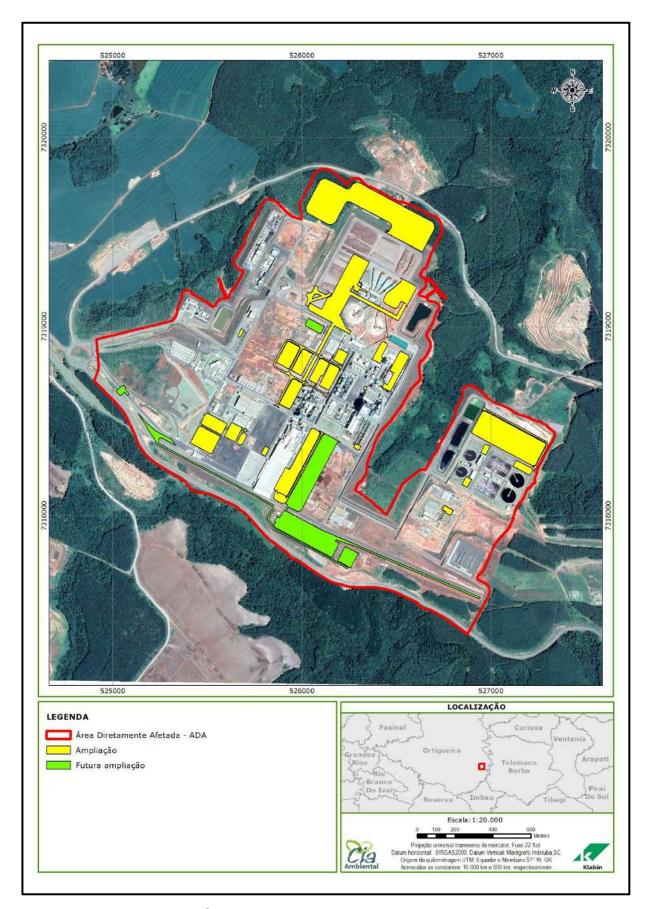


Figura 24 – Limites da área diretamente afetada (ADA) pelo empreendimento.

4.1.2. Área de influência direta (AID)

A área de influência direta corresponde à área sujeita aos impactos diretos da implantação e operação do empreendimento, com delimitação em função das características sociais, econômicas, físicas e biológicas dos sistemas a serem estudados e das particularidades do empreendimento.

4.1.2.1. Área de influência direta dos meios físico e biótico

A área de influência direta (AID) definida para os meios físico e biótico foi delimitada visando à seleção da área em que se prevê a maior interação entre o empreendimento e estes meios, e cuja observação e análise possibilitassem a obtenção das informações desejadas de maneira representativa em relação ao meio ambiente próximo, assegurando que, mesmo reconhecendo a variação da percepção dos impactos ao longo do empreendimento, o diagnóstico e o prognóstico ambiental sejam realizados de maneira bem fundamentada.

A AID para os meios físico e biótico foi delimitada considerando os divisores de água no entorno do empreendimento, com os limites refinados em função do uso do solo do entorno, levando em conta principalmente os acessos, fragmentos florestais e áreas de silvicultura presentes no entorno.

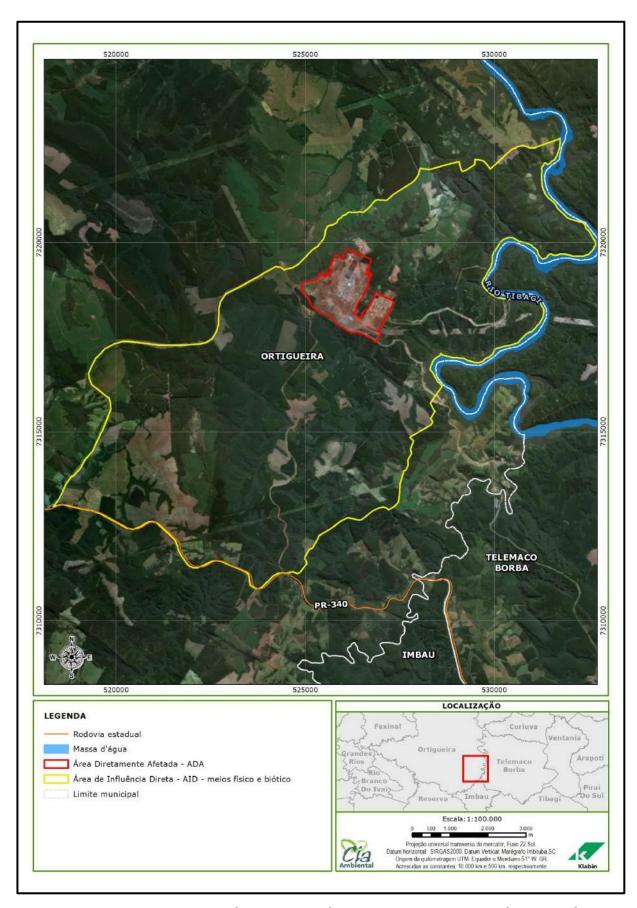


Figura 25 - Delimitação da área de influência direta dos meios físico e biótico.

4.1.2.2. Área de influência direta do meio socioeconômico

A área de influência direta para o meio socioeconômico foi definida de modo a compreender o limite territorial do Município de Ortigueira (figura 26), dado que é neste território político administrativo em que se encontra o empreendimento. Logo, de maneira a abranger os aspectos e seus consecutivos impactos de natureza diretamente relacionada ao empreendimento, tais como a alteração do uso do solo, execução de atividades de obras e de operação, geração de tributação e empregos diretos, aumento da produção industrial, geração de energia, entre outros.

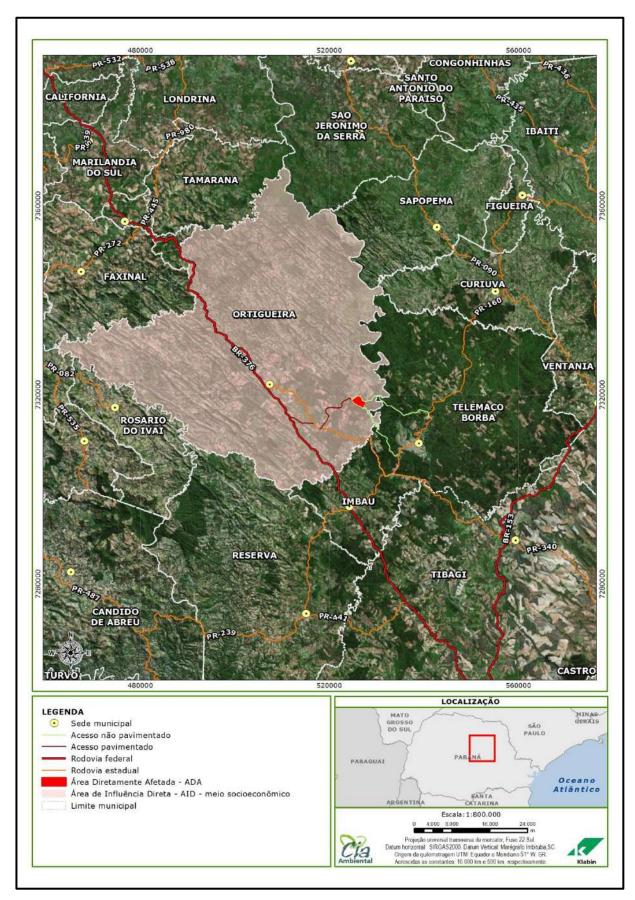


Figura 26 - Delimitação da área de influência direta do meio socioeconômico.

4.1.3. Área de influência indireta (AII)

O conceito de influência indireta considera a possibilidade de dispersão dos impactos diretos do empreendimento através de reações secundárias ou de uma cadeia de reações, ou seja, reflexos destes que não primariamente vinculados à fonte geradora.

4.1.3.1. Área de influência indireta dos meios físico e biótico

Para os meios físico e biótico a AII considerada é caracterizada pelas bacias hidrográficas onde se insere o empreendimento, sendo as bacias do médio e baixo Rio Tibagi. A delimitação das bacias teve como referência a base hidrográfica disponibilizada pelo Instituto das Águas do Paraná. Especificamente para a delimitação da bacia do médio Rio Tibagi utilizouse como base pontos cotados e curvas de nível disponibilizados pelo Instituto das Águas do Paraná na escala 1:50.000. Esta delimitação, utilizando como critério principal uma bacia hidrográfica, associa-se ao fato deste tipo de elemento territorial constituir importante unidade de planejamento ambiental. Esta delimitação abrange importantes elementos da paisagem que compõem os atributos biológicos (corredor ecológico formado pelas várzeas, matas ciliares e áreas úmidas do Tibagi e afluentes) e físicos (curso d'água do Rio Tibagi e diferentes elementos topográficos) que podem ser indiretamente afetados pela implantação do empreendimento.

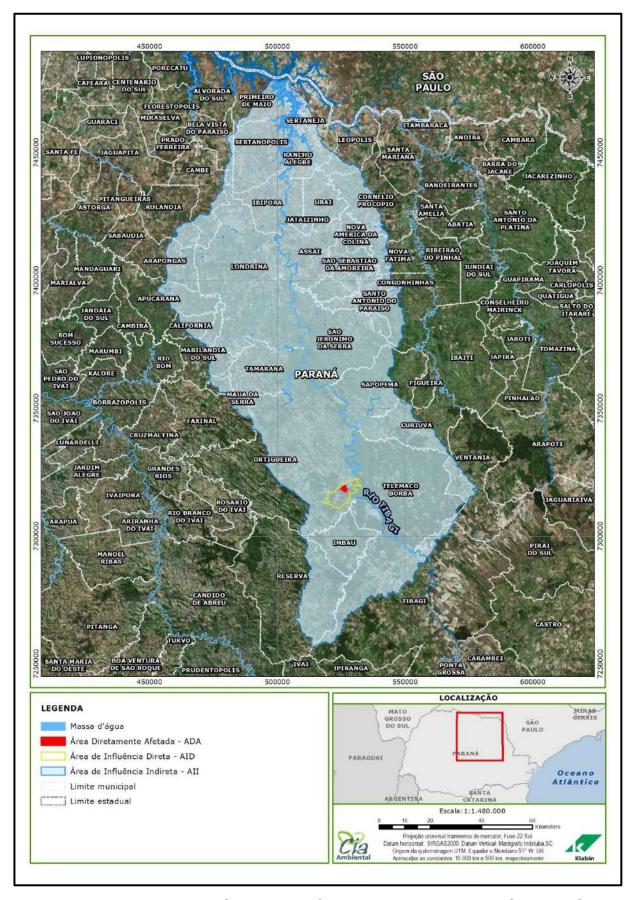


Figura 27 - Delimitação da área de influência indireta dos meios físico e biótico.

4.1.3.2. Área de influência indireta do meio socioeconômico

A área de influência indireta do empreendimento para o meio socioeconômico corresponde aos limites municipais de Imbaú, Ortigueira e Telêmaco Borba (figura 28), dado que os principais aspectos e impactos de influência indireta ocorrerão nestes municípios. Por exemplo, seja quanto à concentração de fluxos viários, de materiais, funcionários, maquinários, demanda por infraestrutura e serviços para a mão de obra (saúde, educação, hospedagem, etc.), geração de tributação, emprego indireto e de efeito renda, entre outras dimensões pertinentes ao meio socioeconômico.

Salienta-se que a Klabin tem como área de atuação florestal no Paraná aproximadamente 26 municípios (KLABIN, s.d), porém, deve-se ressaltar que a produção florestal é objeto de licenciamento ambiental próprio. Desta maneira, estes municípios que potencialmente podem fornecer matéria prima ao empreendimento compuseram a denominada Área de Influência Estratégia – AIE.

Área de Influência Estratégica - AIE

A área de influência estratégica (figura 29) compreende os 26 municípios que a empresa Klabin possui unidades florestais no Paraná e que podem fornecer matéria prima na operação do empreendimento, entre os quais: Arapoti; Campina do Simão; Cândido de Abreu; Congonhinhas; Curiúva; Faxinal; Figueira; Guarapuava; Ibaiti; Imbaú; Ipiranga; Japira; Londrina; Ortigueira; Pinhalão; Reserva; Rio Branco do Ivaí; Rosário do Ivaí; Santo Antônio do Paraíso; São Jerônimo da Serra; Sapopema; Telêmaco Borba; Tibagi; Tomazina; Turvo e Ventania.

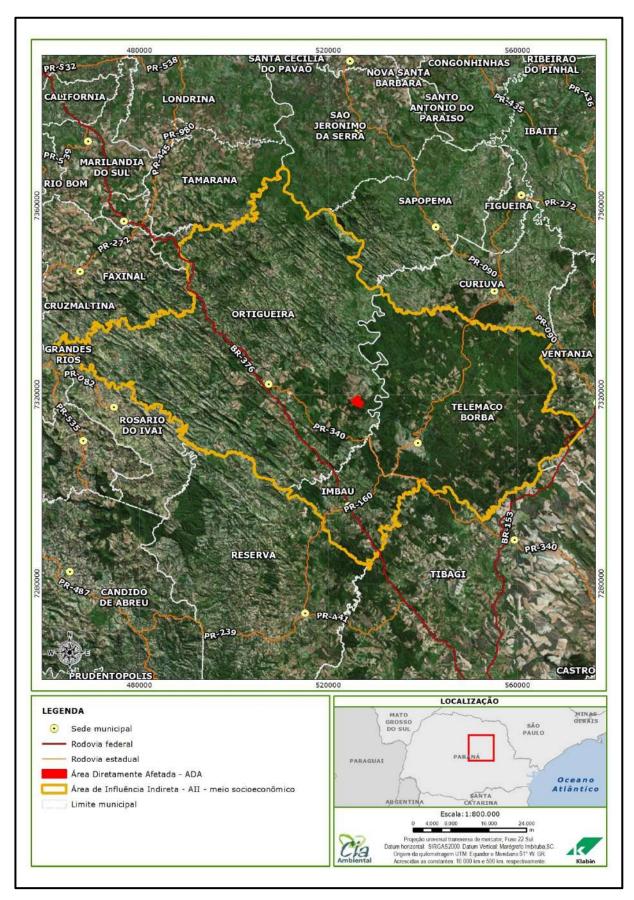


Figura 28 - Delimitação da área de influência indireta do meio socioeconômico.

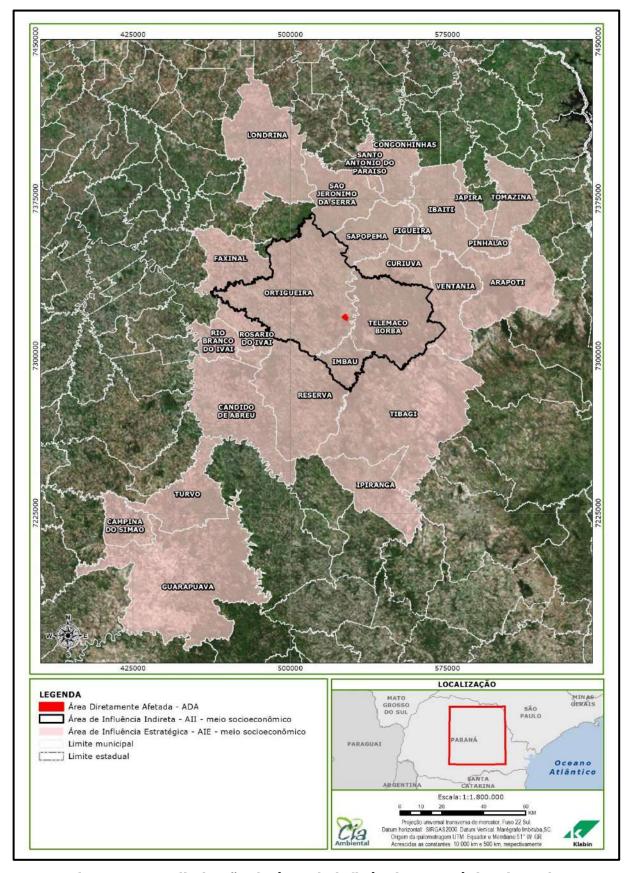


Figura 29 – Delimitação da área de influência estratégica do meio socioeconômico.

4.2. Compatibilidade do empreendimento com a legislação

A elaboração do presente estudo foi pautada pelo princípio da responsabilidade socioambiental, entendida como a responsabilidade de uma organização pelos impactos de suas decisões e atividades na sociedade e no meio ambiente, por meio de um comportamento ético e transparente, que contribui para o desenvolvimento sustentável, inclusive a saúde e bem estar da sociedade, que leva em consideração as expectativas das partes interessadas, que está em conformidade com a legislação aplicável e é consistente com as normas internacionais de comportamento, estando integrada em toda a organização e sendo praticada em suas relações.

Com vistas a obter a segurança jurídica necessária a partir do conhecimento do conjunto de leis e normas que regem a preservação do а seus meio ambiente, relativo todos fatores (físico, socioeconômico), ao longo do presente estudo foram indicadas e observadas as limitações administrativas impostas pelo poder público e considerados todos os dispositivos legais em âmbito federal, estadual e municipal, relacionadas tanto ao processo de licenciamento ambiental, quanto às atividades necessárias para a implantação e operação do projeto e, ainda, referentes à utilização, proteção, conservação dos recursos ambientais, ao uso e ocupação do solo, bem como aqueles que definem os parâmetros e metodologias de análise de variáveis ambientais.

Para isso, foi efetuado um levantamento da legislação seguido da análise da aplicabilidade e compatibilidade do empreendimento com os requisitos legais específicos.

A partir do exame da legislação incidente e aplicável ao empreendimento, com ênfase nas questões relacionadas ao processo de licenciamento ambiental, às medidas de controle e proteção ambientais necessárias e

aos parâmetros e metodologias de análise das variáveis ambientais, foi possível concluir que há de fato compatibilidade da proposta para o empreendimento com a legislação ambiental incidente sobre o projeto e sua área de influência, considerando também as áreas de interesse ambiental que deveriam ser consideradas e as restrições à ocupação aplicáveis.

Especificamente, partindo de um ponto mais abrangente, na esfera federal, a Lei nº 6.938/1981 que dispõe sobre a Política Nacional do Meio Ambiente, no seu art. 2º, I, qualifica o meio ambiente como patrimônio público. Esse conceito foi recepcionado pela Constituição Federal que deu ênfase à proteção ambiental estabelecendo no seu art. 225, que "todos têm direito ao meio ambiente ecologicamente equilibrado, bem de uso comum do povo e essencial à sadia qualidade de vida, impondo-se ao Poder Público e à coletividade o dever de defendê-lo e preservá-lo para as presentes e futuras gerações". Neste sentido, preceituou ainda no parágrafo 1.º, inciso IV, do mesmo artigo 225, que:

"para assegurar a efetividade desse direito (ao meio ambiente ecologicamente equilibrado), incumbe ao Poder Público: exigir, na forma de lei, para instalação de obra ou atividade potencialmente causadora de significativa degradação do meio ambiente, estudo prévio de impacto ambiental, a que se dará publicidade"

Portanto, em se tratando de *bem de uso comum do povo*, há uma grande e detalhada regulamentação acerca da forma como deve se dar qualquer interferência dos particulares neste patrimônio público que é o meio ambiente. Dessa forma, não há dúvida de que não é permitido ao particular interferir de qualquer forma no meio ambiente sem a autorização do poder público, tutor desse patrimônio.

A competência legislativa em matéria ambiental prevista no artigo 24 da Constituição foi fixada de forma concorrente entre a União, os Estados e os Municípios para legislar sobre:

"Art. 24. (...)

VI - Florestas, caça, pesca, conservação da natureza, defesa do solo e dos recursos naturais, proteção do meio ambiente e controle de poluição;

VII - Proteção ao patrimônio histórico, cultural, artístico, turístico e paisagístico;

VIII - Responsabilidade por dano ao meio ambiente, ao consumidor, a bens e direitos de valor artístico, estético, histórico, turístico e paisagístico;

(...)

- § 1°. No âmbito da legislação concorrente, a competência da União limitar-se-á a esclarecer normas gerais.
- § 2°. A competência da União para legislar sobre normas gerais exclui a competência suplementar dos Estados.
- § 3°. Inexistindo lei federal sobre normas gerais, os Estados exercerão a competência legislativa plena, para atender as suas peculiaridades.
- § 4°. A superveniência da lei federal sobre normas gerais suspende a eficácia da lei estadual, no que lhe for contrário"

Considerando o sistema de competência estabelecido entre os entes federativos, surge a necessidade de observar atentamente não apenas a legislação federal, mas também, da mesma forma, a legislação ambiental local. Em função disso, ao longo de todo o presente estudo foram observadas tanto a Legislação Ambiental Federal, quanto a Estadual e a Municipal relacionada ao empreendimento.

Quanto às exigências para as licenças, no âmbito da legislação federal infraconstitucional, a já mencionada Política Nacional do Meio Ambiente (Lei nº 6.938/81) que foi recebida pelo texto constitucional com *status* de Lei Complementar, além de definir os objetivos da Política Nacional do Meio Ambiente, cria o Sistema Nacional do Meio Ambiente – SISNAMA, do

qual passam a fazer parte os órgãos e entidades da União, dos Estados, do Distrito Federal e dos Municípios, bem como as Fundações instituídas pelo Poder Público, responsáveis pela proteção e melhoria da qualidade ambiental.

Seguindo a lógica do sistema, o senhor do licenciamento, responsável por conferir ao particular a licença para intervir no meio ambiente é o Órgão competente integrante do SISNAMA (Lei nº 6.938/1981, art. 6º, e LC 140/2011, arts. 7º, XIV; 8º, XIV e XV; 9º, XIV e 10). Dessa forma, não há dúvida de que o Poder Público é o senhor do policiamento das questões ambientais. O Ministério Público é o legitimado processualmente para mover as medidas judiciais, mas não é o senhor administrativo do licenciamento ambiental (STJ, REsp. nº 763.377/RJ, rel. Min. Francisco Falcão, 1ª T., DJU 27.08.2007).

Feitas as considerações sobre o sistema, a proteção do meio ambiente não deve resultar no impedimento ao desenvolvimento. Da mesma forma, não é razoável defender o desenvolvimento predatório. O que se faz necessário é promover o desenvolvimento em harmonia com o meio ambiente.

Essa é a ideia de "desenvolvimento sustentável", que tomou corpo nas últimas décadas e norteia a ação dos órgãos públicos encarregados da defesa do meio ambiente. No Brasil, são as resoluções do CONAMA que estabelecem normas e padrões compatíveis com o meio ambiente ecologicamente equilibrado.

Além do CONAMA (Conselho Nacional do Meio Ambiente – órgão consultivo e deliberativo) compõem o SISNAMA, um órgão superior de assessoria ao Presidente da República (Conselho de Governo), o Ministério do Meio Ambiente (MMA) como órgão central, o IBAMA como órgão

executor, e os órgãos seccionais (entidades estaduais responsáveis pela execução de programas, projetos e pelo controle e fiscalização de atividades capazes de provocar a degradação ambiental) e locais (entidades municipais, responsáveis pelo controle e fiscalização dessas atividades, nas suas respectivas jurisdições).

As competências do CONAMA foram estabelecidas pela Lei nº 8.028/1990. Esta lei define ainda os instrumentos para a execução da Política Nacional do Meio Ambiente destacando, entre outros, o zoneamento ambiental, a avaliação dos impactos ambientais, o licenciamento de atividades efetivas ou potencialmente poluidoras, o sistema nacional de informações sobre o meio ambiente, o cadastro técnico federal de atividades e instrumentos de defesa ambiental e de atividades potencialmente poluidoras.

O Decreto nº 88.351/83 regulamentou a Lei nº 6.938/81 e estabeleceu no seu Capítulo IV os critérios para licenciamento das atividades modificadoras do meio ambiente.

O Decreto nº 99.274/90, procurando incorporar os avanços legislativos verificados principalmente após a implantação da nova ordem constitucional brasileira, em seu art. 17, § 1.º, regulamentou a competência do CONAMA para estabelecer normas e critérios para o licenciamento de atividades de efetiva ou potencialmente poluidoras, bem como para estabelecer critérios e padrões relativos ao controle e manutenção da qualidade do meio ambiente.

Com base nisso, o CONAMA editou a Resolução nº 237, de 19 de dezembro de 1997, alterando parcialmente a Resolução n.º 01/86 (que dispões sobre atividades para cujo licenciamento se fará necessário a elaboração do estudo de impacto ambiental - EIA e respectivo relatório de impacto ambiental - RIMA) e tratando do licenciamento ambiental de

forma mais sistematizada. Cabe indicar que as atividades de ampliação de empreendimento industriais não são indicadas pela referida resolução como passíveis de EIA/RIMA.

A Resolução CONAMA nº 237/97 estabelece estarem sujeitos ao licenciamento ambiental os empreendimentos e atividades relacionadas em seu Anexo I, dentre as quais constam a fabricação de celulose, papel e papelão. Conforme artigo 2.º desta resolução as ampliações também dependerão do prévio licenciamento do órgão ambiental competente.

Considerando a necessidade de fixar um critério para o exercício da competência para o licenciamento a que se refere o art. 10 da Lei nº 6.938/81, a Resolução CONAMA nº 237/97 também estabelece que empreendimentos e atividades sejam licenciados em um único nível de competência, conforme estabelecido nos seus artigos.

O artigo 5.º dessa resolução estabelece a competência do órgão ambiental estadual para o licenciamento ambiental de empreendimentos e atividades

- I localizados ou desenvolvidos em mais de um Município ou em unidades de conservação de domínio estadual ou do Distrito Federal;
- II localizados ou desenvolvidos nas florestas e demais formas de vegetação natural de preservação permanente relacionadas no artigo 2º da Lei nº 4.771, de 15 de setembro de 1965, e em todas as que assim forem consideradas por normas federais, estaduais ou municipais;
- III cujos impactos ambientais diretos ultrapassem os limites territoriais de um ou mais Municípios;
- IV delegados pela União aos Estados ou ao Distrito Federal, por instrumento legal ou convênio.

No presente caso, o órgão ambiental estadual, o Instituto Ambiental do Paraná – IAP é o responsável pelo licenciamento e poderá considerar o exame técnico procedido pelos órgãos ambientais do município em que se

localiza o empreendimento e dos órgãos intervenientes, observada a regra do art. 13 da Lei Complementar nº 140/2011, que estabelece o nível único de competência para o licenciamento ambiental e, ainda, a não vinculação das suas decisões em relação à manifestação dos órgãos intervenientes (art. 13, §1º).

No Estado do Paraná, a Secretaria do Meio Ambiente e o IBAMA – no exercício da sua competência – trabalham sob estreita vigilância da coletividade, que tem participação assegurada no próprio processo de licenciamento. No caso do empreendimento em análise, a competência estadual é exercida na fiscalização e acompanhamento das obras.

A Secretaria de Estado do Meio Ambiente e Recursos Hídricos (SEMA) constitui órgão de primeiro nível hierárquico da administração estadual, de natureza substantiva, e tem por finalidade formular e executar as políticas de meio ambiente, de recursos hídricos, florestal, cartográfica, agrária-fundiária, de controle da erosão e de saneamento ambiental. A SEMA atua com estrita observância dos critérios gerais fixados e quando a norma fundamental a permite.

Para executar a política estabelecida, a Secretaria conta com o corpo técnico do Instituto Ambiental do Paraná (IAP) que possui estrutura técnica especializada, além da Polícia Ambiental, para fins de controle e fiscalização e também a atribuição de conceder licenciamento ambiental no âmbito da sua competência.

O Conselho Estadual do Meio Ambiente (CEMA) desempenha papel normativo recursal.

Todos estes órgãos técnicos têm uma participação efetiva no planejamento e no licenciamento ambiental, cada qual cumprindo as suas

funções e observando as exigências dos programas e políticas públicas definidas pelo Governo do Estado.

No estado paranaense as diretrizes para o licenciamento de atividades causadoras de impactos ambientais, e, especificamente da atividade em estudo, foram consolidadas nas seguintes normas:

- Resolução CEMA nº 88, de 30 de agosto de 2013, que estabelece critérios, procedimentos e tipologias para o licenciamento ambiental municipal de atividades, obras e empreendimentos que causem ou possam causar impacto de âmbito local;
- Resolução CEMA nº 70, de 1º de outubro de 2009, que estabelece condições e critérios para licenciamento ambiental de empreendimentos industriais;
- Portaria IAP nº 158, de 10 de setembro de 2009, que aprova a matriz de impactos ambientais provocáveis por empreendimentos ou atividades potencial ou efetivamente impactantes, os respectivos Termos de Referência padrão e dá outras providências;
- Resolução CEMA nº 65, de 01 de julho de 2008, que dispõe sobre o licenciamento ambiental, estabelece critérios e procedimentos a serem adotados para as atividades poluidoras, degradadoras e/ou modificadoras do meio ambiente e adota outras providências;
- Resolução SEMA nº 31, de 24 de agosto de 1998, que dispõe sobre
 o licenciamento ambiental, autorização ambiental, autorização
 florestal e anuência prévia para desmembramento e parcelamento
 de gleba rural.

A Resolução CEMA nº 65/2008 estabelece os critérios gerais para licenciamento ambiental no Estado do Paraná e indica em seu artigo 80.º que os critérios específicos para diferentes tipologias de empreendimento serão estabelecidos por resoluções específicas. Neste sentido, o

licenciamento da atividade de fabricação de papel e celulose enquadra-se nas diretrizes da Resolução CEMA nº 70/2009 (empreendimentos e atividades industriais), que estabelece que para empreendimentos em operação que venham a sofrer ampliação o procedimento de licenciamento deve se dar através das etapas de licença prévia (LP), de instalação (LI) e operação (LO), justificando o presente Relatório Ambiental Preliminar (RAP) como instrumento de apresentação de diagnóstico ambiental, avaliação de impactos e proposição de medidas para licenciamento prévio.

A Resolução CEMA nº 88/2013 versa sobre o licenciamento no âmbito municipal e indica os critérios para que os municípios paranaenses sejam habilitados a realizar o licenciamento de empreendimentos de impacto local. Define também a tipologia de empreendimentos para licenciamento municipal. A tipologia de empreendimento em estudo não se enquadra nas caraterísticas definidas por esta resolução, de forma a corroborar o fato de que o licenciamento ambiental atual sé dá no âmbito estadual, sendo o órgão responsável o Instituto Ambiental do Paraná. Também, cabe informar que o município de Ortigueira, onde se localiza a fábrica da Klabin a ser ampliada, ainda não se encontra habilitado para o licenciamento municipal.

No que se refere aos critérios e padrões relativos ao controle e manutenção da qualidade do meio ambiente, a Resolução CEMA nº 70/2009, além dos critérios de licenciamento, também estipula padrões para lançamento de efluentes líquidos industriais e de emissões atmosféricas.

Quanto à proteção e qualidade dos recursos hídricos há diversos atos legais, federais e estaduais, associados ao tema, sendo que o

empreendimento da Klabin foi planejado em consonância com tais normas, entre elas:

- Lei Federal nº. 9.433, de 8 de janeiro de 1997 Institui a Política Nacional de Recursos Hídricos.
- Lei Estadual nº 12.726, de 26 de novembro de 1999 Institui a Política Estadual de Recursos Hídricos.
- Decreto Estadual nº 9.957, de 23 de janeiro de 2014 Dispõe sobre o regime de outorga de direitos de uso de recursos hídricos no Paraná.
- Resolução CONAMA nº 430/2011, de 13 de maior de 2011 Dispõe sobre condições e padrões de lançamento de efluentes, complementa e altera a Resolução CONAMA 357/2005.
- Resolução CONAMA nº 357, de 17 de março de 2005 Dispõe sobre a classificação dos corpos hídricos e diretrizes para seu enquadramento, bem como estabelece padrões de qualidade da água.
- Resoluções SEMA nº 39, de 22 de novembro de 2004 Dispõe sobre os usos considerados insignificantes para fins de outorga de uso da água, bem como dispõe sobre os demais usos independentes de outorga.
- Portaria Ministério da Saúde nº 5, de 28 de setembro de 2017 –
 Consolida as normas sobre as ações e serviços de saúde do Sistema
 Único de Saúde e dispõe sobre os procedimentos de controle e de
 vigilância da qualidade da água para consumo humano e seu padrão
 de potabilidade (anexo XX).
- Portaria SUREHMA nº 003, de 21 de março de 1991 Enquadra os cursos d'água da Bacia do Rio Tibagi.

As atividades de fabricação de celulose e papel efetuadas pela Klabin em Ortigueira requerem uso de água no processo produtivo, bem como geram

efluentes que são lançados, após o devido tratamento, em corpo hídrico próximo (Rio Tibagi). A exploração dos recursos hídricos deve ser acompanhada do atendimento às obrigações legais associadas à prevenção da poluição e manutenção da qualidade das águas. Neste sentido, tais usos da água são sujeitos à outorga conforme estipulado pelo Decreto Estadual nº 9.957/2014. O Rio Tibagi, localizado próximo ao empreendimento, é um rio de domínio estadual de forma que o processo de outorga para uso de suas águas é efetivado perante o órgão estadual Instituto das Águas do Paraná.

Para efetivação tanto da captação de água quanto do lançamento dos efluentes industriais no Rio Tibagi dentro das condições legais, a Klabin possui as devidas outorgas emitidas pelo Instituto das Águas do Paraná:

- Portaria nº 208/2016 DPCA, de 23 de fevereiro de 2016 outorga de direito para captação/derivação com vazão outorgada de até 8.400,00 m³/h e vigência por 10 anos.
- Portaria nº 289/2016 DPCA, de 04 de março de 2016 outorga de direito para lançamento de efluentes com vazão máxima de 7.400,00 m³/h e vigência de 6 anos. Estipula as concentrações máximas dos parâmetros DBO (30 mg/L), DQO (230 mg/L), sólidos suspensos (100 mg/L) e fósforo (0,3 mg/L), bem como os locais e a periodicidade (quinzenal) de monitoramento do efluente tratado e do corpo hídrico receptor.

O projeto de ampliação da fábrica prevê um acréscimo das vazões atuais de captação e lançamento. No entanto, os valores tanto das vazões quanto dos limites de qualidade dos efluentes tratados previstos nas outorgas vigentes continuarão a ser atendidos mesmo com a ampliação.

No que se refere à qualidade da água, a Resolução CONAMA nº 357/2005 (complementada pela Resolução CONAMA nº 430/2011) classifica os corpos de água com relação à qualidade requerida para os usos preponderantes que define, bem como estipula as condições e padrões de qualidade das águas. Os padrões de qualidade das águas estabelecem limites individuais de concentração de diferentes substâncias em cada classe de corpo da água.

O Rio Tibagi é enquadrado como classe 2 pela Portaria SUREMA nº 003/1991 dessa forma os padrões de qualidade da água a serem atendidos são os estipulados no artigo 15º da referida resolução CONAMA.

As condições e padrões de lançamento de efluentes a serem atendidas pelo empreendimento são estipulados pela Resolução CONAMA nº 430/2011, Resolução CEMA nº 70/2009 (padrões para lançamento de efluentes líquidos industriais), bem como portaria da outorga específica para o empreendimento.

No caso de uso de águas captadas para consumo humano deve haver análise de conformidade pelos padrões do Ministério da Saúde, bem como realização de laudos de águas para atestar a sua qualidade, segundo a Portaria do Ministério da Saúde nº 005/ 2017.

As atividades previstas após a ampliação da fábrica da Klabin são passíveis de geração de emissões atmosféricas e ruídos.

A legislação federal estabelece padrões específicos de emissão atmosférica para o setor de celulose e papel através da Resolução CONAMA nº 382/2006, em seu anexo VII. Da mesma forma, o Estado do Paraná legisla sobre o tema de forma geral através da Lei Estadual nº 13.806/2002 e de forma específica, considerando padrões de emissão por

poluentes e por tipologia de fonte, através da Resolução SEMA nº 016/2014. Além do atendimento aos padrões de emissão o empreendedor também devera atender aos padrões de qualidade do ar definidos pela Resolução CONAMA nº 003/1990. Já no caso da emissão de ruídos, devem ser atendidos os critérios e padrões estipulados pela Resolução CONAMA nº 001/1990, a qual é vinculada à NBR 10151, que dispõe sobre avaliação de ruído em áreas habitadas visando o conforto da comunidade.

A gestão de resíduos sólidos executada atualmente na fábrica da Klabin em Ortigueira, a qual será igualmente aplicada durante as obras e operação da ampliação, atende aos preceitos legais estipulados na legislação federal e estadual: Lei Estadual nº 12.493/1999; Política Nacional de Resíduos Sólidos (Lei Federal nº 12.305/2010) que visa a gestão integrada e o gerenciamento ambientalmente adequado dos resíduos sólidos em todo o país e integra a Política Nacional do Meio Ambiente (Lei Federal nº 6.938/1981); Política Federal de Saneamento Básico (Lei Federal nº 11.445/2007).

Sobre o tema resíduos, cabe mencionar a Portaria IAP nº 202/2016 que indica a necessidade de obtenção de autorização ambiental para as atividades de gerenciamento de resíduos sólidos. Tal autorização deve ser solicitada ao Instituto Ambiental do Paraná pelo gerador do resíduo e deve abranger as atividades de transbordo, transporte, armazenamento, tratamento e disposição final do resíduo sólido.

É importante ressaltar que a Klabin é uma empresa engajada na adoção das melhores tecnologias disponíveis (BAT – Best Available Technologies) e melhores práticas de gerenciamento ambiental (BPEM – Best Practice Environmental Management). Neste sentido, o projeto prevê a implantação das melhores práticas e tecnologias disponíveis para proteção do meio ambiente em todos os seus aspectos, ou seja, uso racional de

água, minimização da geração de efluentes líquidos, controle das emissões atmosféricas e redução, reuso e reciclagem de resíduos sólidos.

As unidades industriais da Klabin contam com sistema de gestão ambiental certificado com ISO 14.001 e uma forte política de sustentabilidade que se fundamenta nos seguintes princípios (KLABIN, 2018b):

- Buscar a qualidade competitiva, visando a melhoria sustentada dos seus resultados, pesquisando, desenvolvendo e aperfeiçoando continuamente os processos, produtos e serviços, existentes e novos, para atender às expectativas dos clientes, colaboradores, acionistas, comunidade e fornecedores e demais públicos de relacionamento.
- Promover a colaboração com clientes, fornecedores, academia e outras partes interessadas na busca por inovação para os produtos e processos, e por melhorias para a cadeia de valor.
- 3. Garantir a valorização da base florestal a partir de sua transformação em produtos sustentáveis e competitivos.
- Assegurar o suprimento de madeira plantada para as suas unidades industriais, de forma sustentada, sem agredir os ecossistemas naturais associados, nas operações próprias e em fomentados.
- 5. Praticar e promover a reciclagem de fibras celulósicas em sua cadeia produtiva.
- 6. Evitar e prevenir a poluição por meio da redução dos impactos ambientais relacionados a efluentes hídricos, resíduos sólidos e emissões atmosféricas, considerando constantemente esses elementos na manutenção e melhoria de processos produtivos, no desenvolvimento e aperfeiçoamento de produtos, em operações florestais e logísticas, e no monitoramento de fornecedores críticos em função de aspectos econômicos e socioambientais.

- 7. Buscar aplicar as mais eficientes e atuais tecnologias e soluções de engenharia na implantação de novos projetos e empreendimentos, zelando pela proteção da saúde humana, dos recursos naturais e do meio ambiente.
- 8. Promover o crescimento pessoal e profissional dos seus colaboradores e a busca da melhoria contínua das condições de trabalho, saúde e segurança.
- Promover uma cultura de disseminação da ética e desenvolver as melhores práticas de governança corporativa.
- 10. Observar os Objetivos do Desenvolvimento Sustentável (ODS) da Organização das Nações Unidas (ONU) e orientar suas ações e investimentos para o fortalecimento dessa agenda, agindo de modo propositivo em favor do desenvolvimento socioambiental positivo dos locais onde atua.
- 11. Praticar a responsabilidade social com foco nas comunidades onde atua de acordo com a plataforma de investimento social privado, com base nas linhas de atuação: desenvolvimento local e educação.
- 12. Atender à legislação e às normas aplicáveis ao produto, meio ambiente, saúde e segurança.
- 13. Assegurar que as operações da companhia busquem constantemente a redução das emissões de Gases de Efeito Estufa (GEE).

A avaliação da compatibilidade do empreendimento com a legislação vigente levou em conta a possível interferência em ambientes ecologicamente significativos definidos por lei. Para tanto, foram avaliados os principais atos legais relacionados à proteção à flora, unidades de conservação e áreas prioritárias para conservação e restauração correlatos às atividades de ampliação do empreendimento:

- Lei Federal nº 12.727/2012 Estabelece normas gerais sobre a proteção da vegetação, áreas de preservação permanente e as áreas de Reserva Legal; a exploração florestal, o suprimento de matéria-prima florestal, o controle da origem dos produtos florestais e o controle e prevenção dos incêndios florestais, e prevê instrumentos econômicos e financeiros para o alcance de seus objetivos.
- Lei Federal nº 12.651/2012 Código Florestal.
- Lei Federal nº 9.985, de 18 de julho de 2000 Lei do SNUC (Sistema Nacional de Unidades de Conservação).
- Decreto Federal nº 5.092/2004 Define regras para a identificação de áreas prioritárias para a conservação, utilização sustentável e repartição dos benefícios da biodiversidade, no âmbito das atribuições do Ministério do Meio Ambiente.
- Portaria MMA nº 009, de 23 de janeiro de 2007 reconhece as áreas prioritárias para conservação, utilização sustentável e repartição de benefícios da biodiversidade brasileira.
- Resolução CONAMA nº 428, 17 de dezembro de 2010 Dispõe sobre a autorização e ciência do órgão responsável pela administração da Unidade de Conservação (UC).
- Resolução CONAMA nº 369, de 28 de março de 2006 Dispõe sobre os casos excepcionais, de utilidade pública, interesse social ou baixo impacto ambiental, que possibilitam a intervenção ou supressão de vegetação em área de preservação permanente.
- Resolução CONAMA nº 303/202 Estipula os parâmetros, definições
 e limites de áreas de preservação permanentes.
- Resolução Conjunta SEMA/IAP nº 005, de 29 de setembro de 2009 –
 Estabelece e define o mapeamento das Áreas Estratégicas para a
 Conservação e a Recuperação da Biodiversidade no Paraná.

Por utilizarem grande quantidade de matéria-prima florestal, as atividades da Klabin em Ortigueira seguem o estipulado pela Lei Federal nº 12.727/2012, com relação à exploração florestal, suprimento de matéria-prima florestal e o controle da origem dos produtos florestais.

A Klabin é referência mundial em manejo florestal por seu alto nível de comprometimento com o equilíbrio dos ecossistemas e a preservação da biodiversidade. Toda madeira utilizada nos processos produtivos é oriunda de florestas plantadas. As florestas da Klabin têm certificação FSC® (Forest Stewardship Council®) o que garante que o manejo é realizado de forma ambientalmente correta.

A Lei nº 12.651/2012 corresponde ao Código Florestal e, dentre outros aspectos, determina a proteção de florestas nativas e define as áreas de preservação permanente – APPs nas quais a conservação da vegetação é obrigatória numa faixa de 30 a 500 metros para os cursos d'agua, variando proporcionalmente de acordo com a sua largura, de 30 a 100 metros no entorno de lagos e lagoas, no entorno de reservatórios, além dos topos de morro, encostas com declividade superior a 45°, locais acima de 1.800 metros de altitude, manguezais, restingas, entre outros (art. 4°).

Da mesma forma a Resolução CONAMA nº 303/202, anterior ao Código Florestal, já estipulava os parâmetros, definições e limites de áreas de preservação permanentes.

O mesmo Código Florestal que impõe restrições para as áreas consideradas como de preservação permanente, permite a supressão de vegetação ou a intervenção nessas áreas desde que as obras sejam consideradas de utilidade pública ou interesse social (art. 8º).

Há, desde 2006, a Resolução CONAMA nº 369 que dispõe sobre os casos excepcionais de utilidade pública, interesse social ou baixo impacto ambiental, que possibilitam a intervenção ou supressão de vegetação em APP, complementando assim a normatização então existente em relação a essa questão que veio a ser incorporada na própria Lei nº 12.651/2012.

A Resolução CONAMA nº 369 também consagra a obrigatoriedade de toda obra, plano, atividade ou projeto, seja de utilidade pública, interesse social ou de baixo impacto ambiental, obter do órgão ambiental competente a autorização para intervenção ou supressão de vegetação em APP, em processo administrativo próprio, ou no âmbito do processo de licenciamento ou autorização (art. 4º). Mesmo nestes casos, a intervenção ou supressão eventual e de baixo impacto ambiental não poderá comprometer as funções ambientais das APPs.

Cabe indicar que o projeto em análise localiza-se fora e afastado de unidades de conservação ou de áreas prioritárias para a conservação, conforme definidas pela Portaria MMA nº 009/2007.

No que se refere às áreas estratégicas para a conservação e recuperação da biodiversidade, definidas na legislação estadual pela Resolução Conjunta SEMA/IAP nº 005/2009, verifica-se que o atual projeto se encontra em região com "Áreas Prioritárias para Restauração". Entretanto, como o projeto consiste na ampliação de atividades em local onde já houve supressão de vegetação quando da instalação do projeto Puma, não há previsão de supressão de vegetação nativa para a ampliação da fábrica. Portanto, não haverá nenhuma intervenção em áreas estratégicas ou com limitação imposta.

Da mesma forma, a área de ampliação da fábrica encontra-se dentro das propriedades da própria Klabin. As propriedades possuem reserva legal

averbada junto às matrículas imobiliárias e estão devidamente cadastradas junto ao Cadastro Ambiental Rural (CAR). Para a ampliação do empreendimento não são previstas quaisquer interferências com estas áreas.

Sobre a relevante questão da proteção ao Patrimônio Histórico e Arqueológico, temos que a Constituição Federal declara os conjuntos urbanos e sítios de valor histórico, paisagístico, artístico, arqueológico, paleontológico, ecológico e científico como patrimônio cultural brasileiro (art. 216, V), além de ser considerado bem da União (art. 20, X).

A proteção jurídica ao patrimônio nacional de cunho arqueológico e histórico ganhou força ainda na década de 60 quando da promulgação da Lei Federal nº 3.924 de 26 de Julho de 1961, que previu a guarda e proteção pelo Poder Público dos elementos que constituíssem monumentos arqueológicos ou pré-históricos, seguindo obviamente os ditames da norma fundamental da época.

Diante do aparato jurídico e institucional criado, a Secretaria do Patrimônio Histórico e Artístico Nacional – SPHAN, e posteriormente o Patrimônio Histórico e Artístico Nacional -Instituto do estabeleceram procedimentos específicos regulamentando os pedidos de permissão, autorização e comunicação prévia de desenvolvimento de pesquisas e escavações arqueológicas (Portaria SPHAN nº 007 de 01 de Dezembro de 1988), bem como os procedimentos administrativos a serem observados nos processos de licenciamento ambiental de empreendimentos potencialmente capazes de afetar o arqueológico (Instrução Normativa IPHAN nº 01 de 26 de março de 2015).

É importante salientar, todavia, que qualquer avaliação da potencialidade de impactos decorrentes do empreendimento sobre os eventuais recursos

arqueológicos e históricos está diretamente vinculada às condições de preservação do solo da área do estudo.

Durante o processo de licenciamento do projeto Puma, ocorrido ao longo dos anos de 2012 a 2016, foram elaborados estudos de patrimônio histórico e arqueológico abrangendo toda a área em que atualmente prevê-se a ampliação da fábrica. Os estudos foram pautados pela Portaria IPHAN nº 230/2002, incluindo execução de diagnóstico arqueológico não interventivo na área de influência, seguido de levantamento arqueológico de campo, bem como salvamento e resgate dos sítios encontrados. Também se procedeu com a execução de um plano de educação patrimonial para divulgação sobre o material encontrado. Ao final do trâmite junto ao IPHAN, através do processo nº 01508.000146/2012-59, o Instituto emitiu ofício com anuência à Licença de Operação do empreendimento (Ofício nº 903/15, de 21 de setembro de 2015).

Legislação municipal

Para avaliação da adequação do empreendimento à legislação municipal foi realizada consulta à base de dados de legislação do município de Ortigueira. As normas municipais relevantes no âmbito do empreendimento em análise se referem às que tratam do plano diretor, uso e ocupação do solo, obras e sistema viário:

- Lei Municipal nº 151/1990 Lei Orgânica do Município de Ortigueira
- Lei Municipal nº 1426/2014 Altera o Quadro Urbano, e dá outras providências.
- Lei Municipal nº 062/1985 Dispõe sobre o Código de Obras
- Lei Municipal Complementar nº 225/2017 Institui o perímetro urbano da sede do município de Ortigueira.
- Lei Municipal Complementar nº 193/2016 Dispõe sobre as normas que regulam a aprovação de projetos, o licenciamento de obras e

atividades, a execução, manutenção e conservação de obras no Município de Ortigueira e dá outras providências.

- Lei Municipal Complementar nº 192/2016 Dispõe sobre a Hierarquização do Sistema Viário de Ortigueira e dá outras providências.
- Lei Municipal Complementar nº 191/2016 Dispõe sobre o Parcelamento do Solo para fins urbanos e rurais no Município de Ortigueira e dá outras providências.
- Lei Municipal Complementar nº 190/2016 Dispõe sobre a Lei de Uso e Ocupação do Solo Urbano e Rural do Município de Ortigueira e dá outras providências.
- Lei Municipal Complementar nº 189/2016 Institui o perímetro urbano da sede do Município de Ortigueira.
- Lei Municipal Complementar nº 188/2016 Institui o Plano Diretor Municipal de Ortigueira, estabelece diretrizes gerais da política do desenvolvimento municipal e dá outras providências.

Para fins do licenciamento ambiental da Unidade Puma foi requerido junto ao município de Ortigueira a certidão de uso e ocupação do solo, em atendimento às resoluções CEMA nº 65/2008 e nº 70/2009 que indicam a necessidade de inclusão de tal documento junto ao pedido de licenciamento ambiental ao IAP. A certidão foi concedida pelo município atestando a fábrica da Klabin em Ortigueira está de acordo com a legislação municipal vigente.

Com base na ideia de "desenvolvimento sustentável", e de promoção do desenvolvimento em harmonia com o meio ambiente, em todo o estudo foram consideradas as previsões legais mais protetivas à preservação do meio ambiente.

Assim, quando existentes parâmetros locais mais rigorosos do que os estabelecidos na norma federal, considerou-se a norma local.

Desta forma, com o objetivo de estar perfeitamente compatível com os requisitos legais existentes, todos os programas de compensação adotam padrões para além do previsto na norma federal, quando for o caso, o que indiscutivelmente servirá para mitigar o impacto causado, sem necessidade de discutir a legalidade da norma mais restritiva.

4.2.1. Restrições à ocupação (áreas de interesse ambiental)

Com base no levantamento de legislação pertinente ao empreendimento, considerando especialmente as áreas de interesse ambiental (áreas de preservação permanente, reserva legal, unidades de conservação, terras indígenas, entre outras), bem como o Plano Diretor Municipal, verifica-se que não há restrição à ocupação na área de ampliação prevista.

Os mapas apresentados ao longo do texto de diagnóstico ambiental, principalmente a figura 57 (unidade de conservação), figura 58 (áreas prioritárias para a conservação), figura 60 (área de preservação permanente), figura 61 (áreas de reserva legal), e figura 74 (comunidades tradicionais e assentamentos rurais) demonstram essa situação.

Cabe observar que o empreendimento está inserido em área estratégica para a restauração, conforme apresentado na figura 59 (item 4.4.1.1.3). Contudo, não há restrições legais quanto ao uso do solo nestes locais e, consequentemente, não há impeditivos quanto à instalação do empreendimento.

4.3. Meio físico

4.3.1. Clima e condições meteorológicas

Embora as mesmas leis da física se apliquem tanto a clima como a condições de tempo, a climatologia é mais do que simplesmente um ramo da meteorologia. Condição de tempo é a condição da atmosfera num instante particular. Clima é o estado médio da atmosfera durante um período de tempo, que pode ser de semanas, anos, décadas ou até milênios (MAIDMENT, 1993).

Em estudos ambientais, a análise climatológica e/ou de condições de tempo (esta segunda para empreendimentos específicos¹) de determinada região contribui para a compreensão de aspectos da realidade local e para o prognóstico de possíveis impactos ambientais associados a padrões regionais ou a eventos extremos que possam ocorrer. Tendo isto em vista, a seguir são apresentados os principais aspectos climatológicos e de condições meteorológicas para a região do empreendimento.

4.3.1.1. Classificação climática de Köppen

Um ponto de partida para o estudo climatológico de uma determinada área é a avaliação de sua classificação conforme sistema de Köpper, proposto em 1900 e que se baseia no pressuposto de que a vegetação natural de cada grande região da Terra é essencialmente uma expressão do clima nela prevalecente.

¹ Demandam análise de condições de tempo (ex. médias horárias) estudos ambientais de empreendimentos para os quais são solicitados estudos de dispersão atmosférica para avaliação quantitativa dos reflexos de sua carga poluidora na qualidade do ar, como indústrias com fontes fixas de emissões atmosféricas, centrais termelétricas, centrais de tratamento térmico de resíduos (ex. incineração ou coprocessamento), entre outras.

Assim, as fronteiras entre regiões climáticas foram selecionadas para corresponder às áreas de predominância de cada tipo de vegetação, razão pela qual a distribuição global dos tipos climáticos e a distribuição dos biomas apresenta elevada correlação.

Recorrendo-se ao "Mapa dos Climas do Paraná, segundo a classificação de Köppen" (ITCG, 2008) - gerado a partir de dados do Sistema Meteorológico do Paraná (SIMEPAR) e disponibilizado nas extensões pdf e shapefile, tem-se que as classes de clima da área de influência direta (AID) correspondem a 'Cfa' - clima temperado úmido, e 'Cfb' - clima tropical úmido com verão temperado. A descrição das categorias climáticas existentes é apresentada na tabela a seguir.

Tabela 8 – Descrição das classes climáticas de Köppen na AID do empreendimento.

Classificação	Descrição
	Clima temperado úmido;
Cfa	 Temperatura máxima média superior a 22°C;
Cia	 Temperatura mínima média entre 0 e 18°C;
	 Chuvas distribuídas durante todo o ano e sem estação seca.
Cfb	 Clima temperado úmido com verão moderadamente quente; Temperatura do mês mais frio entre -3 e 18 °C; Temperatura do mês mais quente superior a 22 °C e, durante pelo menos quatro meses, temperatura média superior a 10 °C; Chuvas distribuídas durante todo o ano e sem estação seca, com precipitação sempre superior a 60 mm.

Fonte: Adaptado de Peel, Finlayson & McMahon (2007).

Como abordado anteriormente, trata-se de uma classificação indireta, baseada em padrões médios e no seu reflexo na composição vegetacional de uma região que auxilia preliminarmente à compreensão do panorama esperado, mas cujo estudo, todavia, é refinado através do aproveitamento de séries históricas suficientemente representativas de dados observacionais.

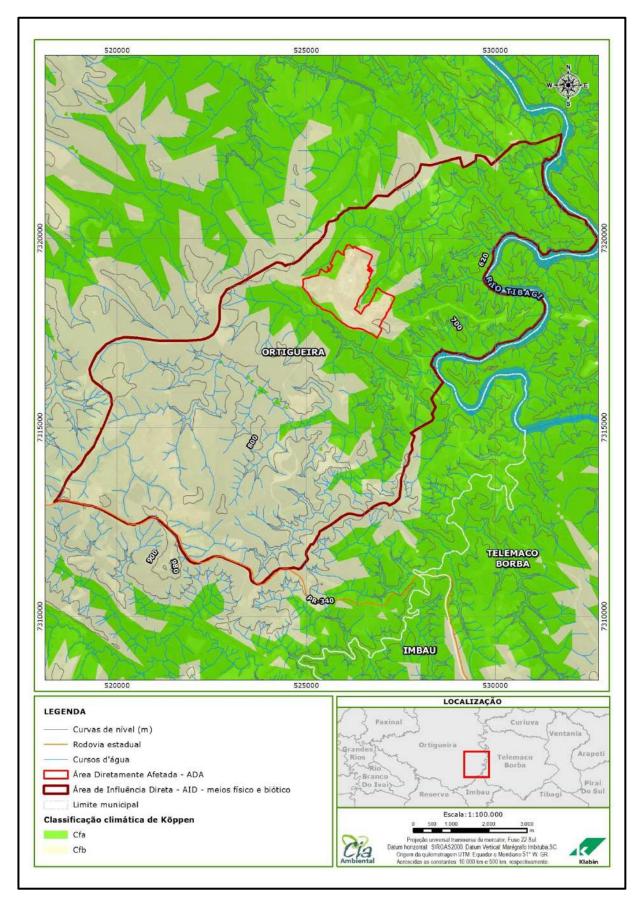


Figura 30 - Classificação climática de Köppen para a área de influência direta.

4.3.1.2. Caracterização do clima com dados de monitoramento

O clima não é uma feição estática que pode ser descrita uma única vez e válida para sempre através de médias de variáveis de tempo num determinado período (MAIDMENT, 1993).

Além da classificação segundo Köppen, apresentada anteriormente, a caracterização do clima da região pode ser obtida e refinada por meio de normais climatológicas, que consistem em médias referentes a um período padronizado de 30 anos e com data de início também padronizada², bem como por meio de dados de monitoramento com aproveitamento de conjuntos de dados mais recentes em relação ao período da última normal climatológica (1961-1990).

Desta maneira, para uma caracterização quantitativa de clima foram utilizados diferentes dados monitoramento para duas abordagens metodológicas, em paralelo:

- De avaliação de normais climatológicas, médias referentes a um período padronizado de 30 anos (1961-1990);
- De avaliação de demais médias históricas do monitoramento em estações espacialmente mais próximas ao empreendimento e/ou de dados mais recentes.

Para esta tratativa de elaboração do diagnóstico do clima regional recorrese aos resultados de monitoramento de parâmetros meteorológicos de duas estações convencionais de observação de superfície, escolhidas frente à disponibilidade de dados e proximidade com a área do

² Desde 1989, o Brasil e outros países membros da Organização Meteorológica Mundial (OMM) seguem os procedimentos gerais estabelecidos por esta para obtenção das Normais Climatológicas "Padronizadas", definidas como valores médios calculados para períodos consecutivos de 30 anos, iniciando-se em 1º de janeiro de 1901. Isto significa que atualmente pode haver até três Normais Climatológicas Padronizadas calculadas e publicadas para cada estação meteorológica convencional, que possibilitam comparações numa mesma base temporal: 1901-1930; 1931-1960; e 1961-1990 (INMET, 2018).

empreendimento. As informações das estações utilizadas são apresentadas na tabela 9, sendo apresentadas na sequência as tabelas resumo e os gráficos para cada parâmetro considerado.

Tabela 9 – Estações meteorológicas cujos dados de monitoramento são úteis à caracterização do clima da região do empreendimento.

Estação	Ivaí	Telêmaco Borba
Código/ sigla	OMM 83811	02450011
Município	Ivaí	Telêmaco Borba
Entidade responsável	INMET	IAPAR
Latitude	25,00°	24,20°
Longitude	50,85°	50,37°
Altitude (m)	808	768

Fonte: INMET (2018) e IAPAR (2018).

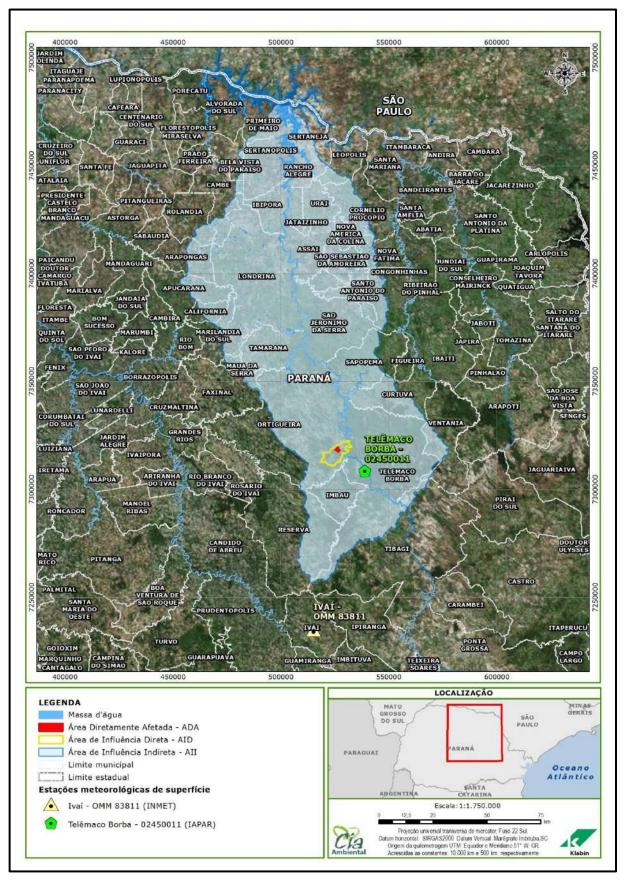


Figura 31 – Localização das estações meteorológicas de superfície úteis ao diagnóstico de clima.

Tabela 10 - Resumo das normais climatológicas (1961-1990) das principais variáveis da Estação Ivaí (OMM 83811).

-	Código:	83811		Estação:	Ivaí			UF:	PR	Lat.:	25°00'S	Long.:	50°51'W	Altit.(m):	808
	Parâmetro Parâmetro	Unidade	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez	Anual
ъ	Média compensada	(°C)	21,6	21,3	20,4	18,3	15,1	13,2	13,7	15,0	16,5	18,6	19,9	20,7	17,8
Temperatura	Máxima	(°C)	28,4	28	27,4	25	22,2	20,5	21,3	22,8	23,7	25,5	26,8	27,3	24,9
<u>ta</u>	Mínima	(°C)	16,7	16,7	15,5	13,6	9,9	8,1	8,2	9,2	11,1	13,2	14,5	15,8	12,7
be	Máxima	(°C)	38,2	34,4	33,9	31,2	28,7	27,3	29,1	31,1	34,9	33,3	37,1	34,1	38,2
eп	absoluta	(ano)	1961	1962	1964	1962	1967	1967	1967	1988	1988	1963	1985	1985	1961
-	Mínima	(°C)	9	8,7	3	2,4	-4,6	-5,9	-4,4	-6,3	-3	2,4	4,6	6,9	-6,3
	absoluta	(ano)	1985	1964	1987	1977	1962	1967	1965	1963	1964	1965	1964	1967	1963
	Acumulada	(mm)	193,8	122	140,5	125	163,7	99,1	109,2	76,1	120,1	154,1	135,1	150	1588,6
_	Máximo	(mm)	95,6	73	76,7	68,3	96,8	82,7	106,2	59,5	97,2	100,9	93,6	61,4	106,2
ção	absoluto 24h	(ano)	1963	1967	1967	1985	1989	1983	1983	1990	1979	1983	1961	1984	1983
Precipita	Dias pre ≥ 1 m	•	12	12	10	9	7	6	6	6	9	9	10	12	108
Je.	_ ,	(3 dias)	2	2	3	3	3	3	2	3	3	3	3	3	32
Д	Períodos s/	(5 dias)	1	1	2	2	2	2	2	2	2	2	2	2	20
	precipitação	(10 dias)	0	0	1	0	1	1	1	1	1	0	0	0	6
	Pressão atmosférica	(hPa)	923,3	924,2	925,1	925,9	928,4	929,9	930,2	929	928	926,2	924,4	923,1	926,5
1	Nebulosidade	(décimos)	0,7	0,7	0,6	0,6	0,5	0,5	0,5	0,6	0,7	0,6	0,6	0,7	0,6
Un	nidade relativa	(%)	79,6	81,6	81,4	82,8	83,3	83,2	79,1	75,8	76	76,6	77,4	79,2	79,7
	Intensidade	(m.s ⁻¹)	1,96	1,88	1,92	1,73	1,76	1,67	1,97	2,01	2,16	2,21	2,04	1,99	1,94
Vento	Direção resultante	(graus)	85	Calmo	98	94	Calmo	Calmo	Calmo	76	103	101	90	96	88
ž	Direção predominante	(cardeais/ colaterais)	Е	E	E	E	E	Е	E	E	E	Е	E	Е	E

Fonte: INMET, 2018.

Tabela 11 - Resumo das médias históricas (1977-2015) das principais variáveis da Estação Telêmaco Borba (02450011).

	Código:	2450011		Es	tação:	Telêma	co Borba	3		Lat.:	24,20°S	Long.:	50,37°W	Altit.(m):	768
	Parâmetro	Unidade	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez	Anual
В	Média compensada	(°C)	22,5	22,4	21,4	19,1	15,5	14,0	13,8	15,3	17,1	19,6	20,9	22,1	18,6
Ξ	Máxima	(°C)	28,9	29,1	28,5	26,3	22,9	21,7	21,9	24,1	24,8	26,8	27,9	28,6	26,0
Temperatura	Mínima	(°C)	18,0	18,0	16,7	14,2	10,6	9,0	8,3	9,1	11,5	14,2	15,6	17,2	13,5
be	Máxima	(°C)	36,4	36,0	35,5	32,8	30,4	27,8	29,6	33,0	34,5	35,4	38,2	34,5	-
eш	absoluta	(ano)	84	14	05	07	95	01	95	94	88	12	85	85	-
Ε.	Mínima	(°C)	9,4	9,9	4,2	2,0	-1,6	-5,0	-4,3	-2,3	-2,2	2,5	6,4	9,0	-
	absoluta	(ano)	80	87	87	99	77	78	00	93	06	82	78	01	-
	Acumulada	(mm)	204,5	169,9	130,4	102,8	130,2	114,2	103,1	67,4	147,6	157,7	149,8	167,9	1646
Ä.	Máximo	(mm)	151,8	91,5	91,1	97,8	98,1	113,8	91,1	66,1	79,0	84,2	101,8	143,4	-
ecipit.	absoluto 24h	(ano)	03	07	92	12	83	13	82	11	97	01	82	14	-
Pre	Dias pred ≥ 1 m	•	16	15	13	10	13	14	12	8	11	12	11	14	148
-II	nsolação total	(h)	189,0	174,7	200,0	197,0	185,6	169,0	193,8	213,4	177,3	191,1	202,3	198,0	2291
Ev	aporação total	(mm)	78,9	68,8	73,2	62,5	51,3	44,3	56,6	75,9	79,3	85,3	89,1	87,9	853
Un	nidade relativa	(%)	79	80	79	81	83	84	81	76	75	75	74	76	78,6
nto	Intensidade	(m.s ⁻¹)	1,7	1,7	1,5	1,5	1,4	1,4	1,5	1,6	1,8	1,8	1,8	1,8	1,6
Vent	Direção predominante	(cardeais/ colaterais)	SE	SE	SE	SE	SE	SE	SE	SE	SE	SE	SE	SE	SE

Fonte: IAPAR, 2018.

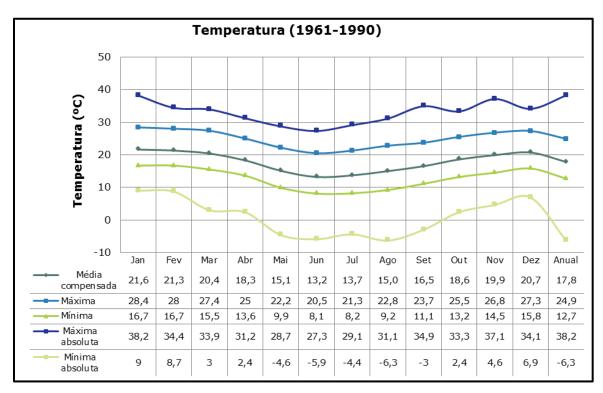


Figura 32 - Normais climatológicas da Estação Ivaí do INMET (OMM 83811) correspondentes à variável temperatura.

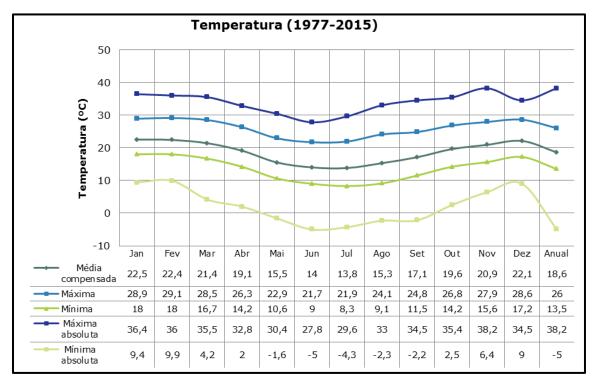


Figura 33 – Médias históricas da Estação Telêmaco Borba do IAPAR (02450011) correspondentes à variável temperatura.

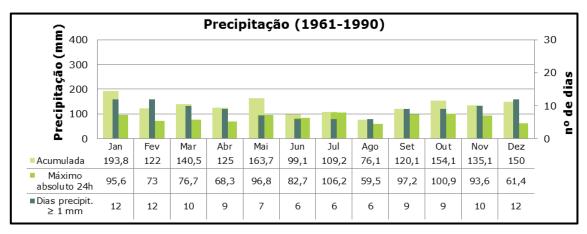


Figura 34 - Normais climatológicas da Estação Ivaí do INMET (OMM 83811) correspondentes à variável precipitação.

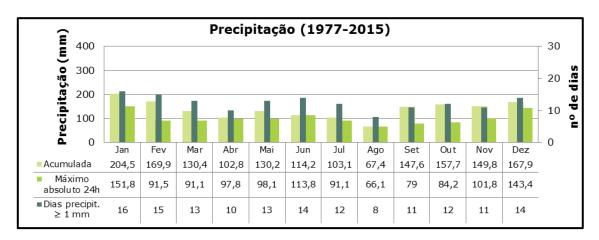


Figura 35 – Médias históricas da Estação Telêmaco Borba do IAPAR (02450011) correspondentes à variável precipitação.

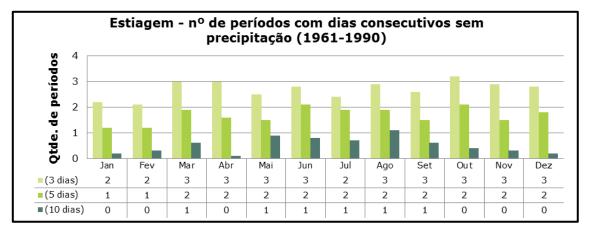


Figura 36 - Normais climatológicas da Estação Ivaí (OMM 83811) correspondentes a períodos de dias consecutivos sem precipitação.

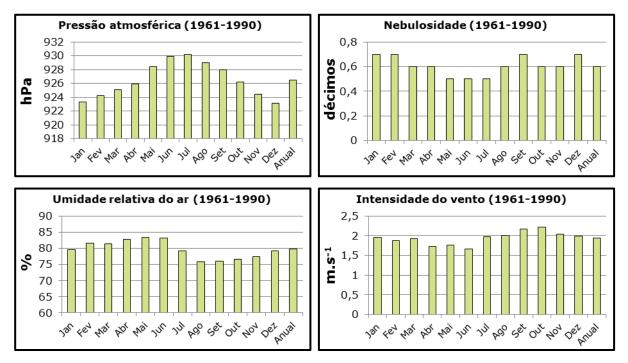


Figura 37 - Demais normais climatológicas da Estação Ivaí (OMM 83811).

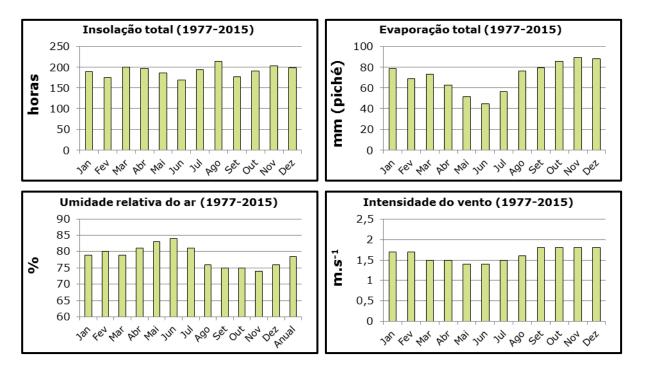


Figura 38 - Demais médias históricas da Estação Telêmaco Borba (02450011).

De acordo com o exposto anteriormente, a região do empreendimento fica inserida em local com duas classificações climáticas segundo Köppen, sendo a classe 'Cfa' - clima temperado úmido, e a 'Cfb' - clima tropical úmido com verão temperado, nas quais, de uma forma geral, predomina um clima temperado úmido, com chuvas bem distribuídas ao longo do ano e com temperatura média máxima superior a 22°C.

Essa condição é ratificada com base nos dados de monitoramento das estações meteorológicas de Ivaí (INMET) e Telêmaco Borba (IAPAR). De acordo com os dados destas estações, de uma forma geral tem-se uma temperatura média anual da ordem de 18°C, umidade relativa do ar média anual de 79% e precipitação acumulada média mensal superior a 65 mm.

Através da análise comparativa dos resultados das normais climatológicas e das médias históricas aproveitadas neste diagnóstico, representativos de períodos distintos, pode-se afirmar que mesmo com pequenas variações entre os resultados de alguns parâmetros do clima regional monitorados ao longo do tempo, ambas as estações apresentam características muito semelhantes.

Considerando o parâmetro temperatura, embora evidenciada uma leve elevação na temperatura média compensada na estação Telêmaco Borba com o passar do tempo, os valores são muito próximos ao da estação Ivaí. Quanto à precipitação acumulada, a mesma é igualmente bem distribuída temporalmente em ambos os períodos avaliados, sendo registradas, de uma forma geral, médias mensais e número de dias com precipitação (≥1 mm) ligeiramente maiores para o período mais recente (1977-2015).

Com relação à velocidade dos ventos, as estações de Ivaí e Telêmaco Borba apresentam valores médios anuais de 1,9 e 1,6 m/s, respectivamente. Quanto à direção predominante dos ventos, enquanto na estação de Ivaí os ventos tem origem da direção E (leste), na estação de Telêmaco Borba a direção predominante é a SE (sudeste).

Considerando a operação atual, bem como as atividades relacionadas à implantação e a futura operação do empreendimento, tem-se que as características do clima e das condições meteorológicas da região podem influenciar na dispersão das emissões associadas ao empreendimento.

Durante as atividades de ampliação, as condições meteorológicas podem contribuir no abatimento de emissões fugitivas de poeira eventualmente geradas durante atividades que envolvem movimentação de terra e/ou de dispersão das mesmas, o que não elimina a necessidade de ação de umectação como medida de controle. Por outro lado, o panorama de precipitação na região também deve se refletir no cronograma de execução das obras, uma vez que atividades de terraplenagem, caso existentes, devem se dar em condições específicas de umidade.

Na fase de operação, considerando a operação atual e a futura operação após a ampliação, os parâmetros mais relevantes para a dispersão atmosférica são a direção e velocidade dos ventos e o perfil térmico vertical, que determinam a estabilidade ou instabilidade do ar (AYOADE, 2011). No caso do vento, maiores velocidades favorecem a rápida diluição dos poluentes. Além disso, a direção dos ventos indica a direção predominante da dispersão dos poluentes na região.

Já com relação ao perfil térmico vertical, os piores cenários de poluição do ar são observados quando ocorre a inversão térmica, caracterizada pela mudança abrupta de temperatura com inversão das camadas de ar frias e

quentes (camada de ar quente fica superior à camada de ar frio retendo os poluentes próximos à superfície). Porém, este fenômeno causa problemas de poluição do ar principalmente em regiões com nível elevado de emissões atmosféricas, por exemplo, grandes centros urbanos, não sendo o caso da região em avaliação.

4.3.2. Qualidade do ar

A qualidade do ar de uma região é resultado de diferentes fatores, entre eles a intensidade das emissões atmosféricas, a topografia e as condições meteorológicas, como intensidade dos ventos e temperatura, uma vez que estas questões interferem nas reações químicas e na dispersão dos poluentes emitidos.

De acordo com o Ministério do Meio Ambiente (MMA, 2018), a poluição atmosférica prejudica a saúde e a qualidade de vida das pessoas, acarreta maiores gastos do Estado, afeta a qualidade dos materiais, do solo e das águas, além de afetar a visibilidade. O MMA apresenta a seguinte definição:

A poluição atmosférica pode ser definida como qualquer forma de matéria ou energia com intensidade, concentração, tempo ou características que possam tornar o ar impróprio, nocivo ou ofensivo à saúde, inconveniente ao bem-estar público, danoso aos materiais, à fauna e à flora ou prejudicial à segurança, ao uso e gozo da propriedade e à qualidade de vida da comunidade. (MMA, 2018)

Assim, a proteção do meio ambiente, na qual se inclui a qualidade do ar, é amparada pela Constituição Federal, uma vez que seu artigo 225 garante que todos têm direito ao meio ambiente ecologicamente equilibrado e seu artigo 170 define que a economia deve observar a defesa do meio ambiente mediante tratamento do impacto ambiental associado.

A Política Nacional de Meio Ambiente (PNMA), estabelecida pela Lei Federal nº 6.938/81, tem por objetivo a preservação, a melhoria e a recuperação da qualidade ambiental propícia à vida e, dentre a normatização das suas disposições por meio de Resoluções do CONAMA, a Resolução nº 05/1989 tem grande relevância à manutenção da qualidade do ar, uma vez que institui o Programa Nacional de Controle da Qualidade do Ar (PRONAR) como um dos instrumentos básicos da gestão ambiental.

Sob a perspectiva conceitual, o PRONAR tem uma ótica de gestão, e como meio de instrumentalizar suas medidas, cria, ou incorpora programas como: Programa de Controle da Poluição por Veículos Automotores (PROCONVE); Programa Nacional de Controle da Poluição Industrial (PRONACOP); Programa Nacional de Avaliação da Qualidade do Ar; Programa Nacional de Inventário de Fontes Poluidoras do Ar e programas estaduais de controle da poluição do ar.

De modo complementar à CONAMA nº 005/1989, foram aprovadas as Resoluções nº 003/1990, que define os padrões de qualidade do ar e critérios mínimos para o monitoramento, e a Resolução nº 382/2006 e 436/2011, com limites de emissão para poluentes e fontes específicos, delineando regras mínimas sobre o monitoramento dessas emissões (MMA, 2009).

Abstraídos os controles das fontes de emissão, atualmente no país avaliações quantitativas da qualidade do ar são procedidas, então, com base na verificação de atendimento de resultados de monitoramento continuado pelos Estados aos Padrões de Qualidade do Ar estabelecidos na Resolução CONAMA nº 003/1990, que servem para garantir a saúde e o bem-estar para a população e também para a conservação ambiental, com proteção da fauna e flora.

Conceitualmente, para os efeitos da Resolução CONAMA nº 003/1990, ficam estabelecidos:

"I - Padrões Primários de Qualidade do Ar são as concentrações de poluentes que, ultrapassadas, poderão afetar a saúde da população.

II - Padrões Secundários de Qualidade do Ar são as concentrações de poluentes abaixo das quais se prevê o mínimo efeito adverso sobre o bem-estar da população, assim como o mínimo dano à fauna, à flora, aos materiais e ao meio ambiente em geral.

Parágrafo Único - Os padrões de qualidade do ar serão o objetivo a ser atingido mediante à estratégia de controle fixada pelos padrões de emissão e deverão orientar a elaboração de Planos Regionais de Controle de Poluição do Ar."

Frente a este contexto, este diagnóstico busca caracterizar a condição de qualidade do ar da região em que se insere o empreendimento com base em concentrações de poluentes na atmosfera, conforme metodologia descrita a seguir.

4.3.2.1. Metodologia

Considerar a variação da qualidade do ar ao longo dos anos durante a avaliação das informações ambientais é fundamental para fins de gestão da qualidade do ar. Assim, é possível verificar tendências de aumento ou diminuição da concentração de poluentes em cada cidade ou região a fim de estabelecer metas de controle ou planos para controle da poluição nos diferentes setores.

Embora o CONAMA estabeleça através do Art. 4º da Resolução nº 003/1990 que o monitoramento da qualidade do ar seja atribuição dos Estados, no país as redes de estações existentes (apenas em nove

Estados segundo MMA, 2014) geralmente ainda se restringem às grandes cidades e às suas regiões metropolitanas, nos quais o problema de poluição do ar é mais intenso.

A rede de monitoramento da qualidade do ar existente e operante no Estado do Paraná restringe-se hoje apenas à Região Metropolitana de Curitiba e Ponta Grossa. Diante disso, o presente diagnóstico é elaborado mediante aproveitamento dos dados do último monitoramento da qualidade do ar realizado entre abril e maio de 2018 pela consultoria Lentz Meio Ambiente, no âmbito da atual operação da Unidade Puma, conforme descrito nos itens a seguir.

4.3.2.1.1. Pontos de coleta para monitoramento da qualidade do ar

De uma forma geral, o monitoramento da qualidade do ar abrange quatro pontos distribuídos no entorno do empreendimento, os quais respeitam critérios de representatividade da região e do entorno. A tabela a seguir apresenta os detalhes da localização dos pontos adotados no referido monitoramento.

Tabela 12 - Localização dos pontos de amostragem do ar.

		Coorden	adas UTM
Ponto	Município	(SIRGAS 2000 - 22J)	
	_	E (m)	S (m)
P1 – Residência César Mouro	Ortigueira	526839	7320883
P2 - Imbaú	Imbaú	523988	7297090
P3 – Telêmaco Borba	Telêmaco Borba	534962	7308214
P4 - Ortigueira	Ortigueira	507894	7323736

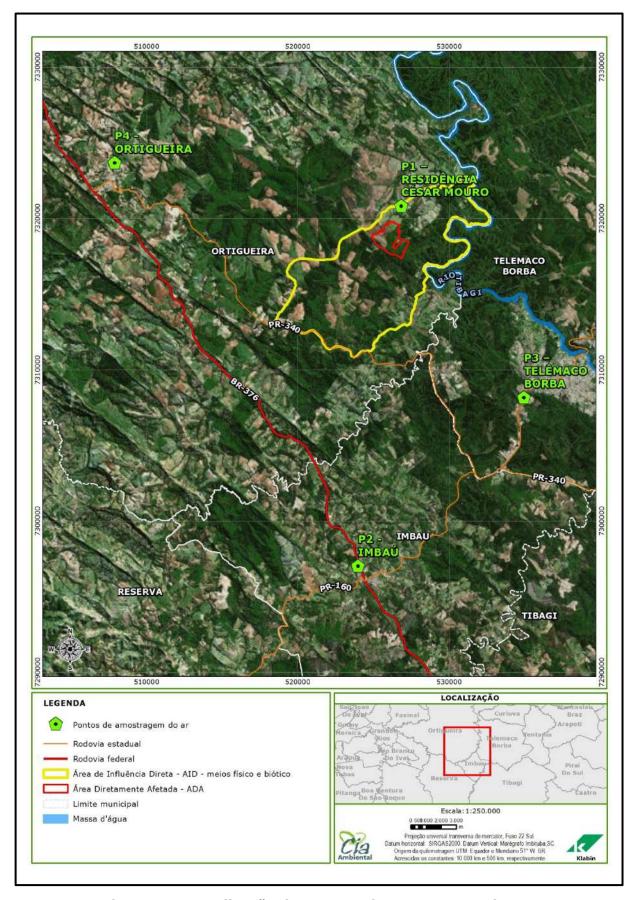


Figura 39 - Localização dos pontos de amostragem do ar.

4.3.2.1.2. Parâmetros de coleta

Os parâmetros considerados na coleta e avaliação da qualidade do ar são apresentados na tabela a seguir, juntamente com as características da coleta, identificando o equipamento e o método utilizado, bem como o tempo adotado para cada parâmetro em questão.

Tabela 13 - Resumo dos parâmetros considerados na amostragem do ar.

			Metodologia de	Tempo de	Duração da
Parâmetro	Sigla	Equipamento	coleta	coleta	medição
Partículas					7 dias
totais em	PTS	AGV ⁽¹⁾ PTS	NBR 9547/1997	24h/dia	consecutivos
suspensão					consecutivos
Partículas	MD	A CV (1) AAD	NDD 12412/1005	2.41- /-11-	7 dias
inaláveis	MP_{10}	AGV ⁽¹⁾ MP ₁₀	NBR 13412/1995	24h/dia	consecutivos
Dautiania			Fed. Register/Vol		7 dina
Partículas	$MP_{2,5}$	$AGV^{(1)}\;MP_{2,5}$	62, nº 138 July 19,	24h/dia	7 dias
finas	S		1997		consecutivos
Ozônio	0	2P Tachnalagias	US EPA 901-03	24b/dia	7 dias
020110	O ₃	2B Technologies	Model 202	24h/dia	consecutivos
Dióxido de	NO	APV ⁽²⁾ Trigás	US EPA EQN-1277-	24b/dia	7 dias
nitrogênio	NO ₂	APV Trigas	026	24h/dia	consecutivos
Dióxido de	50	APV ⁽²⁾ Trigás	NRD 12070	24b/dia	7 dias
enxofre	SO ₂	APV\/ITIgas	NBR 12979	24h/dia	consecutivos
Compostos			Standart Methods		7 dias
reduzidos de	ERT	APV ⁽²⁾ Trigás	SM22 3120B	3h/dia	consecutivos
enxofre			31422 31200		Consecutivos
Monóxido de	СО	GfG460	ISSO 17025	1h/dia	7 dias
carbono	CO	G1G400	1550 17025	111/UIA	consecutivos

⁽¹⁾ AGV – Amostrador de grandes volumes; (2) Amostrador de pequenos volumes.

4.3.2.1.3. Análise das condições meteorológicas

De acordo com o monitoramento da qualidade do ar na atual operação da Unidade Puma (LENTZ, 2018), a análise das condições meteorológicas durante o período de coleta permite caracterizar a atmosfera quanto às condições de dispersão de poluentes na atmosfera local.

Para tanto, as condições meteorológicas durante o período de monitoramento foram analisadas por meio de cartas sinóticas disponibilizadas pelo Serviço Meteorológico da Marinha (SMM) e por dados de monitoramento da estação meteorológico de superfície de Castro-PR (INMET).

De forma complementar, foram obtidos dados meteorológicos por meio da estação meteorológica da LENTZ (figura 40), instalada em cada um dos quatro pontos de amostragem, os quais foram úteis na calibração dos equipamentos utilizados nas medições, bem como nos cálculos das concentrações.

Figura 40 – Estação meteorológica da LENTZ instalada nos quatro pontos de monitoramento.

Fonte: LENTZ (2018).

4.3.2.1.4. Padrões de qualidade do ar

Os resultados do monitoramento são avaliados quantitativamente por meio da comparação dos valores observados com os padrões definidos na Resolução CONAMA nº 003/1990 e na Resolução SEMA nº 16/2014, conforme consta na tabela a seguir.

Tabela 14 - Padrões de qualidade do ar (Resolução CONAMA nº 003/90 e Resolução SEMA nº 16/2014).

Poluente	Padrão primário [µg/m³]	Padrão secundário [µg/m³]	Tempo de média
Partículas Totais em	240 ⁽¹⁾	150 ⁽¹⁾	24 horas
Suspensão (PTS)	80	60	anual ⁽³⁾
Partículas Inaláveis (PI)	1	.50 ⁽¹⁾	24 h
raiticulas Ilialaveis (FI)		50	anual ⁽²⁾
Fumaça	150 ⁽¹⁾	100 ⁽¹⁾	24 h
	60	40	anual ⁽²⁾
Dióxido de enxofre (SO ₂)	365 ⁽¹⁾	100 ⁽¹⁾	24 horas
Dioxido de crixorre (502)	80	40	anual ⁽²⁾
Monóxido de carbono	35	5 ppm	1 h
(CO)	9	ppm	8 h
Ozônio (O ₃)		160	1 h
Dióxido de nitrogênio	320	190	1 h
(NO_2)		100	anual ⁽²⁾

Notas: (1) não deve ser excedido mais do que uma vez por ano; (2) média aritmética; (3) média geométrica; Condições de referência: temperatura de 25°C e pressão de 760 mm Hg / 1013,2 mbar/ 1 atm.

Fonte: CONAMA (1990) e SEMA/PR (2014).

Quanto à aplicabilidade destes, dada a inexistência de deferimento das áreas de Classe I, II e III mencionados no item 2, subitem 2.3, da Resolução CONAMA nº 005/1989 no Estado do Paraná, na área de estudo são adotados os padrões primários de qualidade do ar – conforme Art. 7º da Resolução CONAMA nº 003/1990.

De forma complementar, é calculado o índice de qualidade do ar (IQA) para os parâmetros MP_{10} , O_3 , NO_2 , SO_2 e PTS, os quais, de acordo com

suas concentrações, podem ser classificados entre qualidade do ar "boa" à "crítica". A obtenção do índice se dá através da seguinte equação:

$$I_{p} = \frac{I_{f} - I_{i}}{C_{f} - C_{i}} (C - C_{i}) + I_{i}$$

Onde:

 I_p = indice para o poluente "p";

 I_f = valor do IQA máximo da faixa onde o poluente "p" se encontra;

 I_i = valor do IQA mínimo da faixa onde o poluente "p" se encontra;

 C_f = valor máximo da faixa de concentração onde o poluente "p" se encontra;

 C_i = valor mínimo da faixa de concentração onde o poluente "p" se encontra;

C = concentração média do poluente "p".

A tabela a seguir apresenta as faixas de variação da concentração dos poluentes considerados, bem como a variação do IQA e a classificação da qualidade do ar associada.

Klabin – Ampliação Unidade Puma Relatório Ambiental Preliminar

Tabela 15 - Classificação da qualidade do ar por meio do IQA.

704	Qualidade do	PTS - 24h	MP ₁₀ - 24h	O ₃ - 1h	CO - 8h	NO ₂ - 1h	SO ₂ - 1h
IQA	ar	μg/m³	μg/m³	μg/m³	ppm	μg/m³	μg/m³
0-50	Boa	0-80	0-50	0-80	0-4,5	0-100	0-80
>50-100	Regular	>80 e ≤240	>50 e ≤150	>80 e ≤160	>4,5 e ≤9	>100 e ≤320	>80 e ≤365
>100-200	Inadequada	>240 e ≤375	>150 e ≤250	>160 e ≤400	>9 e ≤15	>320 e ≤1130	>356 e ≤800
>200-300	Má	>375 e ≤625	>250 e ≤420	>400 e ≤800	>15 e ≤30	>1130 e ≤2260	>800 e ≤1600
>300-400	Péssima	>625 e ≤875	>420 e ≤500	>800 e ≤1000	>30 e ≤40	>2260 e ≤3000	>1600 e ≤2100
>400	Crítica	>875	>500	>1000	>40	>3000	>2100

Fonte: IAP (2013).

Ressalta-se que não foi realizado o cálculo para o poluente CO por não haver registro da concentração média do período de 8 horas, na qual o IQA é definido.

Com relação ao parâmetro ERT (compostos reduzidos de enxofre), que corresponde a uma mistura dos gases sulfeto de hidrogênio (H_2S), metil mercaptana (CH_3SH), dimetilsulfeto (CH_3SCH_3) e dimetildissulfeto (CH_3SSCH_3), embora não tenha um padrão especifico para comparação, os resultados foram comparados com o limite de percepção de odor ($6,55 \mu g/m^3$) e o seu limite de tolerância ($1.702,1 \mu g/m^3$).

4.3.2.2. Resultados

Os resultados apresentados na tabela 16 e na tabela 17, na sequência, dizem respeito aos valores obtidos no monitoramento realizado entre abril e maio de 2018 no âmbito da atual operação da Unidade Puma, em Ortigueira/PR, os quais foram úteis neste diagnóstico da qualidade do ar da região. Como exposto anteriormente, os valores foram comparados com seus respectivos limites horários (1h ou 24h) definidos na Resolução CONAMA nº 003/1990 e na Resolução SEMA nº 16/2014.

Tabela 16 – Resumo das concentrações obtidas nos pontos P1 e P2 na campanha de monitoramento da qualidade do ar realizada entre abril e maio de 2018 no entorno da Unidade Puma.

					Conce	entrações				
Ponto	Data de coleta	PTS 24h (µg/m³)	MP ₁₀ 24h (μg/m³)	MP _{2,5} (μg/m³)	SO ₂ 24h (μg/m³)	NO ₂ 1h (μg/m³)	ERT 1h (µg/m³)	Ο ₃ 1h (μg/m³)	CO 1h (ppm)	IQA
	09/05/18	291,4	48,7	30,3	<l.q.< td=""><td>26,2</td><td><l.q.< td=""><td>43,2</td><td>0</td><td>Inadequada</td></l.q.<></td></l.q.<>	26,2	<l.q.< td=""><td>43,2</td><td>0</td><td>Inadequada</td></l.q.<>	43,2	0	Inadequada
	10/05/18	236,1	44,7	12,1	<l.q.< td=""><td>28,4</td><td><l.q.< td=""><td>60,8</td><td>0</td><td>Regular</td></l.q.<></td></l.q.<>	28,4	<l.q.< td=""><td>60,8</td><td>0</td><td>Regular</td></l.q.<>	60,8	0	Regular
	11/05/18	290,2	40,7	14,1	<l.q.< td=""><td>28,5</td><td><l.q.< td=""><td>77,3</td><td>0</td><td>Inadequada</td></l.q.<></td></l.q.<>	28,5	<l.q.< td=""><td>77,3</td><td>0</td><td>Inadequada</td></l.q.<>	77,3	0	Inadequada
P1	12/05/18	300,6	44,6	8,0	<l.q.< td=""><td>30,3</td><td><l.q.< td=""><td>52,4</td><td>0</td><td>Inadequada</td></l.q.<></td></l.q.<>	30,3	<l.q.< td=""><td>52,4</td><td>0</td><td>Inadequada</td></l.q.<>	52,4	0	Inadequada
	14/05/18	161,3	43,7	14,3	<l.q.< td=""><td>23,8</td><td><l.q.< td=""><td>51,9</td><td>0</td><td>Regular</td></l.q.<></td></l.q.<>	23,8	<l.q.< td=""><td>51,9</td><td>0</td><td>Regular</td></l.q.<>	51,9	0	Regular
	16/05/18	191,8	15,2	6,1	<l.q.< td=""><td><l.q.< td=""><td><l.q.< td=""><td>62,3</td><td>0</td><td>Regular</td></l.q.<></td></l.q.<></td></l.q.<>	<l.q.< td=""><td><l.q.< td=""><td>62,3</td><td>0</td><td>Regular</td></l.q.<></td></l.q.<>	<l.q.< td=""><td>62,3</td><td>0</td><td>Regular</td></l.q.<>	62,3	0	Regular
	17/05/18	159,4	24,7	13,7	<l.q.< td=""><td><l.q.< td=""><td><l.q.< td=""><td>55,2</td><td>0</td><td>Regular</td></l.q.<></td></l.q.<></td></l.q.<>	<l.q.< td=""><td><l.q.< td=""><td>55,2</td><td>0</td><td>Regular</td></l.q.<></td></l.q.<>	<l.q.< td=""><td>55,2</td><td>0</td><td>Regular</td></l.q.<>	55,2	0	Regular
	23/05/18	32,4	15,0	7,1	13,3	27,6	<l.q.< td=""><td>56,7</td><td>0</td><td>Boa</td></l.q.<>	56,7	0	Boa
	24/05/18	54,4	19,3	8,6	8,5	<l.q.< td=""><td><l.q.< td=""><td>43,0</td><td>0</td><td>Boa</td></l.q.<></td></l.q.<>	<l.q.< td=""><td>43,0</td><td>0</td><td>Boa</td></l.q.<>	43,0	0	Boa
	25/05/18	172,6	8,9	2,0	4,3	27,0	<l.q.< td=""><td>38,1</td><td>0</td><td>Regular</td></l.q.<>	38,1	0	Regular
P2	26/05/18	_ (2)	9,0	3,2	54,2	26,2	225,8	53,3	0	Boa
	27/05/18	_ (2)	16,4	5,8	18,3	23,3	132,3	57,1	0	Boa
	28/05/18	- ⁽²⁾	9,7	4,8	8,7	26,3	<l.q.< td=""><td>59,2</td><td>0</td><td>Boa</td></l.q.<>	59,2	0	Boa
	29/05/18	_ (2)	13,5	8,8	13,2	26,2	<l.q.< td=""><td>65,9</td><td>0</td><td>Boa</td></l.q.<>	65,9	0	Boa
Padrão	o primário ⁽¹⁾	240 μg/m³	150 μg/m³	-	365 μg/m³	320 μg/m³	-	160 μg/m³	35 ppm	-
Padrão	secundário ⁽¹⁾	150 μg/m³	150 μg/m³	-	100 μg/m³	190 μg/m³	-	160 μg/m³	35 ppm	-
de od	de percepção or/Limite de Ilerância	-	-	-	-	-	6,55/1702,1 μg/m³	-	-	-

L.Q.: Limite de quantificação do método analítico; ⁽¹⁾ Resolução CONAMA nº 003/90 e Resolução SEMA nº 16/14; ⁽²⁾ Coletas não realizadas por problemas no equipamento utilizado e impossibilidade de reposição de componentes frente a greve dos transportes neste período.

Fonte: LENTZ (2018).

Tabela 17 - Resumo das concentrações obtidas nos pontos P3 e P4 na campanha de monitoramento da qualidade do ar realizada entre abril e maio de 2018 no entorno da Unidade Puma.

	D-4- d-				Conce	ntrações				
Ponto	Data de coleta	PTS 24h (µg/m³)	MP ₁₀ 24h (μg/m³)	MP _{2,5} (μg/m³)	SO ₂ 24h (μg/m³)	NO₂ 1h (µg/m³)	ERT 1h (µg/m³)	Ο ₃ 1h (μg/m³)	CO 1h (ppm)	IQA
	19/04/18	53,3	32,3	14,5	<l.q.< td=""><td>26,9</td><td><l.q.< td=""><td>69,6</td><td>0</td><td>Boa</td></l.q.<></td></l.q.<>	26,9	<l.q.< td=""><td>69,6</td><td>0</td><td>Boa</td></l.q.<>	69,6	0	Boa
	20/04/18	124,0	51,3	23,0	8,4	29,6	<l.q.< td=""><td>75,1</td><td>0</td><td>Regular</td></l.q.<>	75,1	0	Regular
	21/04/18	40,4	22,2	7,8	12,5	29,7	<l.q.< td=""><td>69,2</td><td>0</td><td>Boa</td></l.q.<>	69,2	0	Boa
Р3	22/04/18	33,4	19,0	7,4	12,7	<l.q.< td=""><td><l.q.< td=""><td>69,3</td><td>0</td><td>Boa</td></l.q.<></td></l.q.<>	<l.q.< td=""><td>69,3</td><td>0</td><td>Boa</td></l.q.<>	69,3	0	Boa
	23/04/18	70,1	35,2	12,7	13,0	30,6	<l.q.< td=""><td>67,2</td><td>0</td><td>Boa</td></l.q.<>	67,2	0	Boa
	24/04/18	83,4	37,3	15,2	98,0	29,6	536,2	70,6	0	Regular
	25/04/18	73,4	36,8	16,7	4,3	<l.q.< td=""><td><l.q.< td=""><td>73,6</td><td>0</td><td>Boa</td></l.q.<></td></l.q.<>	<l.q.< td=""><td>73,6</td><td>0</td><td>Boa</td></l.q.<>	73,6	0	Boa
	01/05/18	462,8	123,1	32,0	16,9	<l.q.< td=""><td><l.q.< td=""><td>80,7</td><td>0</td><td>Má</td></l.q.<></td></l.q.<>	<l.q.< td=""><td>80,7</td><td>0</td><td>Má</td></l.q.<>	80,7	0	Má
	02/05/18	713,9	193,7	39,4	17,4	41,9	<l.q.< td=""><td>77,4</td><td>0</td><td>Má</td></l.q.<>	77,4	0	Má
	03/05/18	608,3	191,7	39,2	13,2	23,0	<l.q.< td=""><td>92,2</td><td>0</td><td>Má</td></l.q.<>	92,2	0	Má
P4	04/05/18	521,2	199,3	37,0	13,2	41,6	<l.q.< td=""><td>89,2</td><td>0</td><td>Má</td></l.q.<>	89,2	0	Má
	05/05/18	447,3	158,2	35,5	8,7	24,0	<l.q.< td=""><td>92,4</td><td>0</td><td>Má</td></l.q.<>	92,4	0	Má
	06/05/18	467,1	140,2	39,3	13,2	27,3	<l.q.< td=""><td>69,2</td><td>0</td><td>Má</td></l.q.<>	69,2	0	Má
	07/05/18	916,6	293,1	91,0	12,8	24,3	<l.q.< td=""><td>56,5</td><td>0</td><td>Crítica</td></l.q.<>	56,5	0	Crítica
Padrã	o primário ⁽¹⁾	240 μg/m³	150 μg/m³	-	365 μg/m³	320 μg/m³	-	160 μg/m³	35 ppm	-
Padrão	secundário ⁽¹⁾	150 µg/m³	150 μg/m³	-	100 μg/m³	190 μg/m³	-	160 μg/m³	35 ppm	-
de od	de percepção or/Limite de Ilerância	-	-	-	-	-	6,55/1702,1 μg/m³	-	-	-

L.Q.: Limite de quantificação do método analítico; (1) Resolução CONAMA nº 003/90 e Resolução SEMA nº 16/14.

Fonte: LENTZ (2018).

De acordo com os resultados apresentados na tabela 16 e na tabela 17, é possível evidenciar que grande parte dos poluentes considerados, como o SO_2 , NO_2 , O_3 e CO, atende aos seus respectivos padrões legislados.

Os principais e únicos desacordos aos padrões da Resolução CONAMA n° 003/1990 e da Resolução SEMA n° 16/2014 estiveram relacionados às concentrações das partículas totais em suspensão (PTS) e das partículas inaláveis (MP₁₀) e foram evidenciados apenas nos pontos P1 e P4. Com base nos resultados, o padrão primário de PTS de 240 μ g/m³, para o período de 24 horas, foi ultrapassado em 43% dos registros no ponto P1 e 100% no ponto P4. No caso das partículas inaláveis (MP₁₀), as ultrapassagens ao limite de 150 μ g/m³ foram evidenciadas apenas no ponto P4, com 71% de desacordo.

Assim como apresentado anteriormente, na ocasião das medições dos poluentes as condições meteorológicas eram de tempo seco e estável, situação esta que dificulta a dispersão de poluentes atmosféricos e contribui no aumento das emissões naturais de particulados, como evidenciado nos resultados de PTS e MP₁₀. Aliado a isso, tem-se que os desacordos evidenciados para o parâmetros PTS e MP₁₀, juntamente com as baixas concentrações de MP_{2,5}, indicam que o material particulado relacionado às concentrações obtidas é predominantemente de fontes naturais, não possuindo relacionado com a atual operação industrial.

Sendo melhor descrito no item 5.2.1, considerando as emissões atmosféricas de PTS na operação atual da Unidade Puma, o estudo de dispersão evidenciou que as concentrações máximas horárias (24h) deste poluente seriam inferiores a 2,0 µg/m³, o que contribui na indicação de que o material particulado registrado entre os pontos P1 e P4 não possui relação direta com a operação da fábrica.

Complementarmente, tem-se que o ponto P4, mais crítico frente ao IQA, dista cerca de 17 km do empreendimento e está inserido em área urbanizada com vias de tráfego de veículos não pavimentadas no entorno, o que pode contribuir significativamente nos resultados observados e ratificar a informação de que as concentrações registradas não tiveram relação com a operação da Unidade Puma.

Com relação ao índice de qualidade do ar (IQA) dos quatro pontos considerados, tem-se que a classificação final da qualidade do ar tem relação com o maior IQA obtido entre os poluentes em questão. Vale ressaltar ainda que o atendimento aos limites legislados já são evidenciados na classe "regular" para a qualidade do ar.

Realizando a avaliando com base no índice de qualidade do ar (IQA), temse que os pontos P2 e P3 apresentaram as melhores classificações, enquadrando-se entre "boa" e "regular". Com relação aos demais pontos, no caso do P1 a classe "inadequada" foi obtida devido às ligeiras elevações nas concentrações de PTS, enquanto que as classificações "má" e "crítica" evidenciadas no ponto P4 estiveram diretamente relacionadas com a ultrapassagem dos poluentes PTS e PM₁₀.

Destaca-se que, embora o poluente CO não tenha contribuído na avaliação frente ao IQA, o mesmo apresentou concentrações nulas para médias horárias (1h), indicando que não seria capaz de alterar a classificação da qualidade do ar frente aos valores dos demais poluentes considerados.

Como exposto no relatório de monitoramento da qualidade do ar (LENTZ, 2018), as emissões atmosféricas de gases sulfurosos estão associadas a diversas etapas de fabricação, como a queima de combustíveis, cozimento dos cavacos de madeira e recuperação química de produtos para reutilização no processo produtivo. A emissão destes gases apesenta um

odor característico que podem resultar em incômodo de acordo com determinados limites de concentração. Com isso, e frente a ausência de limites legislados, a avaliação dos compostos reduzidos de enxofre (ERT) foi baseada apenas quanto ao limite de detecção do odor e seu limite de tolerância.

Com base na tabela 16 e na tabela 17, grande parte das medições diárias de ERT resultou em concentrações abaixo do limite de quantificação do método analítico. Nas ocasiões onde foi possível a quantificação do ERT, os valores estiveram acima do limiar de percepção de odor de 6,55 µg/m³, porém significativamente inferiores ao limite de tolerância de 1.702,1 µg/m³.

Diante do exposto, tem-se que grande parte dos poluentes avaliados apresenta concentrações em total atendimento aos limites definidos em legislação. Contudo, a alteração da qualidade do ar pode sofrer alterações principalmente devido às elevações nas concentrações de material particulado, as quais são facilitadas em condições de tempo seco e estável.

4.3.3. Recursos hídricos

4.3.3.1. Inserção regional

O empreendimento objeto de estudo, em um contexto regional, está inserido na região hidrográfica do Paraná, que corresponde à bacia hidrográfica do Rio Paraná. No estado paranaense o empreendimento localiza-se na bacia hidrográfica do Rio Tibagi, mais especificamente, na área estratégica de gestão nº 4 – Bacia do Alto Tibagi³ (figura 41).

³ Definida pela Resolução CERH/PR nº 49 de 20 de dezembro de 2006. Compreende a Bacia Hidrográfica do Alto Tibagi das nascentes do Rio Tibagi até imediatamente a jusante da foz do Ribeirão das Antas, no município de Curiúva.

A bacia hidrográfica do Tibagi possui uma área de drenagem de 24.937,38 km², que compreende a aproximadamente 13% da superfície do Estado. Sua nascente está localizada entre os municípios de Palmeira e Ponta Grossa, mais especificamente na Serra das Almas, a 1.060 m de altitude, e percorre cerca de 550 km até sua foz no reservatório da UHE Capivara, instalada no Rio Paranapanema (COBRAPE/ÁGUASPARANÁ, 2013).

A disponibilidade hídrica superficial da bacia é de 111.000 L/s, o que representa 10% do total do estado. O valor demandado, de 16.500 L/s, representa aproximadamente 15% do total disponível na bacia. As principais atividades econômicas desenvolvidas nesta bacia estão relacionadas à agropecuária, com predomínio de cultivo de soja, feijão, milho, café e trigo.

Ainda, é considerada relativamente industrializada, com polos em Londrina, Ponta Grossa e Telêmaco Borba, onde está localizada uma das maiores indústrias de celulose do país. A qualidade das águas da bacia é considerada como boa, contudo alguns de seus afluentes apresentam qualidade comprometida, especialmente os que se inserem em áreas urbanas e recebem lançamento de efluentes industriais e esgoto sanitário (COBRAPE/ÁGUASPARANÁ, 2013).

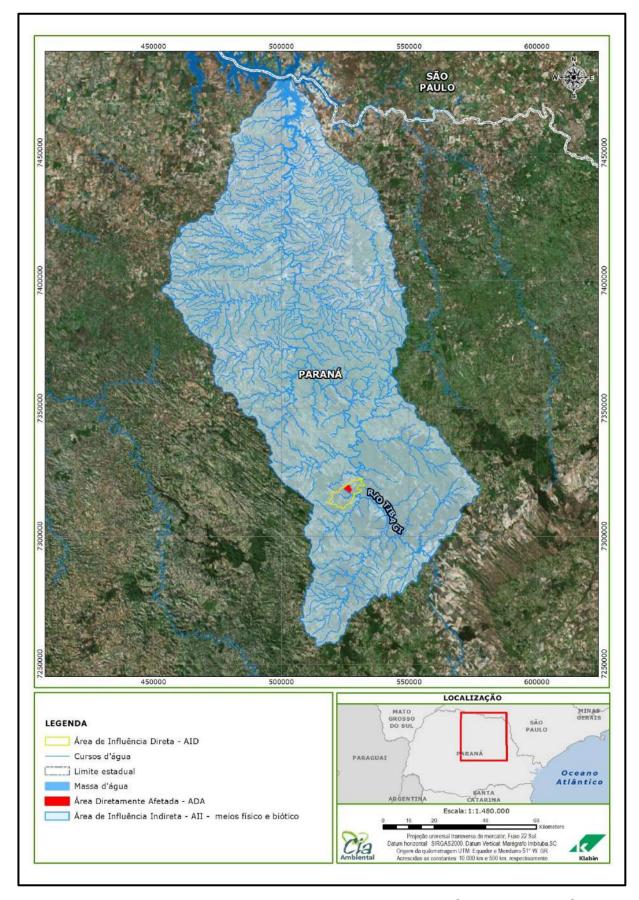


Figura 41 – Localização do empreendimento em relação à bacia hidrográfica.

4.3.3.2. Detalhamento da rede de drenagem

O detalhamento da rede de drenagem inserida na área de influência direta (AID) do empreendimento compreendeu a identificação dos corpos hídricos existentes através de dados secundários (cartas topográficas do ITCG 1:50.000), sendo esta vetorizada e plotada sobre base cartográfica (figura 42).

A relação dos principais corpos hídricos é apresentada na tabela 18 a seguir, detalhada conforme nomenclatura oficial (cartas topográficas), regime de escoamento (permanente e/ou intermitente), área de influência (AID/ADA) em que ocorre a nascente e a foz, local da foz (corpo hídrico em que ocorre a confluência), direção da margem (sentido nascente/foz) e coordenadas de sua foz.

Toda a rede de drenagem inserida na AID é direcionada ao Rio Tibagi em locais onde atualmente encontra-se o reservatório da Usina Hidrelétrica Gov. Jaime C. Júnior (363 MW), cuja concessão é de responsabilidade do Consórcio Energético Cruzeiro do Sul⁴.

Com relação ao enquadramento das águas, este é regulamentado para a bacia do Rio Tibagi pela Portaria SUREHMA nº 003/1991, classificando todos os cursos como "classe 2" (com base na revogada resolução CONAMA nº 20/86), com exceção dos cursos d'água para abastecimento público e seus afluentes, classificados como "classe 1". Por não se enquadrarem em nenhuma das exceções estabelecidas pela Portaria supracitada, a rede de drenagem inserida na AID pode ser considerada como de "classe 2". Da mesma forma, a deliberação do Comitê de Bacia do Tibagi CBH-TIBAGI nº 11/2016 enquadra as águas do Rio Tibagi como de "classe 2".

⁴ O Consórcio Energético Cruzeiro do Sul é constituído pela Companhia Paranaense de Energia – Copel (51%) e pela Eletrosul Centrais Elétricas S/A (49%).

Klabin – Ampliação Unidade Puma Relatório Ambiental Preliminar

Tabela 18 - Corpos hídricos identificados na AID do empreendimento.

No	Nome do corpo	hídrico escoamento foz	Margem	Coordenadas largem UTM*				
	niarico	escoamento	Nascente	Foz	TOZ		S (m)	E (m)
1	Sem denominação	Intermitente	AID	AID	Arroio Grande	Esquerda	7314613	520231
2	Sem denominação	Intermitente	AID	AID	Arroio Grande	Direita	7315215	521821
3	Sem denominação	Intermitente	AID	AID	Arroio Grande	Direita	7315253	521907
4	Sem denominação	Perene	AID	AID	Arroio Grande	Esquerda	7316744	522735
5	Sem denominação	Perene	AID	AID	Arroio Grande	Direita	7315128	524589
6	Sem denominação	Perene	AID	AID	Arroio Grande	Direita	7315808	526987
7	Sem denominação	Intermitente	AID	AID	Arroio Lageadinho	Esquerda	7317984	525409
8	Arroio Lageadinho	Perene	AID	AID	Arroio Grande	Esquerda	7316561	527020
9	Arroio Grande	Perene	AID	AID	Rio Tibagi	Esquerda	7316376	528467
10	Sem denominação	Intermitente	AID	AID	Rio Tibagi	Esquerda	7318903	529676
11	Sem denominação	Intermitente	AID	AID	Arroio Vira Panela	Esquerda	7319892	527302
12	Arroio Vira Panela	Perene	AID	AID	Rio Tibagi	Esquerda	7320120	530517

^{*}Datum horizontal SIRGAS 2000, 22J.

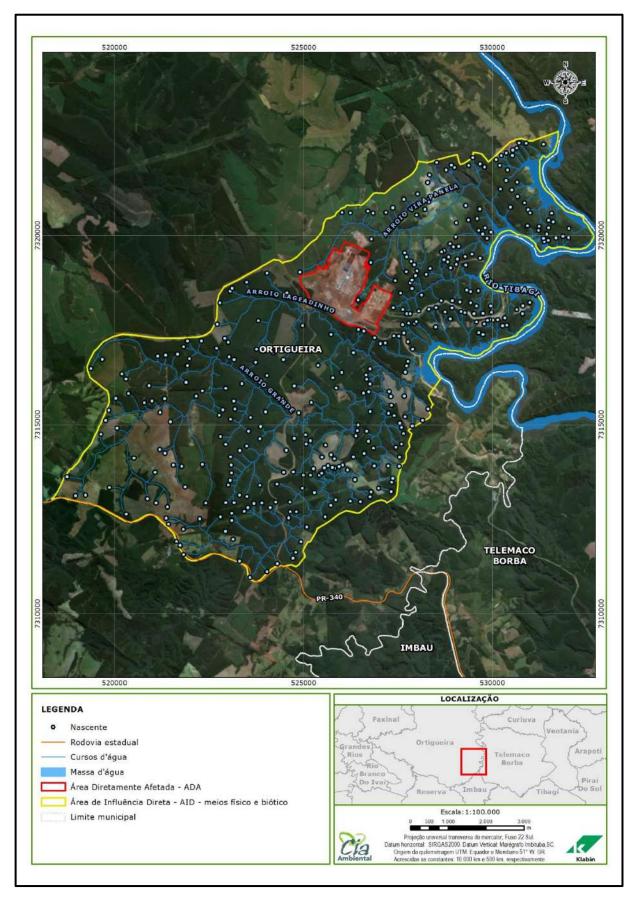
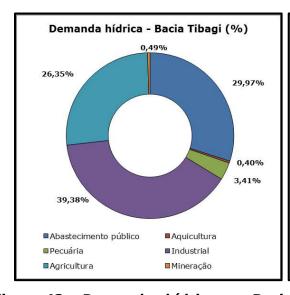


Figura 42 – Rede de drenagem na AID do empreendimento.



4.3.3.3. Usos da água

Quanto aos usos dados à água, de acordo com o Plano da Bacia Hidrográfica do Rio Tibagi – Resumo Executivo (COBRAPE/ÁGUASPARANÁ, 2013) as demandas hídricas estimadas para a bacia do Rio Tibagi totalizam um volume da ordem de 1.429.579,12 m³/dia, e para na AID e seu entorno⁵ um volume da ordem de 212.184,08 m³/dia, equivalente a 14,8% do total demandado na bacia. Esses volumes são distribuídos entre os diferentes usos conforme apresentado na tabela e figura a seguir.

Tabela 19 - Demandas hídricas na Bacia do Rio Tibagi e na AID e seu entorno.

Usos	Demanda	a (m³/dia)		
USOS	Bacia Tibagi	AID e entorno		
Abastecimento público	428.438,79	5.312,94		
Aquicultura	5.765,40	0,00		
Pecuária	48.712,19	2.834,12		
Industrial	562.965,80	202.467,09		
Agricultura	376.756,44	1.569,93		
Mineração	6.940,50	0,00		
Total	1.429.579,12	212.184,08		

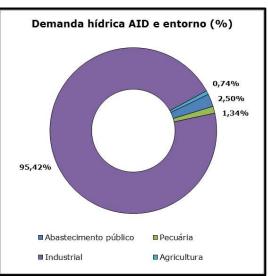


Figura 43 - Demandas hídricas na Bacia do Rio Tibagi e na AID e seu entorno.

⁵ Representada no PBH – Tibagi pela seção de controle nº 14 (Tibagi 05 / Barra do Ribeirão das Antas).

Nota-se uma grande demanda de recursos para fins industriais na bacia. Esta demanda é relacionada principalmente à indústria de alimentos e bebidas, concentrada na região de Ponta Grossa, e à indústria de papel e celulose, concentrada nos municípios de Telêmaco Borba e Ortigueira (AID e entorno). Quanto às fontes de recursos, para a bacia do Tibagi 87,3% das demandas provêm de mananciais superficiais e 12,7% de mananciais subterrâneos. Na AID e entorno, a proporção é de 98,7% de retiradas em mananciais superficiais e 1,3% de mananciais subterrâneos.

De acordo com estimativas elaboradas pelo PBH-Tibagi até o ano de 2030, as demandas para abastecimento público e para o setor industrial em toda a Bacia do Rio Tibagi devem continuar na mesma proporção das atualmente existentes, havendo previsão de elevação apenas na demanda para irrigação.

Ainda, a bacia hidrográfica do Tibagi possui bom potencial para a instalação de aproveitamentos hidrelétricos. Conforme Despacho ANEEL nº 410/2005, o Rio Tibagi possui uma partição de quedas com previsão para 08 (oito) aproveitamentos, dos quais dois já estão em operação (PCH Salto Mauá e UHE Gov. Jaime C. Júnior⁶), e um em construção (UHE Tibagi).

No que se refere às outorgas de uso, de acordo com o banco de dados do Instituto das Águas do Paraná (ÁGUASPARANÁ), existiam até maio de 2016, 1.268 autorizações para captação de água na Bacia do Tibagi, das quais 18 se localizam no Município de Ortigueira, 22 em Telêmaco Borba e 11 em Imbaú.

Para descarte de efluente, a bacia possui 72 autorizações, das quais duas são em Ortigueira, uma em Telêmaco Borba e uma em Imbaú. Para

⁶ Denominada anteriormente como UHE Mauá.

aproveitamento hidrelétrico, a bacia possui 15 outorgas vigentes ou em renovação, das quais três são localizadas em Telêmaco Borba. Os municípios de Ortigueira e Imbaú não possuem outorgas para esse uso.

Tabela 20 - Levantamento de outorgas de direito emitidas pelo ÁGUASPARANÁ até maio de 2016.

	Uso	Bacia do Rio Tibagi	Ortigueira	Telêmaco Borba	Imbaú
	A 1 ~ /1.1:				
	Administração pública	18	-	1	2
	Agropecuária	507	3	1	6
ŏes	Comércio/serviço	151	-	4	1
taçí	Indústria	292	5	13	1
Captações	Outros	136	5	3	-
J	Saneamento	164	5	-	1
	Total	1268	18	22	11
	Administração pública	7	-	-	-
	Agropecuária	3	-	-	-
Efluente	Comércio/serviço	1	-	-	-
flue	Indústria	31	1	1	-
ш	Saneamento	30	1	-	1
	Total	72	2	1	1
8	Comércio/serviço	1	-	1	-
štrić	Indústria	3	-	1	-
Hidrelétrico	Outros	11	-	1	-
Ë	Total	15	0	3	0

4.3.3.4. Qualidade da água

O diagnóstico ambiental da qualidade da água se configura como uma referência prévia a qualquer intervenção em função da implantação das ampliações do empreendimento. A avaliação da condição atual dos corpos hídricos inseridos na AII e AID do empreendimento foi conduzida mediante avaliação de dados secundários da bacia.

Para a AII, a Agência Nacional das Águas (ANA) e o Instituto das Águas do Paraná (ÁGUASPARANÁ) monitoram diversas estações de qualidade de água na Bacia do Rio Tibagi. Dentre os postos de qualidade monitorados, o de maior relevância para o presente estudo é o da Estação Barra Ribeirão das Antas, localizado na confluência do Ribeirão das Antas junto ao Rio Tibagi, em proximidade à UHE Mauá.

Analisando os resultados de monitoramento obtidos para a Estação Barra Ribeirão das Antas entre os anos de 1990 e 2014 (período com disponibilidade de dados) torna-se evidente a presença de Coliformes Totais e Fecais (*E. coli*), especialmente no período anterior ao ano de 1995, indicando a existência de prováveis fontes de contaminação por esgotamento sanitário no corpo hídrico. Das 14 medições de coliformes realizadas no período, 3 apresentaram transgressões ao limite estabelecido para rios Classe 2 (1000 NMP/100mL), sendo o valor máximo medido para *E. coli* de 3000 NMP/100m, em setembro de 1990.

De maneira geral, os demais resultados obtidos indicam uma qualidade das águas compatíveis com os parâmetros estabelecidos para rios de água doce classe 2, conforme a Resolução CONAMA nº 357/2005. Com exceção aos valores obtidos para os parâmetros de coliformes, nota-se que não existem maiores problemas quanto ao aporte de cargas orgânicas e nutrientes. Por fim, não foram verificadas parâmetros acima do padrão quanto à presença de metais pesados no corpo hídrico.

Os dados de monitoramento existentes para a referida estação são apresentados a seguir.

Klabin – Ampliação Unidade Puma Relatório Ambiental Preliminar

Data da Campanha	Cadmio	Chumbo	Coliforme fecal (E Coli)	Coliforme total	Condutividade	DBO/5	DQO	Fosfatos totais	Mercúrio	Nitrogênio Kjeldahl total	Oxigênio dissolvido	рН	Sólidos dissolvidos Totais	Sólidos totais	Temperatura água	Turbidez
	μg/g Cd	mg/g Pb	NMP/100mL	NMP/100mL	μS/cm	mg/L 02	mg/L O2	mg/L P	μg/g Hg	mg/L N	mg/L 02	U de pH	mg/L	mg/L	٥С	N.T.U.
19/02/1990	-	-	500	3000	34,00	<1,00	6,00	0,1000	-	0,330	8,18	7,90	-	36,00	-	23,00
19/06/1990	-	-	800	5000	28,00	1,00	7,00	0,0500	-	0,230	10,40	6,80	-	84,00	13,00	15,00
04/09/1990	-	-	230	23000	27,00	<1,00	5,00	0,0630	-	0,670	11,24	7,40	-	131,00	17,00	25,00
30/09/1990	-	-	3000	5000	31,00	1,00	10,00	0,0440	-	0,310	9,52	7,10	-	90,00	18,00	23,00
04/11/1990	-	-	1100	5000	-		-	-	-	-	-	-	-	-	22,00	-
04/12/1990	-	-	-	-	55,00	1,00	7,00	0,0370	-	0,680	7,64	7,30	-	78,00	22,00	14,00
28/02/1991	-	-	-	-	43,00	1,00	6,00	0,0400	-	0,340	8,54	7,00	-	54,00	-	12,00
01/04/1991	-	-	-	-	33,00	4,00	10,00	0,0180	-	0,390	8,68	6,80	-	66,00	21,00	18,00
05/06/1991	-	-	-	-	51,00	1,00	3,00	0,0450	-	0,170	9,32	7,50	-	33,00	20,00	7,00
24/08/1991	-	-	-	-	58,00	2,00	5,00	0,0400	-	0,310	8,64	7,60	-	91,00	24,00	9,00
23/09/1991	-	-	23	300	53,00	1,00	9,00	0,0530	-	0,500	8,48	7,10	-	55,00	24,00	5,00
29/10/1991	-	-	110	11000	67,00	1,00	3,00	0,0480	-	0,310	8,04	7,10	-	110,00	24,00	19,00
22/11/1991	-	-	300	300	55,00	2,00	7,00	0,0380	-	0,210	8,26	7,40	-	104,00	18.00	9,30
05/12/1991	-	-	500	160000	47,00	2,00	10,00	0,0480	-	0,440	8,66	7,00	- 1	69,00	26,00	4,70
14/04/1992	-	-	-	-	29,00	3,00	8,00	0,0710	-	0,280	9,14	6,40	-	209,00	17,00	15,00
24/05/1992	-	-	2300	17000	38,00	7,00	22,00	0,2180	-	0,800	9,46	7,20		227,00		65,00
30/09/1992	-	-	130	2800	32,00	1,00	8.00	0,0890	-	0,330	8,92	6,40		61,00	20.00	36.00
24/03/1994	-	-	-	-	39,00	2,00	10.00	0,5000	-	0,320	8,34	6,60	_	62,00	20,00	15,00
02/05/1994	-	-	80	1400	36,00	2,00	13,00	0,0370	-	0,300	5,00	7,40	_	62,00	23,00	16,00
30/05/1994	-	_	700	220000	31,00	2,00	22,00	0,1640	_	0,600	8,66	6.90	-	80.00	10.00	110.00
30/08/1994	-		-	-	31,00	2,00	7,00	0,0150	_	0,180	8,38	7,30	_	70,00	14,00	2,90
24/04/1995	<u> </u>	_	230	1700	34,00	1.00	9.00	0,0150	_	0,470	8,34	7,30	_	92.00	18.00	39.00
01/09/2009	 		- 230	- 1700	38,00	-	-	0,0930	_	0,470	9,26	7,50	25,00	92,00	18,66	19,60
09/12/2009	<u> </u>	_		_	39,00		_		_	-	8,62	7,33	-	26.00	24,40	51,00
13/04/2010	-		-	-	37,00		-		-	-	8,80	7,33	24,00	20,00	19,50	36,20
20/08/2010	-			-	56,00	<2,00	2,70		-	0,190	9,71	7,10	37,00	30,00	16,51	9,80
24/10/2010		-	-	-	50,00	- <2,00	2,70	-	-	0,190	8,36	7,33	33,00	30,00	22,26	35,70
06/12/2010	<u> </u>			-	59,00				-	-	7,48	7,46	38,00		25,98	33,70
01/10/2011	<0.2000	0.0060	-	-	60,00		-	-	0.02100	-	9,23	8,20	41.00		25,98	12,60
	<0,2000	0,0060		-					0,02100			· ·	7		-	
17/11/2011	-	-	-	-	60,00		-	-	-	-	9,23	8,20	41,00 42,00		21,34	12,60
02/12/2011					63,00		-			-	10,22	8,22	7		21,32	13,50
14/02/2012	-	-	-	-	71,00	-	-	-	-	-	8,22	8,40	46,00	-	24,22	54,00
25/03/2012	-	-	-	-	70,00	-	-	-	-	-	8,19	8,39	45,00	-	24,20	53,00
21/05/2012	-	-	-	7900	65,00	2,00	13,00	-	-	0,330	9,72	7,98	42,00	25,00	15,84	19,60
31/07/2012	-	-	-	-	52,00	-	-	-	-	-	9,96	8,16	34,00	-	15,30	1,50
25/02/2013	-	-	-	-	73,00	-	-	-	-	-	-	7,90	-	-	23,90	10,30
24/03/2013	-	-	-	-	65,00	-	-	-	-	-	9,74	7,60	-	-	18,60	20,20
02/06/2013	-	-	-	-	72,00	-	-	-	-	-	8,12	8,20	-	-	16,21	-
27/08/2013	-	-	-	-	66,00	-	-	-	-	-	8,69	7,60	43,00	-	15,20	18,80
30/09/2013	-	-	-	-	72,00	-	-	-	-	-	9,72	8,20	42,00	-	13,21	125,00
21/02/2014	-	-	-	-	73,80	-	-	-	-	-	7,36	7,00	-	-	16,00	13,00
10/09/2014	-	-	-	-	40,00	-	-	-	-	-	6,05	6,51	-	-	18,00	15,60

Figura 44 - Resultados de monitoramento da Estação Barra Ribeirão das Antas.

Fonte: ÁGUASPARANÁ, 2018.

Mais especificamente para a AID foram avaliados os dados apresentados pelo relatório do Programa de Monitoramento da Qualidade das Águas Superficiais, proposto para acompanhar e comparar possíveis mudanças das águas do Rio Tibagi, nas diferentes fases (implantação e operação) da Unidade Puma.

Tal programa está vinculado ao PBA – Programa Básico Ambiental - e visa atender à condicionante n° 26 da LP - Licença Ambiental Prévia n° 31911 emitida pelo IAP, em 04/10/2012.

São abordados pelo programa o monitoramento de parâmetros de qualidade da água (atualmente na 22ª campanha) e de diversidade de fitoplânctons (atualmente na 18ª campanha), cujas amostragens são executadas em dois pontos (P1 e P2) localizados no Rio Tibagi na área sob influência do remanso do reservatório da UHE Gov. Jaime C. Júnior, a jusante e a montante dos pontos de captação de água e lançamento de efluentes da Unidade Puma da Klabin.

Os efluentes gerados na Unidade Puma são característicos de efluentes do processo produtivo de celulose, que tem as etapas de polpação, deslignificação e branqueamento, como as principais geradoras de efluente. O efluente gerado é caracterizado por elevadas concentrações de DBO e sólidos em suspensão, bem como, pela presença de compostos orgânicos e inorgânicos, sulfetos, ácidos resinosos, terebentina e compostos ligno-sulfonatos (ACQUAPLAN, 2018).

Nas figuras a seguir podem ser visualizados os resultados obtidos nas 22 campanhas de análise de água superficial, realizadas entre abril de 2013 e abril de 2018. Em destaque são ilustrados os resultados que apresentaram não conformidade com a classe estabelecida (classe 2).

Klabin – Ampliação Unidade Puma Relatório Ambiental Preliminar

											Res	ultados										
Parâmetros	Unidade	13/	mar	13/	'jun	set	/13	dez	1/13	14/	mar	14/	jun	set	/14	dez	/14	fev/	2015	jun	/15	Classe 2
		P1	P2	P1	P2	P1	P2	P1	P2	P1	P2	P1	P2	P1	P2	P1	P2	P1	P2	P1	P2	
pH	20	6,34	6,43	6,44	6,9	6,75	6,95	6,5	6,16	6,88	6,75	7,35	7,17	6,45	6,28	6,2	6,09	7,11	7,15	6,08	5,9	6,0 a 9,0
Condutividade (mS/cm)	mS/cm	0,052	0,051	0,042	0,043	0,06	0,054	0,054	0,052	0,055	0,049	0,047	0,043	0,048	0,054	0,051	0,056	0,055	0,054	0,049	0,048	
Turbidez (UNT)	UNT	11,51	13,5	36,5	35,2	10,9	6,43	75	45,3	51,3	45,9	11,1	12,8	38	32,3	27,4	27,4	26,5	16,6	26,6	25	até 100 UN
Oxigênio Dissolvido (mg/L)	mg/L	7,63	7,51	7,31	7,18	6,71	6,88	6,61	6,78	6,84	7,11	6,81	6,11	7,63	7,2	8,25	7,79	6,81	6,83	7,78	8,51	> 5 mg/L
Temperatura da água (°C)	o _C	17,35	20,27	16,59	16,68	19,34	20,18	24,94	24,97	22,34	22,95	15,4	15,8	20,36	22,36	25,5	24,04	27,66	28,15	15,67	16,23	8
Salinidade		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8.
Potencial de oxirredução (mV)	My	285	289	297	251	285	319	351	384	174	247	154	238	140	155	274	255	87	144	177	218	8
Alcalinidade Total	mg/L	20	21	13	14	21	18	16	18	16	15	18	19	< 5	19,4	12,2	16,6	19,3	17,4	15,7	14,4	
Cloreto	mg/L	2,4	2,9	2,5	2,5	3	3	3	3,2	2,8	2,6	2,8	2,7	3	2,9	3,5	3,6	38,8	3,1	3,6	3,5	250 mg/L
Coliformes Termotolerantes	NMP/100m L	9	1	66	365	28	5	185	61	169	46	2,187	2,254	77	108	4	11	113	10	491	184	1000 NMP/100m
Collformes Totals	NMP/100m L	326	8570	866	1986	330	594	2650	2490	10990	10990	17850	5540	756	756	722	272	2750	2920	3090	2030	
Cor Verdadeira	CU	75	33	21	15	100	72	116	94	123	113	63	68	57	53	22	16	620	640	52	63	até 75 mg P
DBO	mg/L	< 3	< 3	4,1	4,6	5,5	5,8	<3	<4	<3	<3	5,8	<3	< 3	<3	< 3	< 3	<3	<3	<3	<3	até 5 mg/
DQO	mg/L	11	8	10	12	13	25	<5	10	13	13	12	<5	13	11	14	11	29	10	2,5	2,5	2
Dureza Carbonato	mg/L	< 5	< 5	8,2	8,2	< 5	< 5	16	18	16	15	11	8,2	< 5	<5	< 5	< 5	19,3	10,7	< 5	9,6	
Nitrogênio Total Kjeldahi	mg/L	0,28	0,27	0,54	0,32	0,23	0,3	0,98	0,88	1,65	2,11	0,54	0,48	0,68	0,47	0,28	0,39	0,35	0,21	0,43	0,39	3,7 mg/L M para pH ≤ 7
Óleos e Graxas	mg/L	< 5	< 5	< 5	< 5	< 5	< 5	<5	<5	<5	<5	< 5	<5	< 5	<5	< 5	< 5	<5	<5	<5	<5	ausentes
Sólidos Dissolvidos Totais	mg/L	27	27	59	74	68	81	53	217	53	70	65	57	56	42	39	42	57	55	49	41	500 mg/L
Sólidos Suspensos Totais	mg/L	24	17	< 5	< 5	< 5	< 5	34	54	<5	<5	12	8	6	<5	< 5	8	<5	<5	<5	<5	
Sulfato	mg/L	1,9	1,8	1,3	1,2	2,7	1,7	3,8	3,1	2,6	2,3	2,2	1,8	<5	<5	< 5	< 5	7,42	<5	<5	<5	250 mg/L
Fósforo Total	mg/L	0,02	0,02	0,05	0,04	0,05	0,05	0,11	0,14	0,09	0,09	0,12	0,06	0,12	0,07	0,04	0,06	0,03	0,02	0,04	0,02	até 0,050 mg/L
Manganês	mg/L	0,022	< 0,01	0,055	0,051	0,036	0,036	0,0428	0,0386	0,041	0,031	0,03	0,028	< 0,01	0,0669	0,0294	0,0443	0,0258	0,0146	0,031	0,0191	0,1 mg/L
Arsênio	mg/L	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	0,001	0,001	<0,01	<0,01	<0,01	<0,01	< 0,01	< 0,01	< 0,001	< 0,001	<0,001	<0,001	<0,001	<0,001	0,01 mg/l
Chumbo	mg/L	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	0.001	0,001	<0,01	<0,01	<0,01	<0,01	< 0,01	0,0017	0,0025	< 0,001	<0,001	0,0042	<0,001	<0,001	0,01mg/L
Cádmio	mg/L	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	0,001	0,001	<0,001	<0,001	<0,001	<0,001	< 0,001	< 0,001	< 0,001	< 0,001	<0,001	<0,001	<0,001	<0,001	0,001 mg/
Mercúrio	mg/L	0.00007	0,00007	0,00015	0.00015	0,00007	0.00007	0,0001	0,0001	<0,00007	0,00007	<0,00007	0,00007	< 0,0001	< 0,0001	< 0,0001	< 0,0001	<0,0001	<0,0001	<0,0001	<0,0001	0,0002 mg
Cromo	mg/L	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	0,001	0,001	0,029	0,03	< 0,001	< 0,001	< 0,01	0,0016	15,6	0,0069	<0,001	<0,001	<0,001	<0,001	0,05 mg/l
Clorofila A	H6/L	×5		, XB	E ,	. 70	. 03	_ X=1_	. 1581	<0,003	<0,003	<0,003	<0,003	<0,003	<0,003	< 3	< 3	<3	<3	<3	3	30 micrograma
IET(PT) para rios	8	49	49	54	53	54	54	58	60	57	57	59	55	59	56	53	55	52	49	53	49	Não aplicáv
IET(CL) para rios	# S	87	*		(E	. #	(6 0	1.2%	155	60	60	60	60	60	60	60	60	60	60	60	60	Não aplicáv
IET(PT) para reservatórios	* 1	53	53	58	57	58	58	63	64	62	62	63	59	63	60	57	59	55	53	57	53	Não aplicáv
IET (CL) para reservatórios	¥ .	62	2		12				723	52	52	52	52	52	52	52	52	52	52	52	52	Não aplicáv

Figura 45 - Resultados de monitoramento de qualidade da água - Unidade Puma.

Fonte: ACQUAPLAN, 2018.

Klabin – Ampliação Unidade Puma Relatório Ambiental Preliminar

	1												Resultade	os												8
Parâmetros	Unidade	set	/15	dea	/15	mai	/16	jur	1/16	set,	/16	dez	/16	fev	/17	abr	/17	jul	/17	out	/17		/18 r/18)	abr	/18	Classe 2
		P1	P2	P1	P2	P1	P2	P1	P2	P1	P2	P1	P2	P1	P2	P1	P2	P1	P2	P1	P2	P1	P2	P1	P2	
pH	337	7,09	6,93	6,8	6,7	7,221	7,35	6,62	6,82	6,52	6,15	6,12	6,76	7,33	7,45	7,37	7,76	7,97	7,36	8,4	7,7	6,88	6,92	6,45	6,5	6,0 a 9,0
Condutividade (mS/cm)	mS/cm	0,047	0,048	0,061	0,052	0,051	0,048	0,041	0,043	0,045	0,047	0,045	0,065	0,049	0,047	0,055	0,05	67,7	73	71,3	141	0,033	0,031	0,038	0,041	2 %
Turbidez (UNT)	UNT	15,3	14,9	61,7	55,6	36,8	37,5	33,5	32,2	8	11	×	×	38,6	36,3	14	7	12,5	13,8	20,5	22,9	94,7	97,5	28	26	até 100 UNT
Oxigênio Dissolvido (mg/L)	mg/L	7,11	7,09	6,63	6,78	6,71	6,65	6,82	6,56	6,77	6,62	5,98	6,38	6,21	6,38	6,4	6,37	*	6 - C	- 150	03	7,06	7,3	6,62	6,72	> 5 mg/L
Temperatura da água (°C)	°c	21,3	21,3	19,5	19,4	26,83	27,15	15,58	15,72	18,97	18,68	25,11	24,85	27,35	27,23	21,2	23,67	120		14	, at	21,09	21,11	26,1	26,21	. 8
Salinidade	941	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	941		49	22	0	0	0	0	1 14
Potencial de oxirredução (mV)	Mv	79	176	118	129	91	130	123	132	294	309	671	930	89	129	158	55	-5	0	304	308	106	129	79	118	. 8
Alcalinidade Total	mg/L	14,8	14,9	11,6	10	13	13	10,9	18,8	11,3	15,4	11,5	14	< 5	11,4	24	18,2	15,4	16,7	15,5	24,8	14*	12*	14,8	14,7	38
Cloreto	mg/L	3	3,1	2,4	2,7	3,2	4,9	2,9	3,6	3,01	3,58	3,3	4,4	3,1	2,9	4,2	4,9	3,9	4,6	4,2	9	<5,0*	<5,0*	<5,0	<5,0	250 mg/L
Coliformes Termotolerantes	NMP/100m L	167	107	1710	1090	214	55	816	16	980	285	432	490	414	336	144	< 10	275	< 10	727	754	1700	2000	<1,0	2400	1000 NMP/100ml
Coliformes Totals	NMP/100m L	2419	1986	27550	10140	1730	> 2420	1850	1986	4950	1986	4106	4884	> 24200	> 24200	4352	85	1860	865	> 24200	> 24200	1124	1100	1,9x103	2,4x103	
Cor Verdadeira	cu	98	68	99,9	98,5	26,8	24,2	18	16,8	21,3	21,2	25,3	26	13,3	31	19,6	28,4	26	20,9	44,6	44,4	99*	106*	42	44	até 75 mg Pt/L
DBO	mg/L	<3	<3	3,5	< 3	< 3	< 3	< 3	< 3	9,9	4,8	< 3	< 3	< 3	< 3	< 3	< 3	< 3	< 3	< 3	< 3	<2,79*	<2,79*	<2,79	<2,79	até 5 mg/L
DQO	mg/L	9	8	18	10,9	11,6	10,1	< 5	12,8	73,9	40	< 5	16,7	23	22,8	10,5	8,3	< 5	5,9	9	13,7	<10*	<10*	<10	<10	39
Dureza Carbonato	mg/L	< 5	9,8	< 5	< 5	13	13	10,9	18,8	11,3	15,4	< 5	< 5	< 5	< 5	8,3	8,7	15,4	11,5	< 5	< 5	13*	12*	14,8	14,7	E .
Nitrogênio Total Kjeldahl	mg/L	1,44	1,27	0,44	0,39	0,24	0,26	0,45	0,58	0,39	0,42	0,54	0,63	0,72	0,72	0,43	0,38	0,44	0,65	0,68	0,72	<2,0*	<2,0*	<2,0	<2,0	3,7 mg/L N, para pH ≤ 7,5
Óleos e Graxas	mg/L	<5	<5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	<9,2*	<9,2*	<9,2	<9,2	ausentes
Sólidos Dissolvidos Totais	mg/L	32	37	28	< 5	33	33	33	37	36	24	33	43	93	64	53	46	50	53	52	102	<24*	<24*	60	150	500 mg/L
Sólidos Suspensos Totais	mg/L	<5	9	29	23	< 5	< 5	< 5	< 5	< 5	10	46	11	33	12	< 5	5	7	10	13	12	<18*	<18*	80	260	. s
Sulfato	mg/L	<5	<5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	7,85	< 5	6,04	5,01	< 5	16,8	4,9*	5,7*	12,8	5,1	250 mg/L
Fósforo Total	mg/L	0,03	0,03	0,06	0,05	0,03	0,04	0,06	0,06	0,05	0,05	0,05	0,04	0,08	0,09	0,05	0,03	0,03	0,03	0,04	0,04	<0,02*	<0,02*	<0,02	<0,02	até 0,050 mg/L
Manganês	mg/L	0,0178	0,0176	0,0226	0,019	0,033	0,024	0,0216	0,0136	0,0153	0,0179	0,0393	0,0505	0,0299	0,0347	0,13	0,0119	0,0255	0,0267	0,0285	0,0379	0,017*	0,016*	< 0,013	< 0,013	0,1 mg/L
Arsênio	mg/L	<0,001	<0,001	< 0,001	< 0,001	< 0,001	< 0,001	0,001	< 0,001	< 0,001	0,001	< 0,001	< 0,001	< 0,001	< 0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001*	0,001*	< 0,001	< 0,001	0,01 mg/L
Chumbo	mg/L	<0,001	<0,001	< 0,001	< 0,001	< 0,001	< 0,001	0,001	0,00184	0,00342	0,001	0,00211	< 0,001	< 0,001	< 0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,005*	0,005*	< 0,005	< 0,005	0,01mg/L
Cádmio	mg/L	<0,001	<0,001	< 0,001	< 0,001	< 0,001	< 0,001	0,001	< 0,001	< 0,001	0,001	< 0,001	< 0,001	< 0,001	< 0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,0005*	0,0005*	0,0005	0,0005	0,001 mg/L
Mercúrio	mg/L	<0,0001	<0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	0.0001	0,0001	0.0001	0.0001	0.0001	0,0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0,0001	0.0001*	0.0001*	0.0001	0.0001	0,0002 mg/L
Cromo	mg/L	<0,001	<0,001	0,00172	0,00115	< 0,001	0,00128	< 0,001	< 0,001	< 0,001	< 0,001	0,00355	0,00191	0,00192	0,00191	0,001	0,001	< 0,001	0,001	0,001	0,001	0,005*	< 0,005*	< 0,005	< 0,005	0,05 mg/L
Clorofila A	HE/L	<3	<3	401	< 3	< 3	< 3	< 3	7	< 3	< 3	< 3	< 3	< 3	< 3	8	17	< 3	19	< 3	< 3	< 1	< 1	<4,7	<4,7	30 microgramas/L
IET(PT) para rios	87.0	52	52	55	54	52	53	55	55	54	54	54	53	57	57	54	52	64	64	55	55	49	49	49	49	Não aplicável
IET(CL) para rios	2 4 5	60	60	102	60	60	60	60	67	60	60	60	60	60	60	68	75	60	75	43	43	50	50	63	63	Não aplicável
IET(PT) para reservatórios	325	55	55	59	58	55	57	59	59	58	58	58	57	61	62	58	55	55	55	65	65	52	52	52	52	Não aplicável
IET (CL) para reservatórios	19-7	52	52	76	52	52	52	52	56	52	52	52	52	52	52	57	61	62	-	FC	56	47	47	54	54	Não aplicável

Figura 46 - Resultados de monitoramento de qualidade da água - Unidade Puma (continuação).

Fonte: ACQUAPLAN, 2018.

Conforme ilustrado nos resultados da última campanha (abril/18), apenas o parâmetro Coliformes Termotolerantes apresentou resultados acima dos limites da classe 2. Entretanto, não é possível confirmar se este resultado é devido a influência do lançamento de efluentes. O histórico dos resultados indica que este parâmetro não é influenciado pelo lançamento de efluentes da Unidade Puma, visto que, valores acima da Classe 2 foram encontrados tanto no P1 quanto no P2, situação também verificada em outros pontos na bacia do Rio Tibagi (figura 44). O restante dos parâmetros apresentou concentrações compatíveis com os limites da referida classe.

Com relação às campanhas anteriores, outros seis parâmetros (cor verdadeira, fósforo total, demanda bioquímica de oxigênio – DBO, clorofila A, cromo e manganês) apresentaram ao menos uma concentração em desacordo com os limites para rios classe 2. Ressalta-se que estas concentrações foram encontradas tanto no ponto P1 (montante) quanto no ponto P2 (jusante), após lançamento de efluentes, mostrando o não comprometimento das águas pelo lançamento de efluentes proveniente da Unidade Puma.

No que se refere à diversidade de espécies fitoplanctônicas nos pontos amostrais, os resultados apresentados no relatório do programa apontam para uma diferença bastante discreta entre a composição dos dois pontos investigados. O ponto P1 apresenta um maior número de espécies e maior diversidade, corroborada pelos maiores valores nos índices de Diversidade de Shannon e Equitabilidade de PIE, enquanto que o ponto P2 apresenta maior densidade total.

Na figura 47 a seguir é ilustrada a localização da Estação Barra Ribeirão das Antas e dos pontos de monitoramento avaliados na AID.

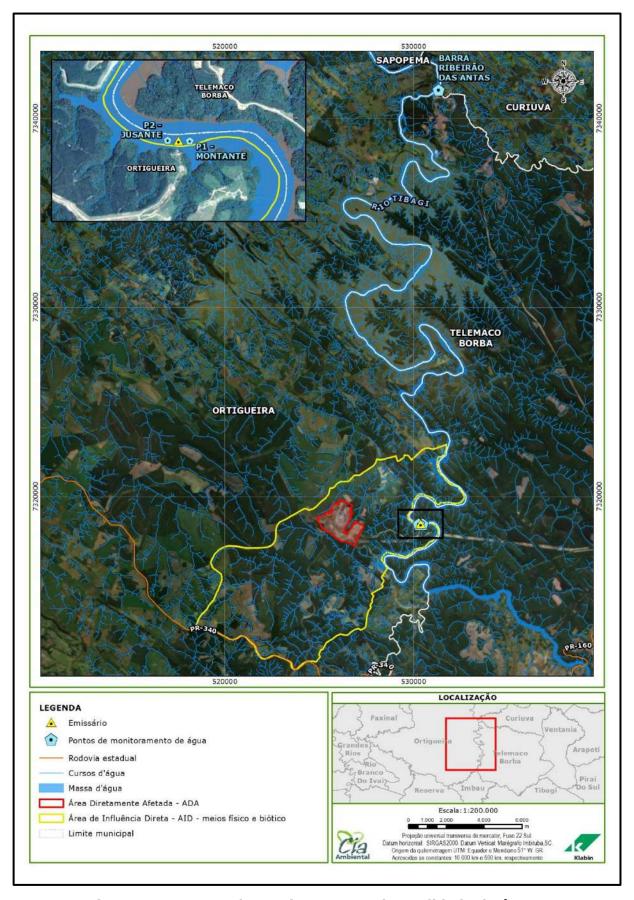


Figura 47 - Pontos de monitoramento de qualidade da água.

4.3.4. Caracterização geológica-geotécnica

4.3.4.1. Aspectos geológicos

De acordo com MINEROPAR (2006) a ADA e AID do empreendimento em estudo são constituídas por rochas Paleozoicas das unidades geológicas da Formação Rio Bonito e Formação Palermo, ambas pertencentes ao Grupo Guatá e pelo Grupo Itararé Indiviso. A disposição espacial das unidades mencionadas é apresentada na figura 48 sendo que na região em estudo o Grupo Itararé está posicionado na base, enquanto que o Grupo Guatá constitui o topo, com a Formação Palermo aflorante.

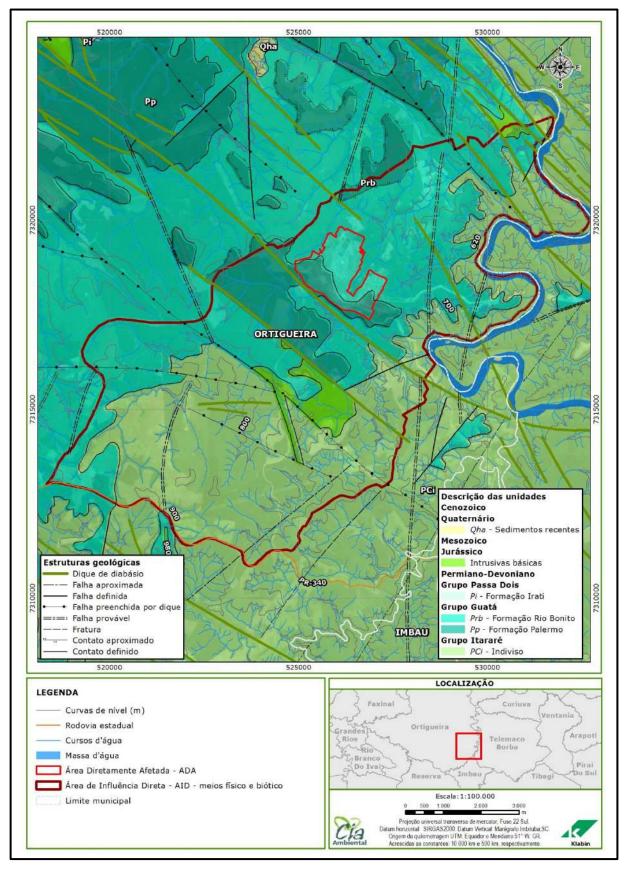


Figura 48 - Mapa geológico regional simplificado para a AID e ADA do empreendimento.

Na AII também ocorrem as seguintes unidades litoestratigráficas: Formação Botucatu; Formação Irati; Formação Rio do Rasto, Formação Serra Alta; Formação Teresina e a Formação Serra Geral. A disposição espacial destas unidades é apresentada no mapa em anexo e na figura 49 é apresentada a representação esquemática das unidades conforme as áreas de influência e segundo a Carta Estratigráfica da Bacia do Paraná (MILANI, 1997).

A seguir são descritas com maior detalhe as unidades citadas que ocorrem na ADA, AID e os principais aspectos gerais das unidades na AII por ordem cronológica conforme determinada na referida carta estratigráfica.

Formação Ponta Grossa

De acordo com MINEROPAR (2006) esta unidade é constituída por folhelhos e siltitos cinza escuros, muito micáceos, laminados, com arenitos intercalados. A Formação Ponta Grossa ocorre somente no extremo sul da AII.

Grupo Itararé (indiviso)

De acordo com MINEROPAR (2006) esta unidade é caracterizada por rochas sedimentares como argilitos, arenitos, diamictitos, siltitos e folhelhos. Nesta unidade a ocorrência da glaciação Permo-Carbonífera é bem evidenciada pela presença de rocha *moutonnée* e de seções de rochas estriadas, bem como a ocorrência de tilitos com seixos e blocos marcados pela abrasão glacial.

I	DADE	GRUPO	UNIDADE GEOLÓGICA	ÁREA INTERCEPTADA		
Cenozoico	Quaternário	-	Depósitos aluvionares	AII		
	Cretáceo	GRUPO BAURU	Formação Adamantina	AII		
Mesozoico	Jurássico	GRUPO SÃO BENTO	Formação Serra Geral	ADA, AID e AII		
Mesc	yar assice	GRUPO SÃO BENTO	Formação Botucatu	AII		
	Triássico		Formação Rio do Rasto	AII		
		GRUPO PASSA	Formação Teresina	AII		
		DOIS	Formação Serra Alta	AII		
	Permiano		Formação Irati	AII		
Paleozoico		GRUPO GUATÁ	Formação Palermo	AID e AII		
Palo		GROTO GOATIA	Formação Rio Bonito	ADA, AID e AII		
		GRUPO IT	ADA, AID e AII			
	Devoniano					
	Carbonífero	GRUPO PARANÁ	Formação Ponta Grossa	AII		

Figura 49 - Representação esquemática das unidades geológicas identificadas nas áreas de influência conforme a idade.

Formação Rio Bonito

A Formação Rio Bonito possui idade Neopermiana e é formada pelos membros: Siderópolis, na porção inferior, Paraguaçu, na porção mediana e Triunfo, na porção inferior, cujos sedimentos têm granulometria, constituição e estrutura muito variadas, tais como arenitos, siltitos, folhelhos e calcários, e estratificação plano-paralela ou cruzada, marcas onduladas, às vezes com intercalações de camadas de carvão sem expressão econômica (MINEROPAR, 2009). A Formação Rio Bonito ocupa parte da ADA, AID e AII, conforme apresenta a figura 50.

De acordo MINEROPAR (2008) a espessura aproximada da unidade corresponde a 300 metros na faixa aflorante, sendo que a Formação Rio Bonito acusa uma origem fluvial no Membro Triunfo, marinha no Paraguaçu e continental litorâneo no Membro Siderópolis.

Figura 50 - Registro fotográfico de afloramento rochoso da Formação Rio Bonito.

Formação Palermo

Segundo MINEROPAR (2009) esta unidade é constituída de siltitos cinzaamarelados e cinza-esverdeados, com laminação paralela, flaser e bioturbados, formada em ambiente de águas rasas, de plataforma epinerítica e planície litorânea. Localmente podem ocorrer arenitos finos a médios no topo do pacote, com concreções e nódulos de sílex na base. A

unidade constitui um pacote litológico muito homogêneo, em cuja base aparecem arenitos muito finos. As suas características sedimentares acusam um ambiente de deposição marinho de plataforma rasa, abaixo da zona de influência das ondas, mas localmente sob a ação de correntes. Com até 90 m de espessura, ela repousa concordantemente sobre a unidade anterior. A Formação Palermo ocupa parte da ADA, AID e AII.

Conforme levantamento já realizado no mesmo local para o Estudo de Impacto Ambiental do Projeto Puma (PÖYRY, 2012) verificou-se que a Formação Palermo apresenta altos índices de porosidade e permeabilidade, o que a distingue das demais unidades sedimentares da região pela menor densidade da rede de drenagem natural, devido à maior facilidade de infiltração das águas pluviais.

Formação Irati

Esta unidade é caracterizada por argilitos e folhelhos cinzentos, pretos pirobetuminosos com intercalações de calcários e laminação paralela com ocorrências de fósseis em ambiente de plataforma rasa (MINEROPAR, 2006). Esta unidade ocorre somente na porção central da AII.

Formação Serra Alta

Segundo MINEROPAR (2006) a Formação Serra Alta é constituída por lamitos e folhelhos, cinzentos, escuros, maciços e microlaminados, com ocorrências locais de fósseis depositados em ambiente de plataforma epinerítica.

Esta unidade ocorre somente na porção central da AII.

Formação Teresina

De acordo com MINEROPAR (2010) esta formação consiste de uma seção síltico-argilosa de cor cinza-claro a cinza-esverdeado, às vezes escura,

apresentando laminações "flaser". A formação apresenta-se bastante espessa, variando de 200 a 300 m, caracterizada por alternância de argilitos e folhelhos cinza-esverdeados com siltitos e arenitos muito finos. A Formação Teresina ocupa somente a porção central da AII.

Formação Rio do Rasto

Constitui-se de sedimentos de cores variadas, situando-se estratigraficamente logo acima da Formação Teresina. De modo geral, a base é constituída por siltitos e arenitos esverdeados e arroxeados e, mais para o topo encontram-se argilitos e siltitos avermelhados, com várias intercalações de lentes de arenitos (MINEROPAR, 2010).

Esta unidade ocorre somente na porção central da AII.

Formação Botucatu

Esta unidade ocorre somente na porção central da AII e compreende a sequência de arenitos avermelhados, finos a médios, quartzosos e friáveis, com abundantes estratificações cruzadas, situadas imediatamente abaixo dos primeiros derrames basálticos da Formação Serra Geral (MINEROPAR, 2010).

Formação Serra Geral

Esta unidade é composta essencialmente por rochas ígneas vulcânicas como basaltos toleíticos e andesitos basálticos, com riolitos e riodacitos subordinados. A espessura de rochas vulcânicas da formação Serra Geral aumenta no sentido leste para oeste, chegando a ultrapassar 1.000 metros nas regiões centrais da bacia do Paraná (FRAGA, 1986). Ocorrem também sob a forma de diques, sills e soleiras de composição básica a intermediária. As rochas aflorantes apresentam, de modo geral, texturas afaníticas e microcristalinas com estruturas maciças ou vesículo-

amigdalodais. É muito comum decomposição esferoidal em porções rochosas que apresentam um processo mais avançado de intemperismo.

Esta unidade ocorre na porção central da AID sob a forma de uma soleira e em outros setores sob a forma de dique. Na AII a Formação Serra Geral ocorre na porção norte/ noroeste.

Formação Adamantina

De acordo com MINEROPAR (2006) esta unidade integra o Grupo Bauru e é constituída por arenitos muito finos a finos, bancos de lamitos, siltitos e arenitos finos, acastanhados depositadas em ambiente de planície fluvial. A principal estrutura é estratificação cruzada e plano-paralela. Esta unidade ocorre somente no extremo noroeste da AII.

Depósitos aluvionares

De acordo com Rocha (1996) os depósitos aluvionares são compostos por depósitos de areia e cascalhos mal selecionados, intercalados por camadas de argila. A granulação varia de fina a grosseira, com estratificação horizontal a sub-horizontal. Esta unidade ocorre somente na porção norte da AII.

4.3.4.2. Aspectos do relevo

De acordo com a MINEROPAR (2006) a área em estudo está posicionada no Planalto de Ortigueira, situada no Segundo Planalto Paranaense. O Planalto de Ortigueira apresenta classe de declividade predominante menor que 12% e gradiente de relevo de 180 metros, com altitudes variando entre 720 e 900 m com as formas predominantes de topos alongados e em cristas, vertentes retilíneas, vales em "V" e direção geral da morfologia é NW/SE.

A região em que está inserido o empreendimento e os setores de ampliação possuem altitude média da ordem de 800 m, sendo que na porção sudeste da área em estudo ocorrem as maiores altitudes. As classes de declividade definem relevo que varia desde plano até ondulado, com predomínio da classe suave ondulado (3% a 8%). Como os setores em ampliação já se encontram antropizados o relevo atual apresenta algumas variações em função da terraplenagem, retaludamento e aterramento que foram executados. A figura a seguir apresenta o registro fotográfico de aspectos gerais do relevo.

Figura 51 - Aspectos gerais do relevo na região em estudo.

4.3.4.3. Aspectos pedológicos

De acordo com IAPAR (2008) a região em estudo é constituída por solos do tipo LATOSSOLOS VERMELHOS Distróficos, ARGISSOLOS VERMELHO-AMARELOS Distróficos e CAMBISSOLOS HÁPLICOS To Distróficos, posicionados espacialmente quanto às áreas de influência segundo apresenta a figura a seguir.

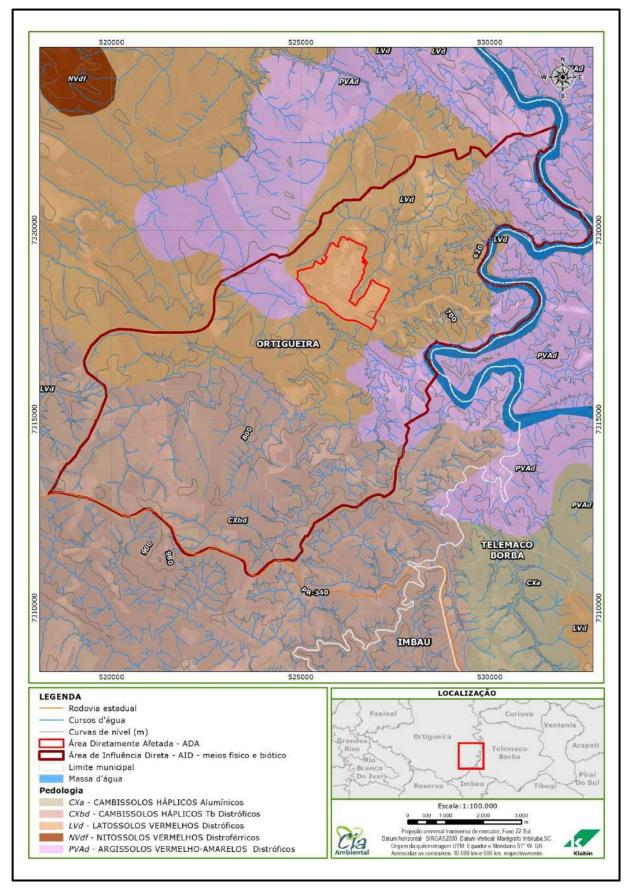


Figura 52 - Mapa pedológico simplificado para AID do empreendimento.

Os LATOSSOLOS VERMELHOS Distróficos referem-se a principal tipologia de solo identificada na área em estudo. Estes solos apresentam evolução muito avançada com atuação expressiva de processo de latolização (ferralitização), resultando em intemperização intensa dos constituintes minerais primários, e mesmo secundários menos resistentes, e concentração relativa de argilominerais resistentes e/ou óxidos e hidróxidos de ferro e alumínio, com inexpressiva mobilização ou migração de argila, ferrólise, gleização ou plintitização (EMBRAPA, 2018). Estes solos ocorrem na porção central da AID ocupam toda a ADA.

Segundo (EMBRAPA, 2018) os ARGISSOLOS VERMELHO-AMARELOS Distróficos são solos evoluídos com atuação incompleta de processo de ferralitização, em conexão com paragênese caulinítico-oxídica ou virtualmente caulinítica, com concentração ou acumulação em horizonte subsuperficial. Conforme a figura anterior, este solo ocorre na porção norte, nordeste, leste e oeste da área de estudo.

Os CAMBISSOLOS HÁPLICOS Tb Distróficos ocorrem no setor sul da AID e correspondem aos solos pouco desenvolvidos com horizonte B incipiente evidenciado pela pedogênese e estrutura do solo pouco avançadas, com alteração do material de origem expressa pela quase ausência da estrutura da rocha ou da estratificação dos sedimentos, croma mais alto, matizes mais vermelhos ou conteúdo de argila mais elevado que o dos horizontes subjacentes (EMBRAPA, 2018).

4.3.5. Hidrogeologia

De acordo com SUDERHSA (2008) a ADA e AID estão locadas na Unidade Aquífera Paleozoica Média Superior que abrange um conjunto de unidades geológicas Paleozoicas inclusive as Formações Irati e Palermo, além do Grupo Itararé. O potencial hidrogeológico atribuído a estas unidades está

relacionado à porosidade primária devido à presença de rochas arenosas em meio às rochas argilosas e, adicionalmente, à presença de estruturas secundárias seccionando as rochas sedimentares. Segundo Mendes et al. (2002) as unidades geológicas datadas do final do Paleozoico, devido à predominância de argilitos, siltitos e folhelhos (rochas estas com permeabilidade primária extremamente baixa) no seu perfil litológico, possuem um potencial hidrogeológico desfavorável, dependente da existência de estruturas secundárias como juntas e falhas. Entretanto, os autores citados destacam que o Aquífero Rio Bonito merece destaque em termos hidrogeológicos por conter camadas de arenitos finos a médios, intercalados a folhelhos e siltitos, apresentando caráter confinado.

4.3.6. Suscetibilidade à ocorrência de processos de dinâmica superficial

Segundo CEPED UFSC (2013) no município de Ortigueira foram registrados três eventos relativos a enxurradas e um evento referente à inundação ao longo dos anos de 1991 a 2012. Apesar dos registros citados, os eventos mencionados foram de pequeno porte e ocorrência pontual, associados aos períodos de chuvas intensas. Segundo CPRM (2016), não há registros de eventos relacionados ao risco geológico no município e, especificamente, na área em estudo. Entretanto, Santos et al, (2007) citam que alguns setores do Planalto de Ortigueira possuem alta vulnerabilidade a erosão, movimentos de massa e queda de blocos, os quais na área em estudo são pouco representativos e relacionam-se aos taludes artificiais existentes na área em estudo.

Na área em estudo são observados usos do solo como agricultura e reflorestamento que podem eventualmente apresentar desenvolvimento de processos erosivos. De acordo com Pöyry (2012) as práticas conservacionistas empregadas tanto no meio rural como urbano são

suficiente para o controle dos processos erosivos em área reflorestadas, agriculturáveis e nas estradas secundárias não pavimentadas ou nos relevos mais acentuados.

Na região em que está inserida a área em estudo o relevo é plano ou suave ondulado com solos bem desenvolvidos com textura argilosa ou argiloarenosa. Considerando estes atributos do meio físico local, a suscetibilidade natural à ocorrência de processos erosivos em nível regional é baixa. Como a área de ampliação do empreendimento encontra-se antropizada e no contexto do meio físico passou por modificações como alterações de declividade de talude, retaludamento, aterramento, escavações, terraplenagem e outras semelhantes, foram identificadas ocorrências pontuais de locais com instabilidade e suscetíveis à instalação de processos erosivos e movimentação de massa. Correspondem àqueles locais com solo exposto no entorno do pátio de toras, jazidas, margens de taludes de vias de acesso e também algumas porções dos taludes da área de reflorestamento, conforme apresenta a figura a seguir.

Figura 53 - Porções com solo exposto identificadas na AID.

4.4. Meio biótico

4.4.1. Caracterização da vegetação existente

Vegetação original

De acordo com a classificação do IBGE (2012), a ADA e AID do empreendimento estão inseridas na fitofisionomia Floresta Ombrófila Mista (FOM). Esta fitofisionomia é também conhecida como "Mata de Araucárias" ou "pinheiral" em função da espécie arbórea predominante, Araucaria angustifolia (Bertol.) Kuntze (Araucariaceae), a qual imprime um aspecto fisionômico próprio em função de seu porte, sua copa característica e sua abundância, emergindo sobre o restante da vegetação arbórea.

Segundo Leite (1994), a flora arbórea desta formação é superior a 350 espécies e Reis (1995) estimou que só para o Paraná fossem encontradas mais de 200 espécies arbóreas diferentes, com endemismo no em torno de 40% (RODERJAN et al., 2002).

A região dominada pela Floresta Ombrófila Mista possui a média de chuvas bem distribuídas durante o ano e sofre fortes influências de temperaturas baixas e geadas nos períodos de inverno, criando assim uma seleção para espécies resistentes a esse fator limitante.

A fitofisionomia da Floresta Ombrófila Mista é subdivida nas formações: "Aluvial", "Submontana", "Montana" e "Alto-Montana", de acordo com o gradiente altitudinal.

De acordo com a altitude da área em estudo, em torno de 760 m em relação ao nível do mar, classifica-se como Floresta Ombrófila Mista Montana. Esta é caracterizada pelo estrato dominante de *Araucaria angustifolia* (Bertol.) Kuntze com as copas formando um dossel acima de

30 metros de altura, podendo inclusive ser encontrados indivíduos emergentes com altura superior a 40 metros (RODERJAN et al., 2002). Encontrada entre altitudes de 400 e 1000 m, preservada atualmente em poucas localidades, como o Parque Nacional do Iguaçu (PR), encontravase ocupando quase que totalmente o Planalto acima de 500 m, nos estados da região Sul brasileira.

As espécies que ocorrem associadamente nessas regiões são Ocotea Mart.) Barroso, O. puberula, O. pulchella, (Nees & C. Capsicodendron dinisii (Schwacke) Occihioni (Canellaceae), Gochnatia polymorpha (Less.), Cabrera (Asteraceae), Podocarpus lambertii Klotzsch Eichler (Podocarpaceae), *Ilex paraguariensis*, *Cedrela* Campomanesia xanthocarpa O. Berg (Myrtaceae), Matayba elaeagnoides Radlk (Sapindaceae), Sloanea lasiocoma K. Schum. (Elaeocarpaceae), Luehea divaricata Mart. (Tiliaceae), Mimosa scabrella Benth. (Fabaceae), Dalbergia brasiliensis Voqel (Fabaceae), Jacaranda puberula Cham. e Tabebuia alba (Cham.) Sandwith (Bignoniaceae). Já nos estratos são inferiores diversos representantes de comuns Myrtaceae, notadamente dos gêneros Myrcia, Eugenia, Calyptranthes e Gomidesia, acompanhados de Salicaceae (Casearia e Xylosma), Sapindaceae (Allophylus e Cupania), Rutaceae, Symplocaceae e Aquifoliaceae. Fetos arborescentes (Dicksonia e Cyathea) e gramíneas cespitosas (Chusquea e Merostachys) são comuns.

Vegetação atual

O que se observa hoje na AID do empreendimento a ser ampliado é um mosaico de diferentes tipos de vegetação, onde se destaca a presença de plantios comerciais das espécies exóticas *Pinus* sp. e *Eucalyptus* sp. A vegetação nativa remanescente ocorre predominantemente nas áreas de preservação permanente (APP), formando corredores ecológicos entre as florestas nativas da AID, em meio aos reflorestamentos de exóticas.

A ADA é classificada em quase sua totalidade como "área antropizada", visto que se trata de uma ampliação do empreendimento já existente. Observa-se que, em relação à cobertura vegetal, existem apenas pequenas manchas de vegetação arbustiva e de reflorestamentos na ADA.

As tabelas e gráficos a seguir apresentam a classificação do uso do solo na AID (tabela 21; figura 54) do empreendimento.

Classe	Área (ha)	%
Acessos	49,83	1%
Agricultura	708,02	9%
Área antropizada	443,79	6%
Campo/pastagem	163,37	2%
Massa d'água	183,70	2%
Reflorestamento	2603,40	34%
Solo exposto	854,85	11%
Vegetação arbórea	2372,71	31%
Vegetação arbustiva	213,96	3%
Total	7593,63	100%

Tabela 21 - Classificação de uso do solo na AID.

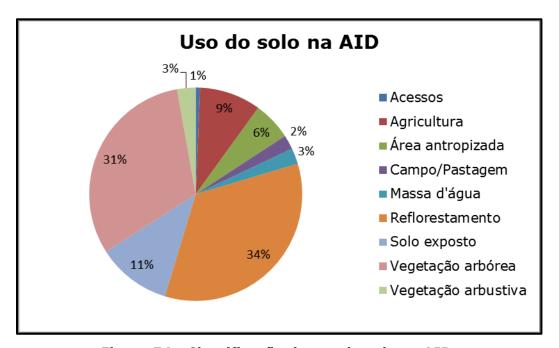


Figura 54 - Classificação de uso do solo na AID.

Observa-se que o pátio de toras projetado incide sobre uma porção de 2,82 ha de reflorestamento de eucalipto. No restante da área ocorre vegetação herbáceo-arbustiva composta principalmente por espécies ruderais exóticas que colonizam margens de estradas e áreas antropizadas. As figuras a seguir demonstram a atual situação da vegetação no local.

Figura 55 - Aspecto da vegetação presente na ADA.

A figura 56 apresenta a classificação de uso do solo na AID, representando a situação já demonstrada nas tabelas e gráficos descritos anteriormente.

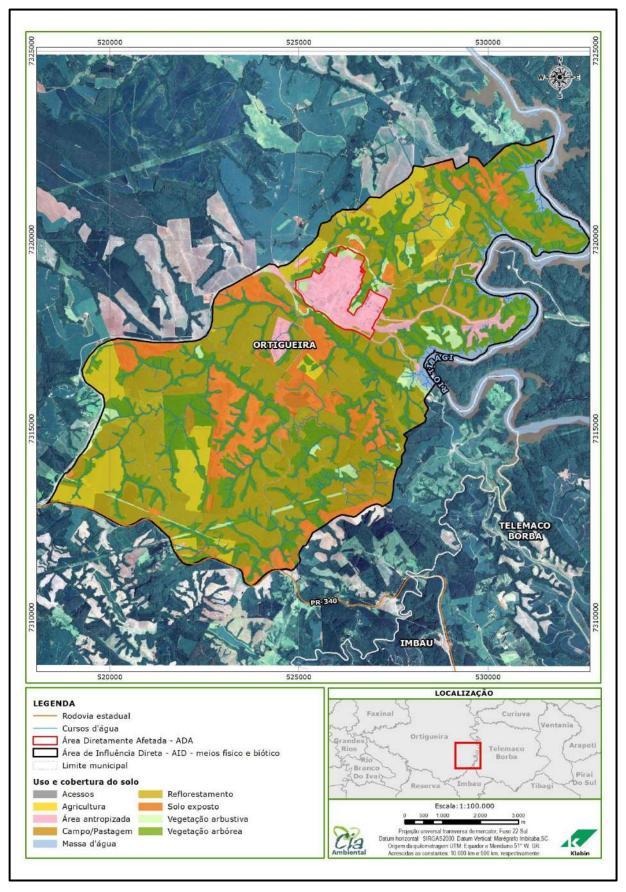


Figura 56 - Uso do solo na AID.

4.4.1.1. Ambientes ecologicamente significativos

4.4.1.1.1 Unidades de conservação

Como parte do diagnóstico ambiental foi realizado o levantamento de unidades de conservação da natureza, assim estabelecidas no Sistema Nacional de Unidades de Conservação (SNUC). O resultado é apresentado no mapa a seguir (figura 57), no qual é possível observar que todas as UC's estão situadas fora da ADA e AID do empreendimento. A UC mais próxima é a RPPN Fazenda Monte Alegre, a qual dista cerca de 30 km da ADA. Desta maneira, a ampliação da Unidade Puma da Klabin não causará impactos a nenhuma unidade de conservação.

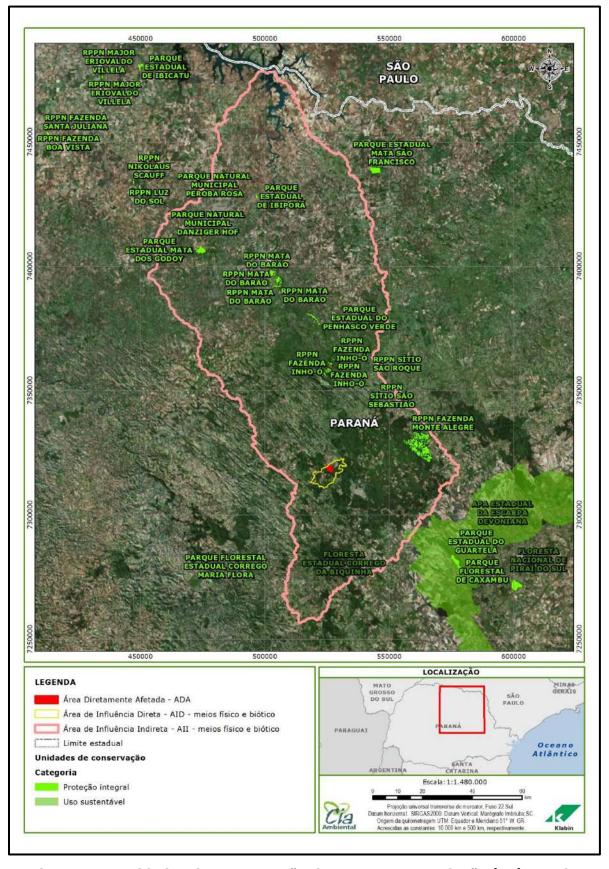


Figura 57 - Unidades de conservação da natureza em relação às áreas de influência.

4.4.1.1.2. Áreas prioritárias para conservação

As Áreas Prioritárias para Conservação (APC's) foram reconhecidas pela Portaria MMA nº 09/2007, a qual apresenta o Mapa das Áreas Prioritárias para Conservação, Uso Sustentável e Repartição de Benefícios da Biodiversidade Brasileira. Apesar de não possuírem caráter impeditivo quanto a processos de licenciamento ambiental, possuem importância para efeito de formulação e implementação de políticas públicas, programas, projetos e atividades voltados a:

- Conservação in situ da biodiversidade;
- Utilização sustentável de componentes da biodiversidade;
- Repartição de benefícios derivados do acesso a recursos genéticos e ao conhecimento tradicional associado;
- Pesquisa e inventários sobre a biodiversidade;
- Recuperação de áreas degradadas e de espécies sobre exploradas ou ameaçadas de extinção;
- Valorização econômica da biodiversidade.

A ampliação do empreendimento não afetará também nenhuma APC existente, sendo que a mais próxima, denominada Ma160, está a aproximadamente 5 km da ADA. A figura a seguir apresenta a localização da ADA em relação às APC's.

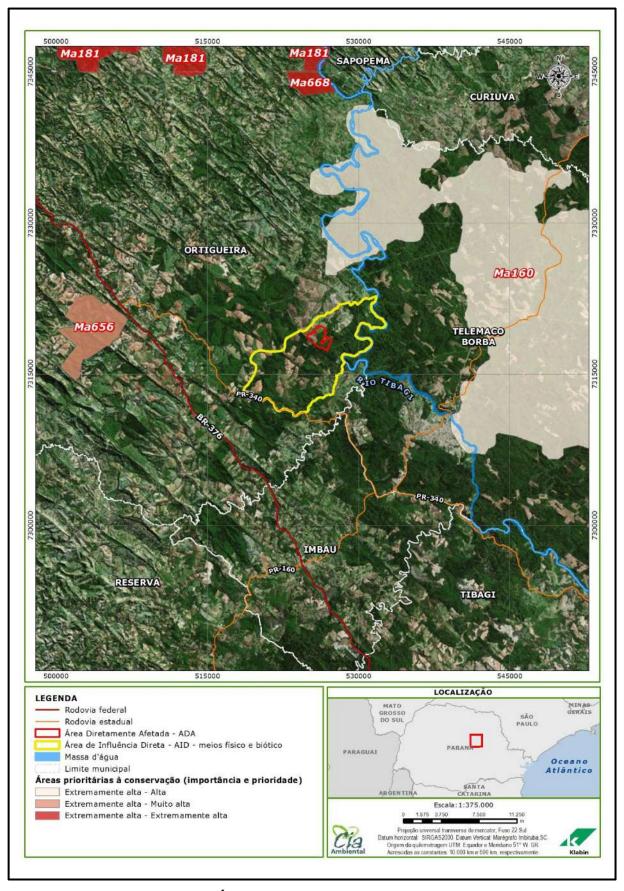


Figura 58 - Áreas prioritárias para conservação.

4.4.1.1.3. Áreas estratégicas para conservação e restauração da biodiversidade

As áreas estratégicas para a conservação da biodiversidade referem-se a áreas cujos remanescentes florestais nativos, ou outros atributos físicos e biológicos, determinem fragilidade ambiental, sendo considerados de relevância, sendo a sua conservação necessária para a garantia da manutenção da biodiversidade no Paraná. Já as áreas estratégicas para recuperação são aquelas essenciais para a manutenção dos fluxos biológicos, para a formação de corredores ecológicos e manutenção da estabilidade física do ambiente.

A Resolução Conjunta SEMA/IAP nº 05/2009 teve a função de estabelecer e consolidar as áreas estratégicas para a conservação e restauração a biodiversidade no estado. Esta é uma ferramenta para gestão ambiental, com base no planejamento da paisagem, delimitando as áreas de maior importância para a biodiversidade paranaense.

Observa-se que o empreendimento está inserido em área estratégica para a restauração, conforme apresentado na figura 59, a seguir. Contudo, assim como para as APC's, no processo de licenciamento ambiental não há nenhuma medida a seguir, assim como não há restrições de uso do solo nestes locais e impeditivos quanto à instalação do empreendimento.

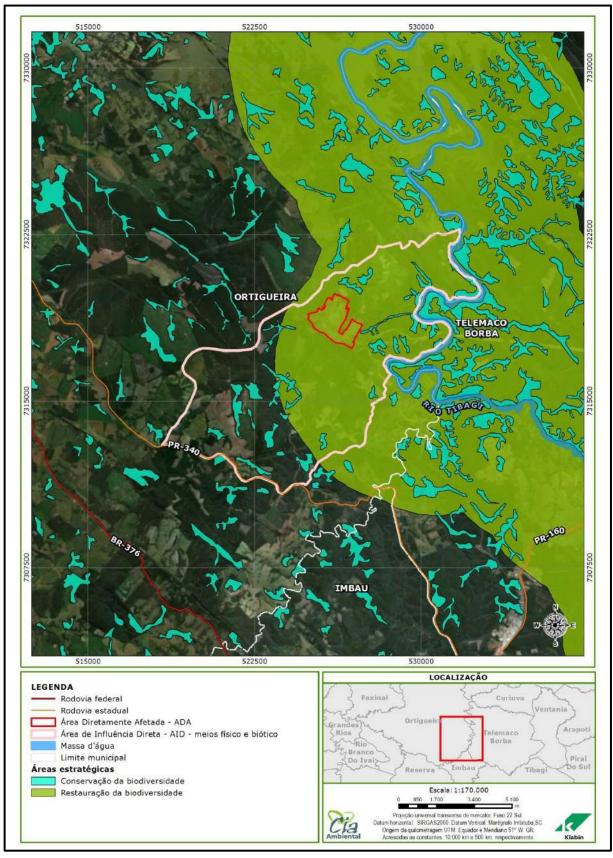


Figura 59 - Áreas estratégicas para conservação e restauração da biodiversidade.

4.4.1.1.4. Áreas de preservação permanente

De acordo com a Lei Federal nº 12.651/2012, as áreas de preservação permanente (APP's) são locais cobertos ou não por vegetação nativa cuja finalidade é preservar os recursos hídricos, a paisagem, a estabilidade geológica e a biodiversidade, além de facilitar o fluxo gênico de fauna e flora, proteger o solo e assegurar o bem estar das populações humanas.

As dimensões de área de vegetação nativa necessárias para a constituição das APP's são variáveis de acordo com as definições presentes na referida lei. Às margens dos cursos d'água naturais, perenes ou intermitentes, a largura mínima da faixa de vegetação a ser mantida depende da largura do curso d'água:

- 30 metros de APP para cursos d'água de até 10 metros de largura;
- 50 metros de APP para cursos d'água de 10 a 50 metros de largura;
- 100 metros de APP para cursos d'água de 50 a 200 metros de largura.

Nas nascentes e olhos d'água perenes, a vegetação mínima preservada deve ter raio de 50 metros. Nos topos de morros e montanhas devem ser conservadas todas as áreas com altura mínima de 100 metros e inclinação média maior que 25 graus, e nas encostas, todas as áreas com declividade superior a 45 graus. Para os tabuleiros ou chapadas, devem ser mantidas as bordas até a ruptura do relevo.

Conforme pode ser observado no mapa a seguir (figura 60), a ampliação do empreendimento não afeta nenhuma APP, assim estabelecida pela Lei Federal nº 12.651/2012.

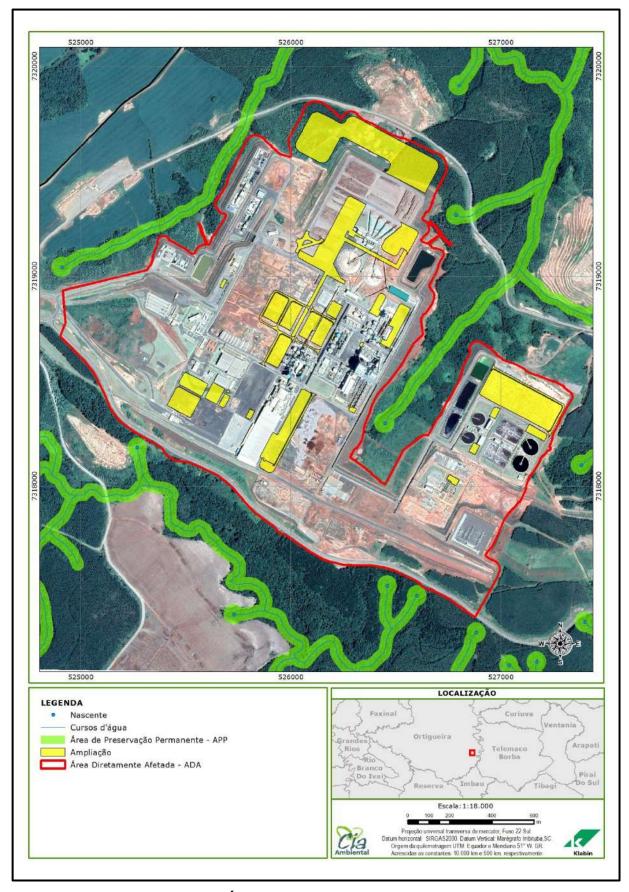


Figura 60 - Áreas de preservação permanente.

4.4.1.1.5. Reserva legal

Conforme a Lei Federal nº 12.651/2012, a reserva legal é definida como sendo a "área localizada no interior de uma propriedade ou posse rural, delimitada nos termos do art. 12, com a função de assegurar o uso econômico de modo sustentável dos recursos naturais do imóvel rural, auxiliar a conservação e a reabilitação dos processos ecológicos e promover a conservação da biodiversidade, bem como o abrigo e a proteção de fauna silvestre e da flora nativa". Ainda de acordo com a mesma lei, a área de reserva legal deve ser registrada no órgão ambiental competente por meio de inscrição no Cadastro Ambiental Rural (CAR).

A propriedade em que está inserido o empreendimento possui inscrição no CAR e delimitação da área de reserva legal. As informações do CAR são declaratórias e compete ao órgão competente, neste caso ao IAP, a verificação e validação destas informações. Foi verificada a situação de análise desta propriedade junto ao Sistema de Cadastro Ambiental Rural (SICAR) e consta como não analisada até o presente momento.

Vale ressaltar que a área de ampliação da unidade não afetará a RL inscrita no CAR. O mapa a seguir (figura 61) apresenta a delimitação das reservas legais do Município de Ortigueira, obtida na base de dados do SICAR.

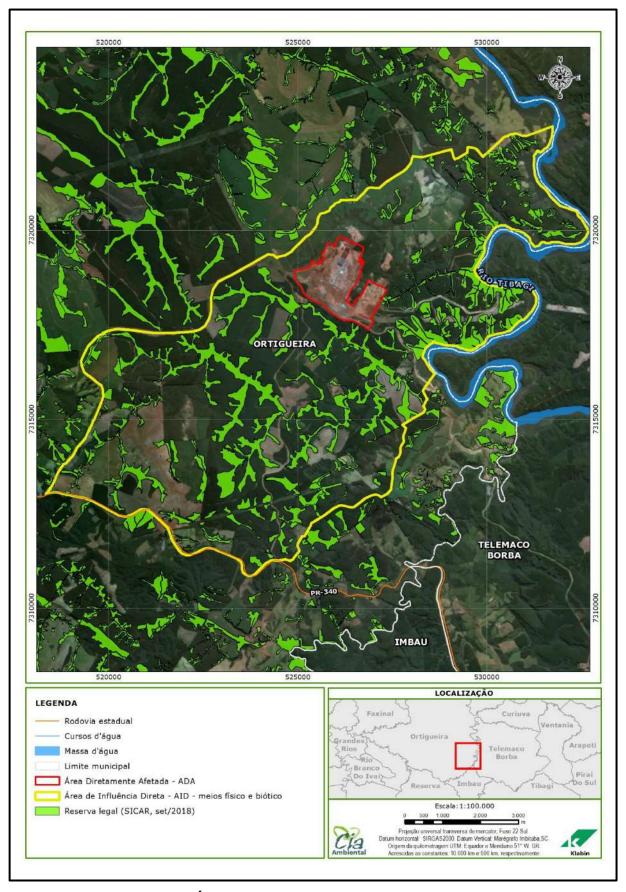


Figura 61 - Áreas de reserva legal registradas no CAR.

4.4.2. Áreas de interesse específico para a fauna

Apesar de inserida numa macro região de restauração da biodiversidade, no entono do Rio Tibagi (figura 59), a área de inserção do empreendimento encontra-se altamente antropizada e fragmentada dados os processos históricos de uso e ocupação do solo para a região (figura 56). Neste contexto, as áreas remanescentes de preservação permanente (APPs), desempenham um importante papel na manutenção da fauna, sendo usadas como *habitat* e/ou corredores ecológicos, auxiliando no fluxo gênico das populações de espécies, no âmbito local e regional (figura 60).

Os habitat remanescentes da região, ainda que escassos, conservam importantes espécies de vertebrados terrestres para a região, conforme descrição das espécies registradas no estudo de impacto ambiental elaborado para a implantação da Unidade Puma (POYRY, 2012) e no área influência monitoramento da fauna terrestre na de empreendimento realizado pela Klabin (item 4.4.2.1). Os registros obtidos também demonstram a influências das florestas de monoculturas de espécies exóticas como Pinus sp. e Eucalyptus sp., na formação de novos habitat nas áreas adjacentes aos remanescentes de vegetação nativa. Ainda que apresentem uma estruturação simplificada de habitat, oferecem melhor condição de ocupação pela fauna que áreas de monoculturas como agricultura e pecuária (ALMEIDA, 1979).

Dentre os ambientes importantes para conservação da fauna, encontra-se sobre a influência do empreendimento, o ecossistema aquático do Rio Tibagi, que possui grande relevância para a manutenção da fauna terrestre e aquática da região. É um dos poucos rios da região Sul que vêm sendo sistematicamente estudados desde a década de 1980 (BENNEMANN et al., 1995; BENNEMANN; SHIBATTA, 2002; SHIBATTA et

al., 2002). Unidades hidroelétricas foram cogitadas para instalação na bacia, alvo de muitas discussões há tempos, e outras já se encontram instaladas ao longo do curso do rio, como a Usina Hidrelétrica Presidente Vargas. Além disso, a poluição tem aumentado na bacia trazendo consequências diretas sobre a redução da fauna, especialmente de peixes (SHIBATTA et al. 2007; MEDRI et al., 2002).

4.4.2.1. Fauna da área de influência

Para a caracterização da fauna da área de influência do empreendimento, foram utilizados os dados do estudo de impacto ambiental industrial da Klabin – Projeto Puma (POYRY, 2012) e do programa de monitoramento da fauna silvestre – Projeto Puma (2017). Os dados aqui apresentados são considerados primários uma vez que foram obtidos no processo de licenciamento anterior e possuem sobreposição espacial. Portanto, todas as espécies mencionadas a seguir possuem ocorrência registrada na área de influência do empreendimento.

4.4.2.1.1. Répteis

De acordo com o levantamento foram registradas 15 espécies de répteis, distribuídas em oito famílias e uma única ordem. A família Dipsadidae apresentou a maior riqueza, contemplando seis espécies. Enquanto que Squamata foi a única ordem registrada e, portanto, compreendeu todas as espécies. A tabela 22 apresenta a classificação taxonômica dessas espécies, nome comum, referências utilizadas, bem como os *status* de conservação e ocorrência.

Tabela 22 – Espécies de répteis coml ocorrência para a região do empreendimento.

No	Classificação tayonê!	Nome nanular	Dofovênci	Status de ocorrência	9	Status de o	onse	rvação	,
Mo	Classificação taxonômica	Nome popular	Kererencias	Status de ocorrencia	PAN	CITES	Int.	Nac.	Est.
	Squamata								
	Amphisbaenidae								
1	Amphisbaena sp.	-	I	-	-	-	-	-	-
	Dipsadidae								
2	Erythrolamprus miliaris	cobra-d'água	I;II	R	-	-	-	-	-
3	Erythrolamprus poecilogyrus	cobra-de-capim	II	R	-	-	-	-	-
4	Sibynomorphus ventrimaculatus	dormideira	II	R	-	-	LC	-	-
5	Thamnodynastes strigatus	corredeira	I;II	R	-	-	LC	-	_
6	Xenodon merremii	boipeva	II	R	-	-	-	-	_
7	Xenodon neuwiedii	quiriripitá	II	R	MA	-	LC	-	_
	Elapidae								
8	Micrurus corallinus	coral-verdadeira	II	R	-	-	-	-	_
	Gymnophtalmidae								
9	Cercosaura schreibersii	lagartinho-do-chão	II	R	-	-	-	-	-
	Leiosauridae								
10	Enyalius perditus	camaleãozinho	I;II	-	-	-	-	-	_
	Mabuyidae								
11	Aspronema dorsivittatum	lagartixa-dourada	II	-	-	-	-	-	_
	Teiidae								
12	Salvator merianae	lagarto-teiú	I;II	R	-	ANEXO II	LC	-	_

No	Classificação taxonômica	Nama namulas	Referências	Status de ocorrência	Status de conservação						
Ma		Nome popular	Referencias	Status de ocorrencia	PAN	CITES	Int.	Nac.	Est.		
	Viperidae										
13	Bothrops jararaca	jararaca	I;II	R	-	-	-	-	-		
14	Bothrops moojeni	caiçaca	I	R	-	-	-	-	-		
15	Crotalus durissus	cascavel	I;II	R	-	-	-	-	-		

Legendas: Referências: I: Dados retirados do Estudo de Impacto Ambiental Industrial Klabin – Projeto Puma (2012); II: Dados retirados do Programa de Monitoramento da fauna silvestre – Projeto Puma (2017); Status de ocorrência (HADDAD et al, 2013): R: Residente; E: Endêmica da Mata Atlântica; EI: Exótica introduzida; Pan (Plano de Ação Nacional): MA: PAN para a Conservação da Herpetofauna ameaçada da Mata Atlântica da região Sudeste do Brasil (Portaria nº48, de 06 de outubro de 2015); Status de conservação: Int.: Internacional; Nac.: Nacional; Est.: Estadual; DD: Dados Insuficientes; LC: Pouco Preocupante; NT: Quase Ameaçada; VU: Vulnerável; EN: Em perigo; CR: Criticamente em perigo. Estadual: X¹: Decreto/Lei; X²: Livro Vermelho Estadual; X³: Decreto/Lei e Livro Vermelho. CITES: Comércio Internacional de Espécies da Flora e Fauna Selvagens em Perigo de Extinção. ANEXO I: Espécies que só poderão ser comercializadas em casos extraordinários, que não ameacem sua sobrevivência. ANEXO II: Espécies que necessitam ter seu comércio regularizado para que não sejam futuramente ameaçadas de extinção. ANEXO III: Alguns países participantes da convenção restringem ou impedem a comercialização de determinadas espécies devido a problemas regionais de conservação. Referências bibliográficas: Internacional: IUCN 2017-2; Nacional: Portaria MMA nº 444 de 2014; Estadual: Lei Estadual do Paraná nº 11.067 de 1995, Decreto Estadual do Paraná nº 3.148 de 2004 e Livro Vermelho da Fauna Ameaçada no Estado do Paraná (MIKICH; BÉRNILS, 2004); CITES: Instrução Normativa MMA nº 1, de 15 de abril de 2014.

4.4.2.1.2. Anfíbios

Foram registradas, para a região do empreendimento, 37 espécies de anfíbios, distribuídas em 10 famílias e uma única ordem, Anura. Dentre as famílias registradas Hylidae apresentou a maior riqueza, compreendendo 17 espécies. A tabela 23 apresenta a classificação taxonômica dessas espécies, nome comum, referências utilizadas, bem como informações acerca dos *status* de conservação e ocorrência.

Tabela 23 – Espécies de anfíbios com ocorrência para a região do empreendimento.

No	Classificação taxonômica	Nome popular	Referências	<i>Status</i> de	Sta	<i>atus</i> de	cons	conservação		
Ma	Classificação taxonomica	моте роритаг	Referencias	ocorrência	PAN	CITES	Int.	Nac.	Est.	
	Anura									
	Brachycephalidae									
1	Ischnocnema guentheri	rãzinha-do-folhiço	II	E	-	-	LC	-	-	
	Bufonidae									
2	Melanophryniscus sp. (gr. tumifrons)	-	II	-	-	-	-	-	-	
3	Rhinella abei	sapo-cururuzinho	II	E	-	-	LC	-	-	
4	Rhinella icterica	sapo-cururu	II	E	-	-	LC	-	-	
	Centrolenidae									
5	Vitreorana uranoscopa	rã-de-vidro	II	E	-	-	LC	-	DD3	
	Craugastoridae									
6	Haddadus binotatus	rãzinha-do-folhiço	II	E	-	-	LC	-	-	
	Hylidae									
7	Aplastodiscus perviridis	perereca	I;II	E	-	-	LC	-	-	
8	Dendropsophus branneri	pererequinha-do-brejo	I	R	-	-	LC	-	-	
9	Dendropsophus minutus	pererequinha-do-brejo	I;II	R	-	-	LC	-	-	
10	Dendropsophus nanus	pererequinha-do-brejo	II	R	-	-	LC	-	-	
11	Dendropsophus werneri	pererequinha-do-brejo	II	E	-	-	LC	-	-	
12	Hypsiboas albopunctatus	perereca-cabrinha	I;II	R	-	-	LC	-	-	
13	Hypsiboas faber	sapo-ferreiro	I;II	E	-	-	LC	-		
14	Hypsiboas prasinus	perereca	II	E	-	-	LC	-	-	

No		Nama namulas	Referências	Status de	Sta	atus de	cons	ervaç	ão
Mo	Classificação taxonômica	Nome popular	Kererencias	ocorrência	PAN	CITES	Int.	Nac.	Est.
15	Hypsiboas punctatus	perereca	I	R	-	-	LC	-	-
16	Ololygon aromothyella	perereca	II	E	-	-	DD	-	-
17	Ololygon berthae	perereca	II	R	-	-	LC	-	
18	Ololygon perpusilla	perereca	I	E	-	-	LC	-	_
19	Ololygon rizibilis	perereca-risadinha	II	E	-	-	LC	-	_
20	Phyllomedusa tetraploidea	perereca-das-folhagens	II	R	-	-	LC	-	_
21	Scinax fuscovarius	raspa-cuia	II	R	-	-	LC	-	_
22	Scinax granulatus	perereca	II	R	-	-	LC	-	_
23	Scinax perereca	perereca-de-banheiro	II	E	-	-	LC	-	_
	Hylodidae								
24	Crossodactylus schmidti	rãzinha-de-riacho	II	E	-	-	NT	-	_
	Leptodactylidae								
25	Adenomera gr. marmorata	rãzinha-do-folhiço	II	E	-	-	LC	-	
26	Leptodactylus chaquensis	-	II	R	-	-	LC	-	_
27	Leptodactylus fuscus	rãzinha-assobiadora	I;II	R	-	-	LC	-	_
28	Leptodactylus gracilis	rãzinha-assobiadora	II	R	-	-	LC	-	_
29	Leptodactylus latrans	rãzinha-do-folhiço	II	R	-	-	LC	-	
30	Leptodactylus mystacinus	rãzinha-assobiadora	II	R	-	-	LC	-	_
31	Physalaemus albonotatus	-	I	-	-	-	LC	-	
32	Physalaemus cuvieri	rãzinha-do-folhiço	I;II	R	-	-	LC	-	
33	Physalaemus gracilis	rã-chorona	II	R	-	-	LC	-	-

No	Classificação taxonômica	Classificação taxonômica Nome popular	Referências		Status de conservação						
Ma	Ciassificação taxonomica	Nome popular	Referencias	ocorrência	PAN	CITES	Int.	Nac.	Est.		
	Microhylidae										
34	Elachistocleis bicolor	sapo-guarda-de-barriga-branca	II	R	-	-	LC	-	-		
	Odontophrynidae										
35	Odontophrynus americanus	sapo-boi	II	R	-	-	LC	-	-		
36	Proceratophrys avelinoi	sapo-de-chifres	II	E	-	-	LC	-	-		
	Ranidae										
37	Lithobates catesbeianus	rã-touro-americana	II	EI	-	-	LC	-	-		

Legendas: Referências: I: Dados retirados do Estudo de Impacto Ambiental Industrial Klabin – Projeto Puma (2012); II: Dados retirados do Programa de Monitoramento da fauna silvestre – Projeto Puma (2017); Status de ocorrência (HADDAD et al, 2013): R: Residente; E: Endêmica da Mata Atlântica; EI: Exótica introduzida; Pan (Plano de Ação Nacional); Status de conservação: Int.: Internacional; Nac.: Nacional; Est.: Estadual; DD: Dados Insuficientes; LC: Pouco Preocupante; NT: Quase Ameaçada; VU: Vulnerável; EN: Em perigo; CR: Criticamente em perigo. Estadual: X¹: Decreto/Lei; X²: Livro Vermelho Estadual; X³: Decreto/Lei e Livro Vermelho. CITES: Comércio Internacional de Espécies da Flora e Fauna Selvagens em Perigo de Extinção. ANEXO I: Espécies que só poderão ser comercializadas em casos extraordinários, que não ameacem sua sobrevivência. ANEXO II: Espécies que necessitam ter seu comércio regularizado para que não sejam futuramente ameaçadas de extinção. ANEXO III: Alguns países participantes da convenção restringem ou impedem a comercialização de determinadas espécies devido a problemas regionais de conservação. Referências bibliográficas: Internacional: IUCN 2017-2; Nacional: Portaria MMA nº 444 de 2014; Estadual: Lei Estadual do Paraná nº 11.067 de 1995, Decreto Estadual do Paraná nº 3.148 de 2004 e Livro Vermelho da Fauna Ameaçada no Estado do Paraná (MIKICH; BÉRNILS, 2004); CITES: Instrução Normativa MMA nº 1, de 15 de abril de 2014.

4.4.2.1.3. Aves

Com relação à avifauna da região, foram obtidos registros de 285 espécies de aves, distribuídas em 60 famílias e 22 ordens. As famílias Tyrannidae e Thraupidae apresentaram a maior riqueza, contemplando 34 e 31 espécies, respectivamente. Enquanto que, dentre as ordens, Passeriformes apresentou a maior abundância, compreendendo 167 espécies. A tabela 24 contém a classificação taxonômica dessas espécies, nome popular, referências utilizadas, bem como informações acerca dos status de conservação e ocorrência.

Tabela 24 – Espécies de aves com ocorrência para a região do empreendimento.

Classificação tayonômica	Nome popular	Poforôncias	Status de	S	<i>tatus</i> de c	onsei	vação)
Ciassificação taxonomica	ноше роригаг	Referencias	ocorrência	PAN	CITES	Int.	Nac.	Est.
Accipitriformes								
Accipitridae								
Accipiter poliogaster	tauató-pintado	II	R	-	ANEXO II	NT	-	DD3
Buteo brachyurus	gavião-de-cauda-curta	I;II	R	-	ANEXO II	LC	-	
Elanoides forficatus	gavião-tesoura	I;II	R	-	ANEXO II	LC	-	
Elanus leucurus	gavião-peneira	II	R	-	ANEXO II	LC	-	
Geranoaetus albicaudatus	gavião-de-rabo-branco	II	R	-	ANEXO II	LC	-	_
Geranospiza caerulescens	gavião-pernilongo	II	R	-	ANEXO II	LC	-	_
Heterospizias meridionalis	gavião-caboclo	I;II	R	-	ANEXO II	LC	-	_
Ictinia plumbea	sovi	II	R	-	ANEXO II	LC	-	-
Leptodon cayanensis	gavião-gato	I;II	R	-	ANEXO II	LC	-	-
Rupornis magnirostris	gavião-carijó	I;II	R	-	ANEXO II	LC	-	-
Spizaetus tyrannus	gavião-pega-macaco	II	R	-	-	LC	-	NT³
Anseriformes								
Anatidae								
Amazonetta brasiliensis	ananaí	II	R	-	-	LC	-	-
Cairina moschata	pato-do-mato	II	R	-	ANEXO III	LC	-	
Apodiformes								
Apodidae								
Chaetura cinereiventris	andorinhão-de-sobre-cinzento	II	R	-	-	LC	-	_
	Accipitridae Accipiter poliogaster Buteo brachyurus Elanoides forficatus Elanus leucurus Geranoaetus albicaudatus Geranospiza caerulescens Heterospizias meridionalis Ictinia plumbea Leptodon cayanensis Rupornis magnirostris Spizaetus tyrannus Anseriformes Anatidae Amazonetta brasiliensis Cairina moschata Apodiformes Apodidae	Accipitriformes Accipiter poliogaster tauató-pintado Buteo brachyurus gavião-de-cauda-curta Elanoides forficatus gavião-peneira Geranoaetus albicaudatus gavião-de-rabo-branco Geranospiza caerulescens gavião-pernilongo Heterospizias meridionalis gavião-caboclo Ictinia plumbea sovi Leptodon cayanensis gavião-gato Rupornis magnirostris gavião-pega-macaco Anseriformes Anatidae Amazonetta brasiliensis ananaí Cairina moschata pato-do-mato Apodiformes Apodidae	Accipitridae Accipiter poliogaster tauató-pintado II Buteo brachyurus gavião-de-cauda-curta I;II Elanoides forficatus gavião-tesoura I;II Elanus leucurus gavião-peneira II Geranoaetus albicaudatus gavião-de-rabo-branco II Geranospiza caerulescens gavião-pernilongo II Heterospizias meridionalis gavião-caboclo I;II Ictinia plumbea sovi II Leptodon cayanensis gavião-gato I;II Rupornis magnirostris gavião-carijó I;II Spizaetus tyrannus gavião-pega-macaco II Anseriformes Anatidae Amazonetta brasiliensis ananaí II Cairina moschata pato-do-mato II Apodiformes Apodidae	Classificação taxonômicaNome popularReferênciasAccipitriformesAccipitridaeAccipiter poliogastertauató-pintadoIIRButeo brachyurusgavião-de-cauda-curtaI;IIRElanoides forficatusgavião-de-cauda-curtaI;IIRElanus leucurusgavião-peneiraIIRGeranoaetus albicaudatusgavião-de-rabo-brancoIIRGeranospiza caerulescensgavião-de-rabo-brancoIIRHeterospizias meridionalisgavião-pernilongoIIRIctinia plumbeasoviIIRLeptodon cayanensisgavião-cabocloI;IIRRupornis magnirostrisgavião-gatoI;IIRSpizaetus tyrannusgavião-pega-macacoIIRAnseriformesAnatidaeIIRAmazonetta brasiliensisananaíIIRCairina moschatapato-do-matoIIRApodiformesApodidae	Classificação taxonômica Nome popular Referências ocorrência DAN Accipitriformes Accipitridae Accipiter poliogaster tauató-pintado II R - Buteo brachyurus gavião-de-cauda-curta I;II R - Elanoides forficatus gavião-tesoura I;II R - Elanus leucurus gavião-peneira II R - Geranoaetus albicaudatus gavião-de-rabo-branco II R - Geranospiza caerulescens gavião-de-rabo-branco II R - Geranospiza caerulescens gavião-pernilongo II R - Heterospizias meridionalis gavião-caboclo I;II R - Ictinia plumbea sovi II R - Leptodon cayanensis gavião-gato I;II R - Rupornis magnirostris gavião-pega-macaco II R - Anseriformes Anatidae <td>Classificação taxonômicaNome popularReferênciasocorrênciaPAN CITESAccipitriformesAccipitridaeAccipiter poliogastertauató-pintadoIIR- ANEXO IIButeo brachyurusgavião-de-cauda-curtaI;IIR- ANEXO IIElanoides forficatusgavião-tesouraI;IIR- ANEXO IIElanus leucurusgavião-peneiraIIR- ANEXO IIGeranoaetus albicaudatusgavião-de-rabo-brancoIIR- ANEXO IIGeranospiza caerulescensgavião-penilongoIIR- ANEXO IIHeterospizias meridionalisgavião-cabocloI;IIR- ANEXO IILeptodon cayanensisgavião-gatoI;IIR- ANEXO IIRupornis magnirostrisgavião-gatoI;IIR- ANEXO IISpizaetus tyrannusgavião-pega-macacoIIR- ANEXO IISpizaetus tyrannusgavião-pega-macacoIIR- ANEXO IIAnaetidaeAmazonetta brasiliensisananaíIIR- ANEXO IIIApodiformesApodiformes</td> <td>Classificação taxonômica Nome popular Referências ocorrência PAN CITES Int. Accipitriformes Accipitridae Accipiter poliogaster tauató-pintado II R - ANEXO II NT Buteo brachyurus gavião-de-cauda-curta I;II R - ANEXO II LC Elanoides forficatus gavião-de-cauda-curta I;II R - ANEXO II LC Elanus leucurus gavião-peneira II R - ANEXO II LC Geranoaetus albicaudatus gavião-de-rabo-branco II R - ANEXO II LC Geranospiza caerulescens gavião-pennilongo II R - ANEXO II LC Heterospizias meridionalis gavião-caboclo I;II R - ANEXO II LC Leptodon cayanensis gavião-gato I;II R - ANEXO II LC Rupornis magnirostris gavião-pega-macaco II R - ANEXO II LC Spizaetus tyrannus gavião-pega-macaco</td> <td>Classificação taxonômica Nome popular Referências ocorrência PAN CITES Int. Nac. Accipitriformes Accipitridae Accipitre poliogaster tauató-pintado II R - ANEXO II R - Buteo brachyurus gavião-de-cauda-curta II; II R - ANEXO II R - Elanoides forficatus gavião-tesoura II; II R - ANEXO II R - Elanoides forficatus gavião-peneira II R - ANEXO II R - ANEXO II R - Elanos leucurus gavião-peneira II R - ANEXO II</td>	Classificação taxonômicaNome popularReferênciasocorrênciaPAN CITESAccipitriformesAccipitridaeAccipiter poliogastertauató-pintadoIIR- ANEXO IIButeo brachyurusgavião-de-cauda-curtaI;IIR- ANEXO IIElanoides forficatusgavião-tesouraI;IIR- ANEXO IIElanus leucurusgavião-peneiraIIR- ANEXO IIGeranoaetus albicaudatusgavião-de-rabo-brancoIIR- ANEXO IIGeranospiza caerulescensgavião-penilongoIIR- ANEXO IIHeterospizias meridionalisgavião-cabocloI;IIR- ANEXO IILeptodon cayanensisgavião-gatoI;IIR- ANEXO IIRupornis magnirostrisgavião-gatoI;IIR- ANEXO IISpizaetus tyrannusgavião-pega-macacoIIR- ANEXO IISpizaetus tyrannusgavião-pega-macacoIIR- ANEXO IIAnaetidaeAmazonetta brasiliensisananaíIIR- ANEXO IIIApodiformesApodiformes	Classificação taxonômica Nome popular Referências ocorrência PAN CITES Int. Accipitriformes Accipitridae Accipiter poliogaster tauató-pintado II R - ANEXO II NT Buteo brachyurus gavião-de-cauda-curta I;II R - ANEXO II LC Elanoides forficatus gavião-de-cauda-curta I;II R - ANEXO II LC Elanus leucurus gavião-peneira II R - ANEXO II LC Geranoaetus albicaudatus gavião-de-rabo-branco II R - ANEXO II LC Geranospiza caerulescens gavião-pennilongo II R - ANEXO II LC Heterospizias meridionalis gavião-caboclo I;II R - ANEXO II LC Leptodon cayanensis gavião-gato I;II R - ANEXO II LC Rupornis magnirostris gavião-pega-macaco II R - ANEXO II LC Spizaetus tyrannus gavião-pega-macaco	Classificação taxonômica Nome popular Referências ocorrência PAN CITES Int. Nac. Accipitriformes Accipitridae Accipitre poliogaster tauató-pintado II R - ANEXO II R - Buteo brachyurus gavião-de-cauda-curta II; II R - ANEXO II R - Elanoides forficatus gavião-tesoura II; II R - ANEXO II R - Elanoides forficatus gavião-peneira II R - ANEXO II R - ANEXO II R - Elanos leucurus gavião-peneira II R - ANEXO II

No		Nome nonview	Referências	Status de	S	<i>tatus</i> de c	onser	vação	D
Mo	Classificação taxonômica	Nome popular	кетегепсіаѕ	ocorrência	PAN	CITES	Int.	Nac.	Est.
15	Chaetura meridionalis	andorinhão-do-temporal	II	R	-	-	LC	-	
16	Streptoprocne zonaris	taperuçu-de-coleira-branca	II	R	-	-	LC	-	-
	Trochilidae								
17	Amazilia fimbriata	beija-flor-de-garganta-verde	I;II	R	-	ANEXO II	LC	-	-
18	Amazilia lactea	beija-flor-de-peito-azul	II	R	-	ANEXO II	LC	-	-
19	Amazilia versicolor	beija-flor-de-banda-branca	I;II	R	-	ANEXO II	LC	-	-
20	Chlorostilbon lucidus	besourinho-de-bico-vermelho	I;II	R	-	ANEXO II	LC	-	-
21	Florisuga fusca	beija-flor-preto	II	R	-	ANEXO II	LC	-	-
22	Leucochloris albicollis	beija-flor-de-papo-branco	II	R	-	ANEXO II	LC	-	-
23	Phaethornis eurynome	rabo-branco-de-garganta-rajada	I;II	R	-	ANEXO II	LC	-	-
24	Phaethornis squalidus	rabo-branco-pequeno	I	E	-	ANEXO II	LC	-	-
25	Thalurania glaucopis	beija-flor-de-fronte-violeta	I;II	R	-	ANEXO II	LC	-	-
	Caprimulgiformes								
	Caprimulgidae								
26	Hydropsalis forcipata	bacurau-tesourão	II	R	-	-	-	-	-
27	Hydropsalis parvula	bacurau-chintã	II	R	-	-	-	-	-
28	Hydropsalis torquata	bacurau-tesoura	I;II	R	-	-	LC	-	_
29	Lurocalis semitorquatus	tuju	II	R	-	-	LC	-	_
30	Nyctidromus albicollis	bacurau	II	R	-	-	LC	-	
31	Podager nacunda	corucão	I	R	-	-	LC	-	_
	Cathartiformes								

Nº	Classificação taxonômica	Nome popular	2010101111136		<i>Status</i> de conservaçã				
			Referências	ocorrência	PAN	CITES	Int.	Nac.	Est.
	Cathartidae								
32	Cathartes aura	urubu-de-cabeça-vermelha	I;II	R	-	-	LC	-	-
33	Coragyps atratus	urubu	I;II	R	-	-	LC	-	-
	Charadriiformes								
	Charadriidae								
34	Vanellus chilensis	quero-quero	I;II	R	-	-	LC	-	-
	Jacanidae								
35	Jacana jacana	jaçanã	II	R	-	-	LC	-	-
	Scolopacidae								
36	Gallinago paraguaiae	narceja	II	R	-	-	LC	-	-
	Columbiformes								
	Columbidae								
37	Claravis pretiosa	pararu-azul	II	R	-	-	LC	-	-
38	Columba livia	pombo-doméstico	II	R	-	-	LC	-	-
39	Columbina picui	rolinha-picuí	II	R	-	-	LC	-	-
40	Columbina squammata	fogo-apagou	II	R	-	-	LC	-	-
41	Columbina talpacoti	rolinha	I;II	R	-	-	LC	-	-
42	Geotrygon montana	pariri	II	R	-	-	LC	-	-
43	Leptotila rufaxilla	juriti-de-testa-branca	I;II	R	-	-	LC	-	-
44	Leptotila verreauxi	juriti-pupu	II	R	-	-	LC	-	-
45	Patagioenas cayennensis	pomba-galega	I;II	R	-	-	LC	-	_

No	Classificação taxonômica	Nome popular	Referências	Status de	S	tatus de c	onser	vaçã	0
Ma	Ciassificação taxonomica	Nome popular	Referencias	ocorrência	PAN	CITES	Int.	Nac.	Est.
46	Patagioenas picazuro	asa-branca	I;II	R	-	-	LC	-	-
47	Zenaida auriculata	avoante	I;II	R	-	-	LC	-	-
	Coraciiformes								
	Alcedinidae								
48	Chloroceryle aenea	martim-pescador-miúdo	II	R	-	-	LC	-	NT³
49	Chloroceryle amazona	martim-pescador-verde	II	R	-	-	LC	-	-
50	Chloroceryle americana	martim-pescador-pequeno	II	R	-	-	LC	-	-
51	Megaceryle torquata	martim-pescador-grande	II	R	-	-	LC	-	-
	Momotidae								
52	Baryphthengus ruficapillus	juruva	II	R	-	-	LC	-	-
	Cuculiformes								
	Cuculidae								
53	Coccyzus melacoryphus	papa-lagarta	II	R	-	-	LC	-	-
54	Crotophaga ani	anu-preto	I;II	R	-	-	LC	-	-
55	Dromococcyx pavoninus	peixe-frito-pavonino	II	R	-	-	LC	-	-
56	Guira guira	anu-branco	I;II	R	-	-	LC	-	-
57	Piaya cayana	alma-de-gato	I;II	R	-	-	LC	-	-
58	Tapera naevia	saci	II	R	-	-	LC	-	-
	Falconiformes								
	Falconidae								
59	Caracara plancus	carcará	I;II	R	-	ANEXO II	LC	-	_

No	Classificação taxonômica	Nome popular	Referências	Status de	S	<i>tatus</i> de c	onsei	vaçã	D
14.	Ciassificação taxonomica	Nome popular	Referencias	ocorrência	PAN	CITES	Int.	Nac.	Est.
60	Falco sparverius	quiriquiri	I;II	R	-	ANEXO II	LC	-	
61	Herpetotheres cachinnans	acauã	I;II	R	-	ANEXO II	LC	-	-
62	Micrastur ruficollis	falcão-caburé	II	R	-	ANEXO II	LC	-	-
63	Micrastur semitorquatus	falcão-relógio	II	R	-	ANEXO II	LC	-	-
64	Milvago chimachima	carrapateiro	I;II	R	-	ANEXO II	LC	-	-
	Galbuliformes								
	Bucconidae								
65	Malacoptila striata	barbudo-rajado	II	Е	-	-	NT	-	-
66	Nonnula rubecula	macuru	II	R	-	-	LC	-	-
	Galliformes								
	Cracidae								
67	Penelope obscura	jacuguaçu	I;II	R	-	-	LC	-	-
	Odontophoridae								
68	Odontophorus capueira	uru	II	R	CA	-	LC	CR	-
	Gruiformes								
	Rallidae								
69	Aramides cajaneus	saracura-três-potes	I	R	-	-	LC	-	-
70	Aramides saracura	saracura-do-mato	II	R	-	-	LC	-	-
71	Gallinula galeata	galinha-d'água	II	R	-	-	LC	-	-
72	Pardirallus nigricans	saracura-sanã	I	R	-	-	LC	-	-
	Nyctibiiformes								

No	Classificação tayonâmica	Nama nanulas	Referências	Status de	Si	tatus de o	conse	vaçã	D
Ma	Classificação taxonômica	Nome popular	Referencias	ocorrência	PAN	CITES	Int.	Nac.	Est.
	Nyctibiidae								
73	Nyctibius griseus	urutau	II	R	-	-	LC	-	-
	Passeriformes								
	Cardinalidae								
74	Amaurospiza moesta	negrinho-do-mato	II	R	-	-	LC	-	-
75	Cyanoloxia brissonii	azulão	I;II	R	-	-	LC	-	-
76	Habia rubica	tiê-de-bando	I;II	R	-	-	LC	-	-
77	Piranga flava	sanhaço-de-fogo	II	R	-	-	LC	-	NT³
	Conopophagidae								
78	Conopophaga lineata	chupa-dente	I;II	R	-	-	LC	VU	_
	Corvidae								
79	Cyanocorax chrysops	gralha-picaça	I;II	R	-	-	LC	-	-
	Cotingidae								
80	Phibalura flavirostris	tesourinha-da-mata	I	R	-	-	NT	-	NT³
81	Procnias nudicollis	araponga	II	R	MA	-	VU	-	_
	Dendrocolaptidae								
82	Campylorhamphus falcularius	arapaçu-de-bico-torto	II	R	-	-	LC	-	
83	Dendrocolaptes platyrostris	arapaçu-grande	II	R	-	-	LC	-	
84	Sittasomus griseicapillus	arapaçu-verde	I;II	R	-	-	LC	-	
85	Xiphocolaptes albicollis	arapaçu-de-garganta-branca	II	R	-	-	LC	-	
86	Xiphorhynchus fuscus	arapaçu-rajado	I;II	R	-	-	LC	-	-

No	Classificação taxonômica	Nome popular	Referências	<i>Status</i> de	Status de conservação			D	
M	Ciassificação taxofiolifica	ноше рорина	Referencias	ocorrência	PAN	CITES	Int.	Nac.	Est.
	Estrildidae								
87	Estrilda astrild	bico-de-lacre	II	EI	-	-	LC	-	_
	Formicariidae								
88	Chamaeza campanisona	tovaca-campainha	I;II	R	-	-	LC	-	_
	Fringillidae								
89	Chlorophonia cyanea	gaturamo-bandeira	II	R	-	-	LC	-	_
90	Euphonia chalybea	cais-cais	II	R	-	-	NT	-	-
91	Euphonia chlorotica	fim-fim	I;II	R	-	-	LC	-	_
92	Euphonia pectoralis	ferro-velho	I	R	-	-	LC	-	_
93	Euphonia violacea	gaturamo	I;II	R	-	-	LC	-	_
94	Spinus magellanicus	pintassilgo	II	R	-	-	LC	-	_
	Furnariidae								
95	Anabacerthia lichtensteini	limpa-folha-ocráceo	II	R	-	-	LC	-	-
96	Automolus leucophthalmus	barranqueiro-de-olho-branco	II	R	-	-	LC	-	_
97	Clibanornis dendrocolaptoides	cisqueiro	II	R	-	-	NT	-	_
98	Cranioleuca obsoleta	arredio-oliváceo	II	R	-	-	LC	-	_
99	Furnarius rufus	joão-de-barro	I;II	R	-	-	LC	-	_
100	Heliobletus contaminatus	trepadorzinho	II	R	-	-	LC	-	
101	Leptasthenura setaria	grimpeiro	II	R	-	-	NT	-	_
102	Lochmias nematura	joão-porca	II	R	-	-	LC	-	
103	Philydor atricapillus	limpa-folha-coroado	II	R	-	-	LC	-	

No		Nama namulau	Referências	Status de	S	tatus de d	conse	vaçã	D
Ma	Classificação taxonômica	Nome popular	Kererencias	ocorrência	PAN	CITES	Int.	Nac.	Est.
104	Philydor rufum	limpa-folha-de-testa-baia	II	R	-	-	LC	-	
105	Synallaxis cinerascens	pi-puí	II	R	-	-	LC	-	
106	Synallaxis ruficapilla	pichororé	II	R	-	-	LC	-	
107	Synallaxis spixi	joão-teneném	II	R	-	-	LC	-	
108	Syndactyla rufosuperciliata	trepador-quiete	II	R	-	-	LC	-	VU¹
	Grallariidae								
109	Grallaria varia	tovacuçu	II	R	-	-	LC	VU	
	Hirundinidae								
110	Progne chalybea	andorinha-grande	I;II	R	-	-	LC	-	
111	Progne tapera	andorinha-do-campo	I;II	R	-	-	LC	-	
112	Pygochelidon cyanoleuca	andorinha-pequena-de-casa	I;II	R	-	-	LC	-	
113	Stelgidopteryx ruficollis	andorinha-serradora	II	R	-	-	LC	-	
114	Tachycineta albiventer	andorinha-do-rio	II	R	-	-	LC	-	
115	Tachycineta leucorrhoa	andorinha-de-sobre-branco	II	R	-	-	LC	-	
	Icteridae								
116	Cacicus chrysopterus	japuíra	I;II	R	-	-	LC	-	
117	Cacicus haemorrhous	guaxe	I;II	R	-	-	LC	-	
118	Gnorimopsar chopi	pássaro-preto	I;II	R	-	-	LC	-	
119	Icterus pyrrhopterus	encontro	II	R	-	-	LC	-	
120	Molothrus bonariensis	chupim	I;II	R	-	-	LC	-	
121	Pseudoleistes guirahuro	chopim-do-brejo	II	R	-	-	LC	-	

No	Classificação taxonômica	Nome popular	Referências	Status de	Si	tatus de d	conser	vaçã	D
Ma	Classificação taxofioniica	Nome popular	Referencias	ocorrência	PAN	CITES	Int.	Nac.	Est.
122	Sturnella superciliaris	polícia-inglesa-do-sul	II	R	-	-	LC	-	-
	Mimidae								
123	Mimus saturninus	sabiá-do-campo	II	R	-	-	LC	-	-
	Motacillidae								
124	Anthus lutescens	caminheiro-zumbidor	II	R	-	-	LC	-	-
	Parulidae								
125	Basileuterus culicivorus	pula-pula	I;II	R	-	-	LC	-	-
126	Geothlypis aequinoctialis	pia-cobra	I;II	R	-	-	LC	-	-
127	Myiothlypis flaveola	canário-do-mato	I	R	-	-	LC	-	VU3
128	Myiothlypis leucoblephara	pula-pula-assobiador	I;II	R	-	-	LC	-	-
129	Setophaga pitiayumi	mariquita	II	R	-	-	LC	-	-
	Passerellidae								
130	Ammodramus humeralis	tico-tico-do-campo	I;II	R	-	-	LC	-	-
131	Arremon semitorquatus	tico-tico-do-mato	II	Е	-	-	LC	-	-
132	Zonotrichia capensis	tico-tico	I;II	R	-	-	LC	-	-
	Passeridae								
133	Passer domesticus	pardal	I;II	R	-	-	LC	-	-
	Pipridae								
134	Chiroxiphia caudata	tangará	I;II	R	-	-	LC	-	-
	Platyrinchidae								
135	Platyrinchus mystaceus	patinho	II	R	-	-	LC	VU	-

No	Classificação tayonêmica	Nama nanular	Referências	Status de	S	tatus de	consei	vaçã	D
Ma	Classificação taxonômica	Nome popular	кетегепсіаѕ	ocorrência	PAN	CITES	Int.	Nac.	Est.
	Polioptilidae								
136	Polioptila lactea	balança-rabo-leitoso	I	R	-	-	NT	-	EΝ³
	Rhinocryptidae								
137	Eleoscytalopus indigoticus	macuquinho	II	Е	-	-	NT	-	_
138	Formicarius colma	galinha-do-mato	II	R	-	-	LC	-	_
139	Psilorhamphus guttatus	tapaculo-pintado	II	R	-	-	NT	-	NT³
140	Scytalopus speluncae	tapaculo-preto	II	Е	-	-	LC	-	_
	Rhynchocyclidae								
141	Hemitriccus diops	olho-falso	II	R	-	-	LC	-	_
142	Leptopogon amaurocephalus	cabeçudo	II	R	-	-	LC	-	_
143	Mionectes rufiventris	abre-asa-de-cabeça-cinza	II	R	-	-	LC	-	_
144	Phylloscartes ventralis	borboletinha-do-mato	II	R	-	-	LC	-	_
145	Poecilotriccus plumbeiceps	tororó	I;II	R	-	-	LC	-	_
146	Todirostrum cinereum	ferreirinho-relógio	II	R	-	-	LC	-	_
147	Todirostrum poliocephalum	teque-teque	II	Е	-	-	LC	-	_
148	Tolmomyias sulphurescens	bico-chato-de-orelha-preta	I;II	R	-	-	LC	-	-
	Scleruridae								
149	Sclerurus scansor	vira-folha	II	R	-	-	LC	-	-
	Thamnophilidae								
150	Batara cinerea	matracão	II	R	-	-	LC	-	-
151	Drymophila ferruginea	trovoada	II	Е	-	-	LC	-	_

No	Classificação taxonômica	Nome popular	Referências	Status de	Si	tatus de d	conser	vação	
Ma	Ciassificação taxonomica	Nome popular	Referencias	ocorrência	PAN	CITES	Int.	Nac.	Est.
152	Drymophila malura	choquinha-carijó	II	R	-	-	LC	-	-
153	Drymophila rubricollis	trovoada-de-bertoni	II	R	-	-	LC	-	_
154	Dysithamnus mentalis	choquinha-lisa	II	R	-	-	LC	-	_
155	Mackenziaena severa	borralhara	II	R	-	-	LC	-	-
156	Pyriglena leucoptera	papa-taoca-do-sul	II	R	-	-	LC	-	-
157	Thamnophilus caerulescens	choca-da-mata	I;II	R	-	-	LC	VU	-
158	Thamnophilus ruficapillus	choca-de-chapéu-vermelho	II	R	-	-	LC	-	-
	Thraupidae								
159	Cissopis leverianus	tietinga	II	R	-	-	LC	-	-
160	Coereba flaveola	cambacica	I;II	R	-	-	LC	-	-
161	Conirostrum speciosum	figuinha-de-rabo-castanho	I;II	R	-	-	LC	-	-
162	Coryphospingus cucullatus	tico-tico-rei	II	R	-	-	LC	-	-
163	Dacnis cayana	saí-azul	I;II	R	-	-	LC	-	-
164	Emberizoides herbicola	canário-do-campo	I	R	-	-	LC	-	-
165	Embernagra platensis	sabiá-do-banhado	II	R	-	-	LC	-	-
166	Haplospiza unicolor	cigarra-bambu	II	R	-	-	LC	-	-
167	Hemithraupis guira	saíra-de-papo-preto	I;II	R	-	-	LC	-	-
168	Microspingus cabanisi	quete-do-sul	II	R	-	-	LC	-	-
169	Pipraeidea bonariensis	sanhaço-papa-laranja	II	R	-	-	LC	-	-
170	Pipraeidea melanonota	saíra-viúva	II	R	-	-	LC	-	-
171	Pyrrhocoma ruficeps	cabecinha-castanha	II	R	-	-	LC	-	

No		Nama namulas	Dofovânciac	Status de	Si	tatus de d	conser	vaçã	D
Mo	Classificação taxonômica	Nome popular	Referências	ocorrência	PAN	CITES	Int.	Nac.	Est.
172	Saltator fuliginosus	bico-de-pimenta	I;II	R	-	-	LC	-	-
173	Saltator similis	trinca-ferro	I;II	R	-	-	LC	-	
174	Schistochlamys ruficapillus	bico-de-veludo	II	R	-	-	LC	-	
175	Sicalis flaveola	canário-da-terra	I;II	R	-	-	LC	-	
176	Sicalis luteola	tipio	II	R	-	-	LC	-	-
177	Sporophila angolensis	curió	II	R	-	-	LC	-	VU3
178	Sporophila caerulescens	coleirinho	I;II	R	-	-	LC	-	-
179	Tachyphonus coronatus	tiê-preto	I;II	R	-	-	LC	-	-
180	Tangara cayana	saíra-amarela	I;II	R	-	-	LC	-	NT3
181	Tangara cyanoptera	sanhaço-de-encontro-azul	II	E	-	-	NT	-	
182	Tangara palmarum	sanhaço-do-coqueiro	I	R	-	-	LC	-	
183	Tangara preciosa	saíra-preciosa	II	R	-	-	LC	-	
184	Tangara sayaca	sanhaço-cinzento	I;II	R	-	-	LC	-	-
185	Tangara seledon	saíra-sete-cores	I	R	-	-	LC	-	
186	Tersina viridis	saí-andorinha	II	R	-	-	LC	-	
187	Thlypopsis sordida	saí-canário	I;II	R	-	-	LC	-	
188	Trichothraupis melanops	tiê-de-topete	II	R	-	-	LC	-	-
189	Volatinia jacarina	tiziu	I;II	R	-	-	LC	-	
	Tityridae								
190	Pachyramphus castaneus	caneleiro	I;II	R	-	-	LC	-	
191	Pachyramphus polychopterus	caneleiro-preto	II	R	-	-	LC	-	

No	Classificação taxonômica	Nome nomiter	Referências	Status de	Si	tatus de d	conser	vaçã	D
Ma	Ciassificação taxonómica	Nome popular	Referencias	ocorrência	PAN	CITES	Int.	Nac.	Est.
192	Pachyramphus validus	caneleiro-de-chapéu-preto	I;II	R	-	-	LC	-	_
193	Pachyramphus viridis	caneleiro-verde	II	R	-	-	LC	-	-
194	Schiffornis virescens	flautim	II	R	-	-	LC	-	-
195	Tityra cayana	anambé-branco-de-rabo-preto	II	R	-	-	LC	-	-
196	Tityra inquisitor	anambé-branco-de-bochecha-parda	II	R	-	-	LC	-	-
	Troglodytidae								
197	Troglodytes musculus	corruíra	I;II	R	-	-	LC	-	-
	Turdidae								
198	Turdus albicollis	sabiá-coleira	I;II	R	-	-	LC	-	-
199	Turdus amaurochalinus	sabiá-poca	I;II	R	-	-	LC	-	-
200	Turdus leucomelas	sabiá-branco	I;II	R	-	-	LC	-	-
201	Turdus rufiventris	sabiá-laranjeira	I;II	R	-	-	LC	-	-
202	Turdus subalaris	sabiá-ferreiro	II	R	-	-	LC	-	-
	Tyrannidae								
203	Attila phoenicurus	capitão-castanho	II	R	-	-	LC	-	-
204	Camptostoma obsoletum	risadinha	II	R	-	-	LC	-	-
205	Capsiempis flaveola	marianinha-amarela	II	R	-	-	LC	-	-
206	Cnemotriccus fuscatus	guaracavuçu	II	R	-	-	LC	-	-
207	Colonia colonus	viuvinha	I;II	R	-	-	LC	-	-
208	Contopus cinereus	papa-moscas-cinzento	II	R	-	-	LC	-	-
209	Elaenia chilensis	guaracava-de-crista-branca	II	VS	-	-	-	-	

NO.		Nama mamulay	Dofo vên sia a	Status de	Si	tatus de d	conser	vação	
Nº	Classificação taxonômica	Nome popular	Referências	ocorrência	PAN	CITES	Int.	Nac.	Est.
210	Elaenia flavogaster	guaracava-de-barriga-amarela	I;II	R	-	-	LC	-	-
211	Elaenia obscura	tucão	II	R	-	-	LC	-	-
212	Elaenia parvirostris	tuque-pium	II	R	-	-	LC	-	-
213	Empidonomus varius	peitica	I;II	R	-	-	LC	-	-
214	Hirundinea ferruginea	gibão-de-couro	II	R	-	-	LC	-	-
215	Knipolegus cyanirostris	maria-preta-de-bico-azulado	II	R	-	-	LC	-	-
216	Knipolegus lophotes	maria-preta-de-penacho	II	R	-	-	LC	-	-
217	Lathrotriccus euleri	enferrujado	II	R	-	-	LC	-	-
218	Legatus leucophaius	bem-te-vi-pirata	II	R	-	-	LC	-	-
219	Machetornis rixosa	suiriri-cavaleiro	I;II	R	-	-	LC	-	-
220	Megarynchus pitangua	neinei	I;II	R	-	-	LC	-	-
221	Myiarchus ferox	maria-cavaleira	II	R	-	-	LC	-	-
222	Myiarchus swainsoni	irré	II	R	-	-	LC	-	-
223	Myiodynastes maculatus	bem-te-vi-rajado	I;II	R	-	-	LC	-	-
224	Myiopagis caniceps	guaracava-cinzenta	II	R	-	-	LC	-	-
225	Myiopagis viridicata	guaracava-de-crista-alaranjada	II	R	-	-	LC	-	-
226	Myiophobus fasciatus	filipe	I;II	R	-	-	LC	-	-
227	Myiozetetes similis	bentevizinho-de-penacho-vermelho	I;II	R	-	-	LC	-	-
228	Phyllomyias virescens	piolhinho-verdoso	II	R	-	-	LC	-	-
229	Pitangus sulphuratus	bem-te-vi	I;II	R	-	-	LC	-	-
230	Pyrocephalus rubinus	príncipe	II	R	-	-	LC	-	-

Νo	Claccificação tayonômica	Nome popular	Referências	<i>Status</i> de	Status de d		de conserv		0
	Classificação taxonômica	Nome popular	Referencias	ocorrência	PAN	CITES	Int.	Nac.	Est.
231	Satrapa icterophrys	suiriri-pequeno	II	R	-	-	LC	-	-
232	Serpophaga subcristata	alegrinho	II	R	-	-	LC	-	-
233	Tyranniscus burmeisteri	piolhinho-chiador	II	R	-	-	LC	-	DD3
234	Tyrannus melancholicus	suiriri	I;II	R	-	-	LC	-	-
235	Tyrannus savana	tesourinha	I;II	R	-	-	LC	-	-
236	Xolmis velatus	noivinha-branca	I;II	R	-	-	LC	-	VU¹
	Vireonidae								
237	Cyclarhis gujanensis	pitiguari	I;II	R	-	-	LC	-	-
238	Hylophilus poicilotis	verdinho-coroado	II	R	-	-	LC	-	-
239	Vireo chivi	juruviara	I;II	R	-	-	-	-	_
	Xenopidae								
240	Xenops rutilans	bico-virado-carijó	II	R	-	-	-	-	-
	Pelecaniformes								
	Ardeidae								
241	Ardea alba	garça-branca	II	R	-	-	LC	-	_
242	Ardea cocoi	garça-moura	II	R	-	-	LC	-	_
243	Bubulcus ibis	garça-vaqueira	II	R	-	-	LC	-	_
244	Butorides striata	socozinho	I	R	-	-	LC	-	_
245	Egretta thula	garça-branca-pequena	II	R	-	-	LC	-	-
246	Nycticorax nycticorax	socó-dorminhoco	II	R	-	-	LC	-	_
247	Syrigma sibilatrix	maria-faceira	I;II	R	-	-	LC	-	-

No	Classificação tayonêmica	Nome nemulas	Referências	Status de	S	<i>Status</i> de c	onser	vaçã	D
Ma	Classificação taxonômica	Nome popular	Referencias	ocorrência	PAN	CITES	Int.	Nac.	Est.
	Threskiornithidae								
248	Mesembrinibis cayennensis	coró-coró	II	R	-	-	LC	-	ΝT³
249	Theristicus caudatus	curicaca	I;II	R	-	-	LC	-	-
	Piciformes								
	Picidae								
250	Campephilus robustus	pica-pau-rei	II	R	-	-	LC	-	-
251	Celeus flavescens	pica-pau-de-cabeça-amarela	II	R	-	-	LC	-	-
252	Colaptes campestris	pica-pau-do-campo	I;II	R	-	-	LC	-	-
253	Colaptes melanochloros	pica-pau-verde-barrado	II	R	-	-	LC	-	-
254	Dryocopus lineatus	pica-pau-de-banda-branca	I;II	R	-	-	-	-	-
255	Melanerpes candidus	pica-pau-branco	I;II	R	-	-	LC	-	-
256	Melanerpes flavifrons	benedito-de-testa-amarela	I;II	R	-	-	LC	-	-
257	Piculus aurulentus	pica-pau-dourado	II	R	-	-	NT	-	-
258	Picumnus temminckii	picapauzinho-de-coleira	I;II	R	-	-	LC	-	-
259	Veniliornis spilogaster	picapauzinho-verde-carijó	I;II	R	-	-	LC	-	-
	Ramphastidae								
260	Pteroglossus bailloni	araçari-banana	II	R	-	ANEXO III	NT	-	-
261	Ramphastos dicolorus	tucano-de-bico-verde	I;II	R	-	ANEXO III	LC	-	-
262	Selenidera maculirostris	araçari-poca	II	R	-	ANEXO III	LC	-	-
	Psittaciformes								
	Psittacidae								

No	Classificação tayonêi	Nome nonular	Referências	Status de	S	<i>Status</i> de c	onser	vação	D
Ma	Classificação taxonômica	Nome popular	Referencias	ocorrência	PAN	CITES	Int.	Nac.	Est.
263	Amazona aestiva	papagaio	I	R	MA	ANEXO II	LC	-	_
264	Amazona vinacea	papagaio-de-peito-roxo	II	R	MA	ANEXO I	EN	VU	ΝT³
265	Brotogeris tirica	periquito-verde	I	E	-	ANEXO II	LC	-	-
266	Forpus xanthopterygius	tuim	I;II	R	-	ANEXO II	LC	-	-
267	Pionopsitta pileata	cuiú-cuiú	II	R	-	ANEXO I	LC	-	-
268	Pionus maximiliani	maitaca	I;II	R	-	ANEXO II	LC	-	
269	Psittacara leucophthalmus	periquitão	I;II	R	-	ANEXO II	LC	-	
270	Pyrrhura frontalis	tiriba	I;II	R	-	ANEXO II	LC	-	
	Strigiformes								
	Strigidae								
271	Athene cunicularia	coruja-buraqueira	I;II	R	-	ANEXO II	LC	-	_
272	Glaucidium brasilianum	caburé	II	R	-	ANEXO II	LC	-	_
273	Megascops choliba	corujinha-do-mato	I;II	R	-	ANEXO II	LC	-	-
274	Megascops sanctaecatarinae	corujinha-do-sul	II	R	-	ANEXO II	LC	-	_
275	Pulsatrix koeniswaldiana	murucututu-de-barriga-amarela	II	R	-	ANEXO II	LC	-	_
276	Strix hylophila	coruja-listrada	II	R	-	ANEXO II	NT	-	_
	Tytonidae								
277	Tyto furcata	suindara	I;II	R	-	ANEXO II	-	-	_
	Suliformes								
	Phalacrocoracidae								
278	Nannopterum brasilianus	biguá	I;II	R	-	-	LC	-	-

NO		Nome nonview	Defevências	Status de	Si	tatus de o	conser	vação	D
No	Classificação taxonômica	Nome popular	Referências	ocorrência	PAN	CITES	Int.	Nac.	Est.
	Tinamiformes								
	Tinamidae								
279	Crypturellus obsoletus	inambuguaçu	II	R	-	-	LC	-	-
280	Crypturellus parvirostris	inambu-chororó	I;II	R	-	-	LC	-	-
281	Crypturellus tataupa	inambu-chintã	II	R	-	-	LC	-	-
282	Nothura maculosa	codorna-amarela	II	R	-	-	LC	-	-
283	Rhynchotus rufescens	perdiz	II	R	-	-	LC	-	-
	Trogoniformes								
	Trogonidae								
284	Trogon rufus	surucuá-dourado	I	R	-	-	LC	-	-
285	Trogon surrucura	surucuá-variado	I;II	R	-	-	LC	-	-

Legendas: Referências: I: Dados retirados do Estudo de Impacto Ambiental Industrial Klabin – Projeto Puma (2012); II: Dados retirados do Programa de Monitoramento da fauna silvestre – Projeto Puma (2017); Status de ocorrência (CBRO, 2014): R: Residente; E: Endêmica do Brasil; EI: Exótica introduzida; Pan (Plano de Ação Nacional): MA = PAN Aves da Mata Atlântica (Port. nº. 34, 2017); CA = PAN Aves da Caatinga (Port. n.º 18, 2016), MA = PAN para a Conservação das aves da Mata Atlântica (Portaria nº 34, de 24 de janeiro de 2017); Status de conservação: Int.: Internacional; Nac.: Nacional; Est.: Estadual; DD: Dados Insuficientes; LC: Pouco Preocupante; NT: Quase Ameaçada; VU: Vulnerável; EN: Em perigo; CR: Criticamente em perigo. Estadual: X¹: Decreto/Lei; X²: Livro Vermelho Estadual; X³: Decreto/Lei e Livro Vermelho. CITES: Comércio Internacional de Espécies da Flora e Fauna Selvagens em Perigo de Extinção. ANEXO I: Espécies que só poderão ser comercializadas em casos extraordinários, que não ameacem sua sobrevivência. ANEXO II: Espécies que necessitam ter seu comércio regularizado para que não sejam futuramente ameaçadas de extinção. ANEXO III: Alguns países participantes da convenção restringem ou impedem a comercialização de determinadas espécies devido a problemas regionais de conservação. Referências bibliográficas: Internacional: IUCN 2017-2; Nacional: Portaria MMA nº 444 de 2014. Estadual: Lei Estadual do Paraná nº 11.067 de 1995, Decreto Estadual do Paraná nº 3.148 de 2004 e Livro Vermelho da Fauna Ameaçada no Estado do Paraná (MIKICH; BÉRNILS, 2004); CITES: Instrução Normativa MMA nº 1, de 15 de abril de 2014.

4.4.2.1.4. Mamíferos

Para a mastofauna da região foram registradas 50 espécies, distribuídas em 20 famílias e oito ordens. Dentre as famílias registradas Phyllostomidae e Cricetidae apresentaram a maior riqueza, ambas com oito espécies. Enquanto que, dentre as ordens, Rodentia contemplou a maior abundância, compreendendo 15 espécies. Seguidas pelas ordens Chiroptera e Carnivora, com 12 e 10 espécies respectivamente. A tabela 25 contempla a classificação taxonômica dessas espécies, nome comum, referências utilizadas, bem como informações sobre os *status* de conservação e ocorrência.

Tabela 25 – Espécies de mamíferos com ocorrência para a região do empreendimento.

Νo	Classificação taxonômica	Nome popular	Referências	Status de	S	tatus de co	nser	vação	
M	Ciassificação taxofiolifica	ноше рорига	Referencias	ocorrência	PAN	CITES	Int.	Nac.	Est.
	Artiodactyla								
	Cervidae								
1	Mazama americana	veado-mateiro	I;II	R	CE	-	DD	-	VU¹/DD²
2	Mazama gouazoubira	veado-catingueiro	I;II	R	CE	-	LC	-	LC¹/DD²
	Tayassuidae								
3	Pecari tajacu	cateto, caititu	I;II	R	-	ANEXO II	LC	-	VU3
	Carnivora								
	Canidae								
4	Cerdocyon thous	cachorro-do-mato, graxaim, raposa	I;II	R	-	ANEXO II	LC	-	LC¹
5	Chrysocyon brachyurus	lobo-guará, guará	I	R	Lobo-guará	ANEXO II	NT	VU	VU¹/EN²
6	Lycalopex gymnocercus	graxaim, raposa-do-campo	I	R	-	ANEXO II	LC	-	NE¹/DD²
	Felidae								
7	Leopardus guttulus	gato-do-mato-pequeno	I;II	R	-	ANEXO II	VU	VU	-
8	Puma concolor	onça-parda, suçuarana, leão-baio	I;II	R	GF	ANEXO I	LC	VU	VU3
	Mephitidae								
9	Eira barbara	irara, papa-mel	I;II	R	-	ANEXO III	LC	-	LC¹
	Mustelidae								
10	Galictis cuja	furão	I;II	R	-	-	LC	-	LC¹
11	Lontra longicaudis	lontra	I	R	-	ANEXO I	NT	-	NT¹/VU²
	Procyonidae								
12	Nasua nasua	quati	I;II	R	-	ANEXO III	LC	-	LC¹
13	Procyon cancrivorus	guaxinim, mão-pelada	I;II	R	-	-	LC	-	LC¹

No	Classificação taxonômica	Nome popular	Referências	Status de		Status de co	nser	vação	
Ma	Ciassificação taxoficilita	Nome popular	Referencias	ocorrência	PAN	CITES	Int.	Nac.	Est.
	Chiroptera								
	Phyllostomidae								
14	Anoura caudifer	morcego-beija-flor	II	R	-	-	LC	-	LC¹
15	Artibeus fimbriatus	morcego	II	R	-	-	LC	-	LC¹
16	Carollia perspicillata	morcego	II	R	-	-	LC	-	LC¹
17	Desmodus rotundus	morcego-vampiro	II	R	-	-	LC	-	LC¹
18	Micronycteris megalotis	morcego	II	R	-	-	LC	-	LC¹
19	Mimon bennettii	morcego	II	R	-	-	LC	-	LC¹/VU²
20	Sturnira lilium	morcego	II	R	-	-	LC	-	LC¹
21	Vampyressa pusilla	morcego	II	R	-	-	DD	-	LC¹
	Vespertilionidae								
22	Histiotus velatus	morcego	II	R	-	-	DD	-	LC¹
23	Lasiurus blossevillii	morcego	II	R	-	-	LC	-	LC¹
24	Myotis ruber	morcego	II	R	-	-	NT	-	LC¹
25	<i>Myotis</i> sp.	-	II	-	-	-	-	-	-
	Cingulata								
	Dasypodidae								
26	Cabassous tatouay	tatu-de-rabo-mole-grande	II	R	-	ANEXO III	LC	-	DD3
27	Dasypus novemcinctus	tatu, tatu-galinha	I;II	R	-	-	LC	-	LC¹
28	Euphractus sexcinctus	tatu-peludo, tatu-peba	I	R	-	-	LC	-	LC¹
	Didelphimorphia								
	Didelphidae								
29	Didelphis albiventris	gambá, sarué	I;II	R	-	-	LC	-	LC¹

Ν°	Classificação taxonômica	ica Nome popular	Referências	<i>Status</i> de ocorrência	Status de conservação					
Ma	Ciassificação taxonomica				PAN	CITES	Int.	Nac.	Est.	
30	Gracilinanus microtarsus	cuíca	II	E	-	-	LC	-	LC¹	
31	Monodelphis americana	cuíca-de-três-listras	II	R	-	-	LC	-	NE¹	
32	Monodelphis sp.	-	II	-	-	-	-	-	-	
	Lagomorpha									
	Leporidae									
33	Lepus europaeus	lebre	I;II	R	-	-	LC	-	-	
34	Sylvilagus brasiliensis	coelho, tapeti	I;II	R	-	-	LC	-	VUз	
	Pilosa							-		
	Myrmecophagidae									
35	Tamandua tetradactyla	tamanduá-de-colete, tamanduá-mirim	I	R	-	-	LC	-	LC ¹	
	Rodentia									
	Caviidae									
36	Cavia aperea	preá	I;II	R	-	-	LC	-	LC¹	
37	Hydrochoerus hydrochaeris	capivara	I;II	R	-	-	LC	-	LC ¹	
	Cricetidae									
38	Akodon sp.	rato-do-chão	II	-	-	-	-	-	-	
39	Bibimys labiosus	rato-do-chão	II	R	-	-	LC	-	-	
40	Brucepattersonius iheringi	rato-do-chão	II	E	-	-	LC	-	DD1	
41	Euryoryzomys russatus	rato-do-mato	II	R	-	-	LC	-	LC ¹	
42	Oligoryzomys sp.	rato	II	-	-	-	-	-	-	
43	Oxymycterus nasutus	rato-do-brejo	II	R	-	-	LC	-	DD¹	
44	Thaptomys nigrita cf.	#N/D	II	R	-	-	LC	-	LC¹	
45	Wilfredomys oenax	rato-do-mato	II	R	-	-	EN	EN	CR ¹	

Ν°	Classificação tayonâmica	Nama namulas	Referências	Status de		Status de conservação			
14 -	Classificação taxonômica	Nome popular	кетегепсіаѕ	ocorrência	PAN	CITES	Int.	Nac.	Est.
	Cricetidae								
46	Sooretamys angouya cf.	#N/D	II	R	-	-	LC	-	LC ¹
	Cuniculidae								
47	Cuniculus paca	paca	I	R	-	ANEXO II	LC	-	ΕN³
	Dasyproctidae								
48	Dasyprocta azarae	cutia	I;II	R	-	-	DD	-	LC ¹
	Erethizontidae								
49	Sphiggurus spinosus	ouriço-cacheiro	II	-	-	-	-	-	-
	Sciuridae								
50	Guerlinguetus ingrami	caxinguelê, esquilo	I	E	-	-	LC	-	LC¹

Legendas: Referências: I: Dados retirados do Estudo de Impacto Ambiental Industrial Klabin – Projeto Puma (2012); II: Dados retirados do Programa de Monitoramento da fauna silvestre – Projeto Puma (2017); Status de ocorrência (PAGLIA et al, 2012): R: Residente; E: Endêmica do Brasil; EI: Exótica introduzida; Pan (Plano de Ação Nacional): GF = PAN para a conservação dos Grandes Felinos (Port. nº 612, de 22 de junho de 2018); CE = PAN para a conservação dos Cervídeos Brasileiros (Port. nº 97, de 27 de agosto de 2010); Lobo-guará: PAN para a Conservação do Lobo-guará (Port. nº 31, de 2 de abril de 2012); Status de conservação: Int.: Internacional; Nac.: Nacional; Est.: Estadual; DD: Dados Insuficientes; LC: Pouco Preocupante; NT: Quase Ameaçada; VU: Vulnerável; EN: Em perigo; CR: Criticamente em perigo. Estadual: X¹: Decreto/Lei; X²: Livro Vermelho Estadual; X³: Decreto/Lei e Livro Vermelho. CITES: Comércio Internacional de Espécies da Flora e Fauna Selvagens em Perigo de Extinção. ANEXO I: Espécies que só poderão ser comercializadas em casos extraordinários, que não ameacem sua sobrevivência. ANEXO II: Espécies que necessitam ter seu comércio regularizado para que não sejam futuramente ameaçadas de extinção. ANEXO III: Alguns países participantes da convenção restringem ou impedem a comercialização de determinadas espécies devido a problemas regionais de conservação. Referências bibliográficas: Internacional: IUCN 2017-2; Nacional: Portaria MMA nº 444 de 2014 . Estadual: Lei Estadual do Paraná nº 11.067 de 1995, Decreto Estadual do Paraná nº 3.148 de 2004 e Livro Vermelho da Fauna Ameaçada no Estado do Paraná (MIKICH; BÉRNILS, 2004); CITES: Instrução Normativa MMA nº 1, de 15 de abril de 2014.

4.4.2.1.5. Ictiofauna

Com relação à ictiofauna da região, foram obtidos registros de 26 espécies de peixes, distribuídas em 10 famílias e cinco ordens. As famílias Characidae e Loricariidae apresentaram a maior riqueza, contemplando sete e seis espécies, respectivamente. Enquanto que, dentre as ordens, Characiformes apresentou a maior abundância, compreendendo 12 espécies. A tabela 26 contém a classificação taxonômica dessas espécies, nome popular, referências utilizadas, bem como informações acerca dos status de conservação e ocorrência.

Tabela 26 – Espécies de peixes com ocorrência para a região do empreendimento.

NIO		None a manula:	Dafau2ma!	Ct-tu- do 000	St	tatus de	cons	ervaçâ	io
No	Classificação taxonômica	Nome popular	Referências	Status de ocorrência	PAN	CITES	Int.	Nac.	Est.
	Characiformes								
	Anostomidae								
1	Leporinus obtusidens	piau	I	R	-	-	LC	-	-
2	Leporinus octofasciatus	piau-listrado	I	R	-	-	-	-	-
3	<i>Leporinus</i> sp.	chimboré	I	-	-	-	-	-	-
4	Schizodon sp.	taguara	I	-	-	-	-	-	-
	Characidae								
5	<i>Aphyocharax</i> sp.	pequira	I	-	-	-	-	-	-
6	Astyanax altiparanae	lambari-do-rabo-amarelo	I	R	-	-	-	-	-
7	Astyanax eigenmanniorum	lambari	I	-	-	-	-	-	-
8	Astyanax scabripinnis	lambari	I	E	-	-	-	-	-
9	Hyphessobrycon sp.	lambari	I	-	-	-	-	-	-
10	Knodus sp.	lambari	I	-	-	-	-	-	-
11	Piabina argentea	lambari	I	R	-	-	-	-	-
	Parodontidae								
12	Apareiodon piracicabae	canivete	I	-	-	-	-	-	-
	Cyprinodontiformes							- - - - - -	
	Poeciliidae								
13	Cnesterodon sp.	guarú	I	-	-	-	-	-	-
14	Phalloceros caudimaculatus	guarú	I	R	-	-	-	-	-
	Gymnotiformes								
	Sternopygidae								
15	Eigenmannia virescens	peixe-espada	I	R	-	-	-	-	-
	Perciformes								
	Cichlidae								

NO		Nama nanula:	Defevêns!==	Ctatus de esember ele	Status de conservação				
No	Classificação taxonômica	Nome popular	Referências	Status de ocorrência	PAN	CITES	Int.	Nac.	Est.
16	Geophagus brasiliensis	acará	I	R	-	-	-	-	-
	Siluriformes								
	Heptapteridae								
17	Rhamdia quelen	jundiá	I	R	-	-	-	-	-
	Loricariidae								
18	Hisonotus francirochai	-	I	-	-	-	-	-	-
19	<i>Hisonotus</i> sp.	-	I	-	-	-	-	-	-
20	Hypostomus albopunctatus	cascudo	I	R	-	-	-	-	-
21	Hypostomus regani	cascudo	I	-	-	-	-	-	-
22	<i>Hypostomus</i> sp.	-	I	-	-	-	-	-	-
23	Rineloricaria latirostris	cascudo	I	R	-	-	-	-	-
	Pimelodidae								
24	Pimelodus maculatus	mandi	I	R	-	-	-	-	-
25	<i>Pimelodus</i> sp.	mandi	I	-	-	-	-	-	-
	Trichomycteridae								
26	<i>Ituglanis</i> sp.	candirú	I	-	-	-	-	-	-

Legendas: Referências: I: Dados retirados do Estudo de Impacto Ambiental Industrial Klabin – Projeto Puma (2012); II: Dados retirados do Programa de Monitoramento da fauna silvestre – Projeto Puma (2017); Status de ocorrência (Fishbase): R: Residente; E: Endêmica do Brasil; EI: Exótica introduzida; Pan (Plano de Ação Nacional); Status de conservação: Int.: Internacional; Nac.: Nacional; Est.: Estadual; DD: Dados Insuficientes; LC: Pouco Preocupante; NT: Quase Ameaçada; VU: Vulnerável; EN: Em perigo; CR: Criticamente em perigo. Estadual: X¹: Decreto/Lei; X²: Livro Vermelho Estadual; X³: Decreto/Lei e Livro Vermelho. CITES: Comércio Internacional de Espécies da Flora e Fauna Selvagens em Perigo de Extinção. ANEXO I: Espécies que só poderão ser comercializadas em casos extraordinários, que não ameacem sua sobrevivência. ANEXO II: Espécies que necessitam ter seu comércio regularizado para que não sejam futuramente ameaçadas de extinção. ANEXO III: Alguns países participantes da convenção restringem ou impedem a comercialização de determinadas espécies devido a problemas regionais de conservação. Referências bibliográficas: Internacional: IUCN 2017-2; Nacional: Portaria MMA nº 444 de 2014 .Estadual: Lei Estadual do Paraná nº 11.067 de 1995, Decreto Estadual do Paraná nº 3.148 de 2004 e Livro Vermelho da Fauna Ameaçada no Estado do Paraná (MIKICH; BÉRNILS, 2004); CITES: Instrução Normativa MMA nº 1, de 15 de abril de 2014.

4.5. Meio socioeconômico

4.5.1. Uso e ocupação do solo atual

A análise de uso e ocupação foi estruturada metodologicamente em três escalas de estudo: a AII (Imbaú, Ortigueira e Telêmaco Borba); AID (Ortigueira); e a ADA e entorno; logo, de uma perspectiva mais ampliada para uma escala de detalhe. Adicionalmente, também foi elaborado um subitem de forma a demonstra a localização de territórios de povos e comunidades na região.

4.5.1.1. Uso do solo da AII

Com base no conjunto de informações do Instituto de Terras, Cartografia e Geologia – ITCG (2006) foi realizado o mapeamento e análise dos usos presentes na AII (Imbaú, Ortigueira e Telêmaco Borba), de modo a subdividir nas seguintes classes de uso: uso misto (áreas urbanas); agricultura; pastagem e campo; reflorestamento; cobertura florestal.

A figura a seguir demonstra o mapeamento de uso do solo da AII, ressaltando-se que esta base do ITCG se refere a uma escala abrangente e com realização entre 2001 e 2002. Porém, salienta-se, que apesar da distância temporal, esta base possibilita o comparativo do padrão de uso do solo com o da AID realizado em 2015, já com a presença da Unidade do Projeto Puma, conforme descrito no item 4.5.1.2.

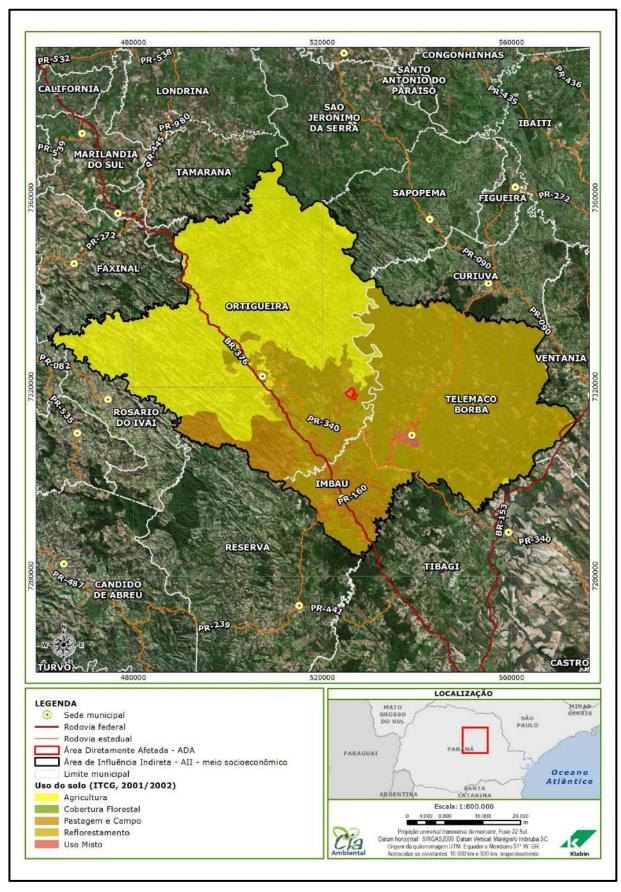


Figura 62 - Uso do solo da AII.

Nos municípios de Imbaú e Ortigueira há uma maior diversidade quanto às classes de uso comparativamente à Telêmaco Borba, pois há áreas de pastagem e campos, reflorestamento e pequena área urbana (uso misto), além de grande área destinada à agricultura na porção oeste, noroeste e norte de Ortigueira.

Em Telêmaco Borba se nota a predominância de áreas de silvicultura, correlacionadas à unidade industrial Monte Alegre da Klabin no município em questão, dado que à época ainda não existia o Projeto Puma em Ortigueira. Outra classe significativa é referente à área urbana, situada de forma concentrada na porção oeste do município e na margem esquerda do Rio Tibagi.

As figuras a seguir demonstram as classes de uso presentes na AII.

Figura 63 - Área urbana de Imbaú.

Figura 64 - Área urbana de Ortigueira.

Figura 65 – Área urbana de Telêmaco Borba.

Figura 66 - Áreas de silvicultura em Imbaú, Ortigueira e em Telêmaco Borba.

Figura 67 – Agricultura intensiva e pastagem em Ortigueira-PR.

4.5.1.2. Uso do solo da AID

Para a caracterização do uso do solo da AID foi utilizada uma base de dados, com ano base de 2015, presente na leitura técnica de diagnóstico para o Plano Diretor de Ortigueira, produzido pela empresa Interação Urbana (2016). Entre as classes de usos presentes estão a Área Urbana;

Campo Antrópico/Cultura; Silvicultura; e Vegetação Natural, conforme definidos (INTERAÇÃO URBANA, 2016, p.87):

- Área Urbana: abrange áreas residências, comerciais e de serviços; indústrias e fábricas; equipamentos urbanos, como rodoviárias, subestações elétricas; equipamentos sociais, como escolas, postos de saúde, instalações de lazer e esporte; eequipamentos institucionais, como instalações municipais ou órgãos de fiscalização, ou ainda, templos ou locais de cunho religioso.
- Campo Antrópico / Cultura: área de campo apresentando em grande parte gramíneas, indivíduos arbustivos isolados, pequenas lavouras, podendo apresentar mosaico de solos expostos e com vestígios de ação humana, porém, sem uso determinado;
- Silvicultura: áreas com usos relacionados à plantio de árvores para produção de celulose;
- Vegetação Natural: áreas de vegetação nas quais não ocorreram ação antrópica, ou estão protegidas por lei, como Áreas de Preservação Permanente APP.

A classe campo antrópico/cultura compreendeu a maior área, correspondendo a 50% do território de Ortigueira, com ocorrência no município como um todo, mas com maior concentração nas porções oeste, sul e norte.

A silvicultura é a segunda classe mais representativa, com 30,38%, também com distribuição por todo o território do município, porém, com maior concentração nas porções sudeste e leste de Ortigueira.

A vegetação nativa representou 19,35%, concentrada espacialmente em dois principais fragmentos, respectivamente situados nas terras indígenas Queimadas e Tibagy/Mococa. Mas também distribuída por todo o município, especialmente junto aos corpos hídricos.

A classe área urbana correspondeu a apenas 0,27% do município, sendo composta principalmente pela sede urbana de Ortigueira, mas também pelas localidades de Bairro dos Franças, Monjolinho, Caetê, Lajeado Bonito, Briolândia, Vista Alegre e Natingui, além da própria Unidade Puma. A tabela a seguir apresenta um resumo do uso do solo na AID. O mapa de

uso do solo para a AID do meio socioeconômico (município de Ortigueira) é apresentado em anexo (INTERAÇÃO URBANA, 2016).

Tabela 27 - Uso e ocupação do solo de Ortigueira-PR (AID).

Área (ha)	Percentual
653,16	0,27%
121.389,20	50,00%
73.755,29	30,38%
46.971,01	19,35%
242.768,66	100%
	653,16 121.389,20 73.755,29 46.971,01

Fonte: INTERAÇÃO URBANA, 2016, p. 88.

Em comparação ao mapeamento de uso do solo da base do ITCG (2006), verifica-se que o padrão de uso em Ortigueira ainda apresenta uma grandeza semelhante, com predomínio de áreas agropecuárias (campo antrópico/cultura ou agricultura, pastagem e campo), seguidamente da produção silvícola (silvicultura ou reflorestamento) e com uma área urbana diminuta. Porém, salienta-se que em função do maior grau de detalhe (maior escala) da base de 2015, há a presença da classe vegetação natural.

Corroboram com esta análise os dados de área da produção de silvicultura com dados disponíveis entre 2013 e 2017 (IBGE, 2018), os quais demonstram que no período houve um aumento na ordem de 16% da área de produção silvícola em Ortigueira, possivelmente correlato à implantação do Projeto Puma da Klabin.

4.5.1.3. ADA e entorno

Para o uso do solo do terreno do empreendimento e entorno foram realizados dois levantamentos. O primeiro foi elaborado a partir da localização pontual das estruturas/edificações mais próximas, de forma a incluir também a localização da comunidade Lajeado Bonito (o aglomerado populacional mais próximo do empreendimento). Já o segundo foi pautado na elaboração de classes de uso para a AID do meio físico e biótico, como também para a ADA.

A partir do mapeamento das estruturas e edificações (figura 73), verificou-se que as mais próximas à ADA são correlatas a atividades comerciais e de serviços (figura 68), respectivamente, uma usina de asfalto (500 m), empresa de resíduos (550 m) e uma churrascaria (700 m). Salienta-se que esta última é beneficiada pela clientela correlata à circulação promovida pela Unidade Puma da Klabin.

Figura 68 – Empresa de usina de asfalto (A), empresa de resíduos (B) e uma churrascaria (C).

Já no tocante às propriedades rurais e residências, a mais próxima está situada a cerca de 800 m, enquanto na faixa de 1 km a 1,2 km há mais quatro propriedades, inclusive com uma capela com centro comunitário (figura 69) da localidade rural Campina dos Pupos. Todas estas edificações/estruturas estão na direção noroeste/norte do empreendimento.

Figura 69 – Propriedades agropecuárias no entorno (A), como também uma capela e salão comunitário (B).

Já porção na porção sudeste há algumas residências situadas entre 1,3 km e 1,6 km, de forma próxima ao reservatório da UHE Mauá, conforme registros fotográficos da figura a seguir.

Figura 70 - Residências na porção sudeste do empreendimento.

Na direção leste estão situadas as estruturas da Unidade Puma da Klabin de captação de água (2,5 km) e do emissário (3 km) no Rio Tibagi, conforme demonstra a figura a seguir.

Figura 71 - Estruturas de captação de água (A) e do emissário (B).

A aproximadamente 7 km na direção norte está situada a comunidade de Lajeado Bonito (figura 72), o núcleo populacional mais próximo e que conta com equipamentos públicos como unidade de saúde e escola.

Figura 72 - Comunidade de Lajeado Bonito.

Portanto, verifica-se que o empreendimento está situado em local pouco adensado, distante de núcleos populacionais, sendo que as edificações mais próximas não são residências. Adicionalmente, ressalta-se que grande parte do entorno imediato da Unidade Puma é composto por barreira vegetal composta por plantios de silvicultura.

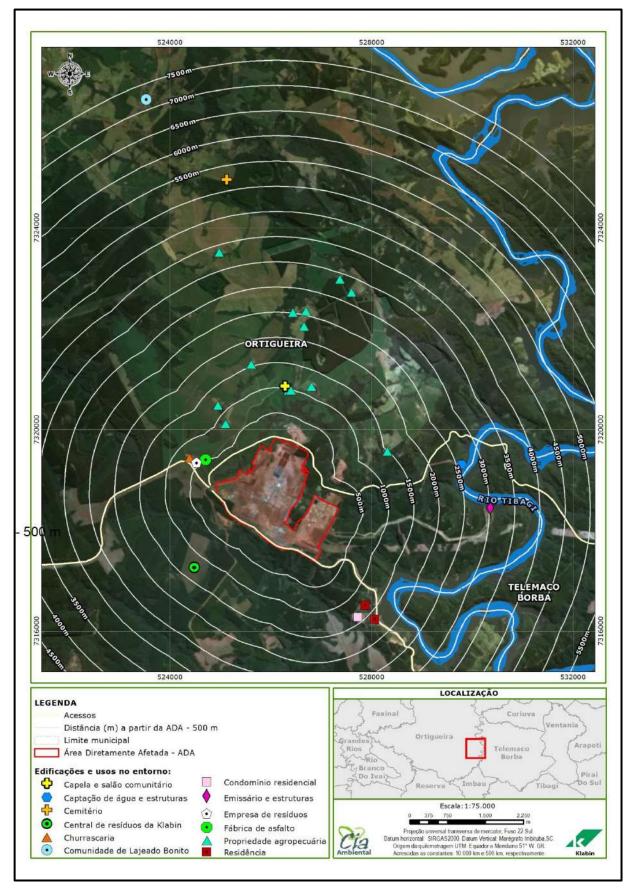


Figura 73 - Estruturas e edificações no entorno do empreendimento.

Para o mapeamento do uso do solo do entorno (figura 56), utilizou-se a AID do meio físico e biótico, de modo a compreender as seguintes classes: Acessos; Agricultura; Área antropizada; Campo/pastagem; Massa d'água; Reflorestamento; Solo exposto; Vegetação arbustiva; e Vegetação arbórea.

Conforme demonstra a tabela 21, a classe com maior ocorrência foi a de reflorestamento (34%), seguidamente de vegetação arbórea (31% correlata especialmente às APPs junto aos recursos hídricos), solo exposto (11%), agricultura (9%), área antropizada (6%), vegetação arbustiva (3%), campo/pastagem (2%), massa d'água (2%) e acessos (1%). Ressalta-se que grande parcela da classe de solo exposto corresponde a áreas de silvicultura desbastadas à época de obtenção das imagens de satélite, de modo que com o corte da vegetação o comportamento espectral se assemelhou ao de solo exposto.

Portanto, denota-se que a área de entorno é caracterizada como antropizada, de modo que as atividades e usos antrópicos correspondem a aproximadamente 64% (incluindo acessos, agricultura, área antropizada, campo/pastagem, solo reflorestamento e solo exposto). Salienta-se inclusive que parte da massa d'água corresponde ao reservatório artificial da UHE Mauá no Rio Tibagi.

Com relação ao uso da ADA, verifica-se que é praticamente toda composta por área antropizada (88%), enquanto as classes de uso de vegetação arbustiva (6%), reflorestamento (3%) e acessos (2%) correspondem a valores minoritários.

Salienta-se que em anexo é apresentada a planta do empreendimento, de modo a caracterizar e localizar as estruturas presentes na ADA. Todas as

áreas de ampliação estarão situadas em área antropizadas, exceto a expansão do pátio de toras (situado na porção norte da ADA).

Deve-se ressaltar que o Município de Ortigueira emitiu certidão de anuência quanto à Unidade Puma da Klabin, na qual a municipalidade declara que "o local, tipo de empreendimento e atividade estão em conformidade com a legislação municipal aplicável ao uso e ocupação do solo, bem como atendem as demais exigências legais e administrativas perante o nosso Município" (anexo IV – Certidão de anuência do município de Ortigueira).

4.5.1.4. Território de comunidades e povos tradicionais e assentamentos agrários

Em consulta à Fundação Nacional do Índio – FUNAI, Fundação Cultural Palmares - FCP, Instituto Nacional de Colonização e Reforma Agrária – INCRA e ao Instituto de Terras, Cartografia e Geociências – ITCG do Paraná, foi identificado que existem duas terras indígenas (TI) em Ortigueira, respectivamente, a TI Queimadas e a TI Mocaca. Ambas são da etnia Kaingang e regularizadas, distantes da ADA pelo menos 18 km.

Salienta-se que apesar de estarem a uma distância superior aos 8km definidos para empreendimentos pontuais pelo anexo I da Portaria Interministerial nº 60/2015 , está em andamento junto à FUNAI o processo nº 008620.044862/2012-09, tocante a avaliação do componente indígena quanto à Unidade Puma da Klabin. Neste processo já foi realizada a aprovação pela FUNAI do Estudo do Componente Indígena – ECI, de modo que o processo se encontra em fase de aprovação do Plano Básico Ambiental Indígena – PBAI, o qual foi protocolado em 22 de maio de 2018 e está em análise na FUNAI.

Ressalta-se que não foram verificadas Comunidades Remanescentes Quilombolas – CRQs na AID ou AII, de modo que a mais próxima está situada em Curiúva-PR, a cerca de 23 km, denominada de CRQ Água Morna.

Quanto às demais comunidades tradicionais, segundo o ITCG (2013), existem cinco faxinais no Município de Imbaú. No entanto, de acordo com informações do Instituto Ambiental do Paraná – IAP⁷ não há faxinais regulamentados neste município.

No tocante aos assentamentos rurais, na AII há sete, sendo um em Imbaú e seis em Ortigueira. Entretanto, salienta-se que estão situados de forma longínqua à ADA, de modo que o mais próximo é o Projeto de Assentamento – PA Fazenda Estrela, localizado a 11,5 km.

A figura a seguir apresenta a localização dos territórios de povos e comunidades tradicionais e dos assentamentos rurais.

wesite com

Conforme disposto

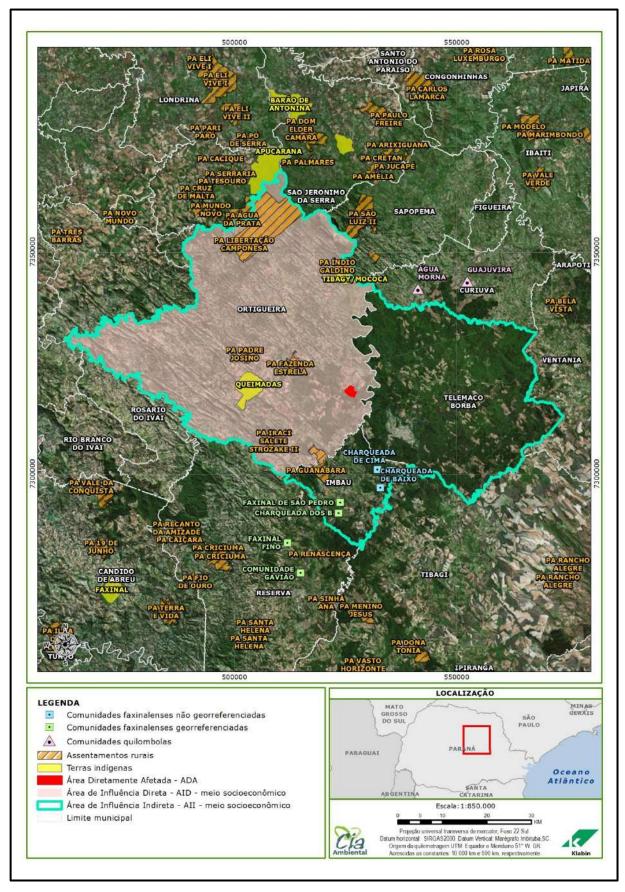


Figura 74 - Localização de comunidades tradicionais e assentamentos rurais.

4.5.2. Infraestrutura e serviços existentes

O presente item apresenta dados e informações relativas à infraestrutura e serviços existentes, entre os quais quanto ao sistema viário; atendimento aos domicílios quanto à energia, abastecimento de água, destinação do esgoto sanitário e dos resíduos sólidos; educação; saúde; comunicação; e estabelecimentos de hospedagem, conforme os subitens a seguir.

4.5.2.1. Sistema viário regional e local

A AII tem como principais estruturas viárias as seguintes rodovias (figura 75):

- BR-376: está inserida nos estados de Mato Grosso do Sul, Paraná e Santa Catarina. Denominada popularmente no trecho paranaense entre o noroeste do estado e Curitiba como "Rodovia do Café", é uma importante via de escoamento produtivo em direção ao Porto É constituída Paranaguá. por boa infraestrutura pavimentação, drenagem, sinalização, entretanto, com alternância no número de faixas de rolamento para cada sentido. A rodovia cruza a AID e AII passando pelos municípios de Imbaú e Ortigueira, possui uma praça de pedágio em cada um destes. A companhia é a responsável pela estrada RodoNorte. infraestrutura, localização e quantidade de outras estradas que a cruzam, esta rodovia se configura como a principal via de interligação da região com outras porções do Estado. Salienta-se que já possui trechos duplicados e que outros estão em processo de duplicação.
- PR-160: Rodovia estadual com eixo norte-sul, em sua extensão possui diferentes denominações, no trecho de Imbaú, Telêmaco Borba e Curiúva é conhecida como "rodovia do papel". Na maioria de seus trechos é constituída por pista simples e pavimentação

asfáltica. Possibilita o acesso ao projeto Puma a partir de dois pontos, um direcionado à interligação com Curiúva e outro com Telêmaco Borba.

PR-340: vai do litoral paranaense até a cidade mais ao norte do estado (Jardim Olinda), sendo que durante quase 120 km coincide com a BR-376. Consiste em sua maior parte de pista simples, pavimentada e com acostamento, porém, possui trechos duplicados e alguns sem pavimentação (caso do trecho na AII entre Telêmaco Borba e Ortigueira). Salienta-se que possibilita acesso de Telêmaco Borba e Imbaú ao Projeto Puma, entretanto, veículos provenientes de ambos os municípios podem utilizar outras vias pavimentadas para acessar o local.

As figuras a seguir representam respectivamente o mapeamento e registros fotográficos das rodovias da AII e acessos à Unidade Puma, ressaltando-se a boa condição de trafegabilidade, do leito da via (tanto das asfaltadas como das não asfaltadas) e de sinalização (inclusive com presença de mecanismos eletrônicos de redução de velocidade).

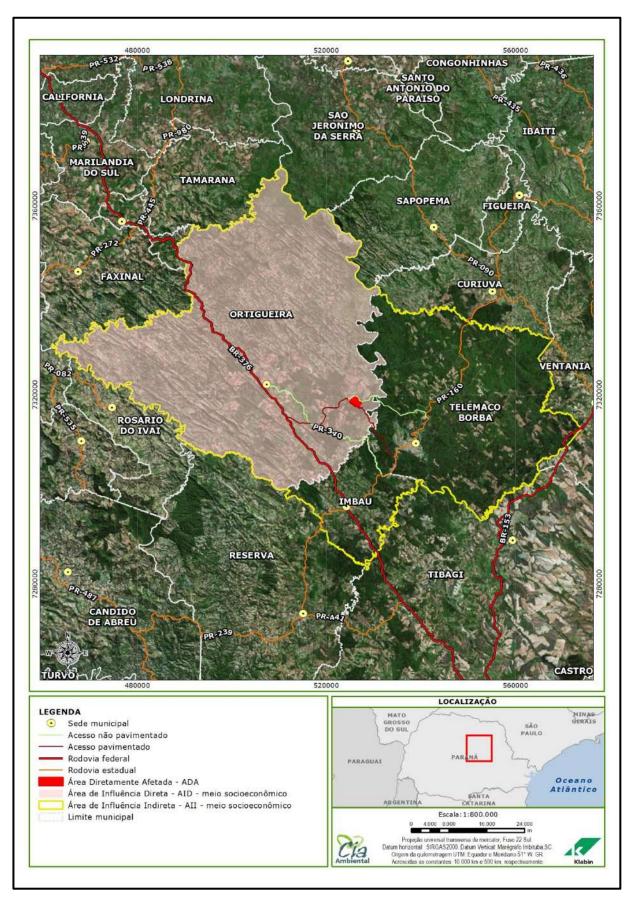


Figura 75 - Sistema viário regional e acessos à Unidade Puma.

Figura 76 - Acesso à Unidade Puma a partir de Ortigueira.

Figura 77 - Acesso à Unidade Puma a partir de Curiúva.

Figura 78 - Acesso à Unidade Puma a partir de Telêmaco Borba.

Além do acesso rodoviário, salienta-se que a Unidade Puma possui um ramal ferroviário, responsável pela expedição da produção para o Porto de Paranaguá, conforme demonstra a figura a seguir.

Figura 79 – Ramal ferroviário da Unidade Puma Klabin, com destaque para a passagem em desnível (viaduto com a ferrovia na parte superior).

4.5.2.2. Energia e saneamento básico

4.5.2.2.1. Energia

No tocante à energia elétrica, as taxas de domicílios que possuem fornecimento deste serviço nos municípios da AII são semelhantes ao padrão apresentado pelo Estado do Paraná, de modo que todos estão acima de 98% de atendimento via rede geral de distribuição (tabela 28).

O serviço de fornecimento de energia elétrica via rede geral nos municípios da AII é ofertado pela Companhia Paranaense de Energia (COPEL).

Tabela 28 – Taxa municipal de domicílios particulares permanentes segundo a existência de energia elétrica e fonte de obtenção, em 2010.

Município	Tinham	Não tinhom	
Município	Rede geral	Outra fonte	Não tinham
Imbaú	98,90%	0,17%	0,93%
Ortigueira	98,01%	0,19%	1,80%
Telêmaco Borba	99,51%	0,16%	0,33%
Paraná	99,19%	0,36%	0,44%

Fonte: IBGE, 2018.

Figura 80 – Subestação de energia elétrica da COPEL em Telêmaco Borba e barramento/vertedouro da UHE Mauá na divisa entre Telêmaco Borba e Ortigueira.

4.5.2.2. Abastecimento de água

Quanto à forma de abastecimento de água, a maioria dos domicílios em todos os municípios da AII é abastecida pela rede geral de distribuição, com variação de 51% (Ortigueira) a 98% (Telêmaco Borba), salienta-se que apenas Telêmaco Borba apresentou taxa superior ao do Estado (88%).

A segunda forma com maior taxa de ocorrência é relacionada à obtenção via poço ou nascente – discriminada na tabela 29 quanto à localização no interior ou não na propriedade. As demais formas se configuram como pouco representativas.

Tabela 29 – Taxa municipal de domicílios particulares permanentes segundo a forma de obtenção de água, em 2010.

Município	Rede geral	Poço ou nascente na propriedade	Poço ou nascente fora da propriedade	Rio, açude, lago ou igarapé	Poço ou nascente na aldeia	Outra
Imbaú	68,57%	15,05%	14,84%	1,39%	0,00%	0,14%
Ortigueira	51,28%	35,54%	11,38%	1,39%	0,01%	0,38%
Telêmaco Borba	98,06%	1,37%	0,46%	0,01%	0,00%	0,09%
Paraná	88,06%	8,88%	2,72%	0,13%	0,03%	0,18%

Fonte: IBGE, 2015.

Salienta-se que o serviço de abastecimento de água e de esgoto sanitário é ofertado pela Companhia de Saneamento do Paraná (SANEPAR), conforme as infraestruturas demonstradas na figura a seguir.

Figura 81 – Estruturas da Sanepar nos municípios da AII. (A) Ortigueira; (B)
Imbaú; (C) Telêmaco Borba.

4.5.2.2.3. Destinação do esgoto sanitário

Em relação à forma de destinação do esgoto sanitário se verifica que apenas Telêmaco Borba apresenta melhor condição de infraestrutura que a média do Estado, dado que a taxa de domicílios que destinam via rede geral (forma considerada adequada pelo IBGE, 2010) no município é de aproximadamente 69% e do Paraná 53%. Nos demais municípios da AII a forma de destinação preponderante é por meio de fossa rudimentar, de modo a representar 79% e 60% em Imbaú e Ortigueira, respectivamente.

Outra categoria que apresenta percentuais elevados é correspondente à fossa séptica, maneira adequada de destinação em locais com ausência de rede geral. As demais formas de destinação ou ausência de banheiro não ultrapassaram a taxa de 3%.

Tabela 30 – Taxa municipal de domicílios particulares permanentes segundo a forma de destinação do esgoto sanitário, em 2010.

Município	Rede geral	Fossa séptica	Fossa rudimentar	Vala	Rio,lago ou mar	Outro escoadouro	Sem banheiro
Imbaú	2,00%	11,34%	79,44%	2,87%	1,16%	0,81%	2,38%
Ortigueira	17,83%	15,25%	59,96%	2,54%	0,48%	1,24%	2,70%
Telêmaco Borba	69,25%	5,03%	19,73%	1,66%	3,67%	0,32%	0,34%
Paraná	53,33%	11,64%	32,23%	1,04%	0,89%	0,50%	0,36%

Fonte: IBGE, 2015.

4.5.2.2.4. Destinação dos resíduos sólidos

No tocante aos resíduos sólidos, observa-se que em todos os municípios da AII a maior parte dos domicílios destinam via coleta municipal. Entretanto, apenas Telêmaco Borba ultrapassa a média do Estado (90%), com uma taxa de 99% de atendimento pelos serviços de coleta de lixo. A segunda principal forma de destinação corresponde à queima dos resíduos, a qual em 2010 em Ortigueira correspondia por 40% dos domicílios. As demais formas de destinação não atingem percentual superior a 4%, conforme demonstra a tabela a seguir.

Tabela 31 – Taxa municipal de domicílios particulares permanentes segundo a forma de destinação dos resíduos sólidos, em 2010.

Município	Coletado	Queimado	Enterrado	Terreno baldio ou logradouro		Outro destino
Imbaú	78,57%	18,12%	0,90%	0,35%	0,14%	1,91%
Ortigueira	53,93%	40,31%	3,10%	0,78%	0,05%	1,83%
Reserva	67,29%	28,14%	2,90%	0,70%	0,09%	0,87%
Tamarana	58,43%	36,21%	2,31%	0,11%	0,00%	2,94%
Telêmaco Borba	99,49%	0,30%	0,06%	0,05%	0,03%	0,07%
Tibagi	80,03%	15,43%	3,15%	0,42%	0,03%	0,94%
Ventania	77,14%	17,33%	1,01%	1,01%	0,03%	3,48%
Paraná	90,42%	7,71%	0,94%	0,18%	0,01%	0,74%

Fonte: IBGE, 2015.

A coleta dos resíduos nos municípios em estudo, sejam resíduos orgânicos e rejeitos ou resíduos recicláveis, é realizada através de caminhões

compactadores. A figura 82 ilustra os caminhões utilizados nos municípios da AII.

Ressalta-se que está em andamento processo de licenciamento para a implantação de aterro sanitário a ser instalado em Imbaú, de forma a atender municípios do Consórcio Intermunicipal Caminhos do Tibagi, dos quais Imbaú, Ortigueira e Telêmaco Borba fazem parte.

Figura 82 – Caminhões de coleta de resíduos sólidos urbanos em Imbaú e Telêmaco Borba.

No tocante à Unidade Puma, esta é dotada de estruturas próprias relativas à produção (caldeira) e distribuição de energia (subestação), captação (adutora) e tratamento de água (ETA), tratamento (ETE) e lançamento (emissário) de efluentes, separação, reaproveitamento, reciclagem, compostagem e destinação final dos resíduos sólidos, conforme demonstram os registros fotográficos da figura a seguir.

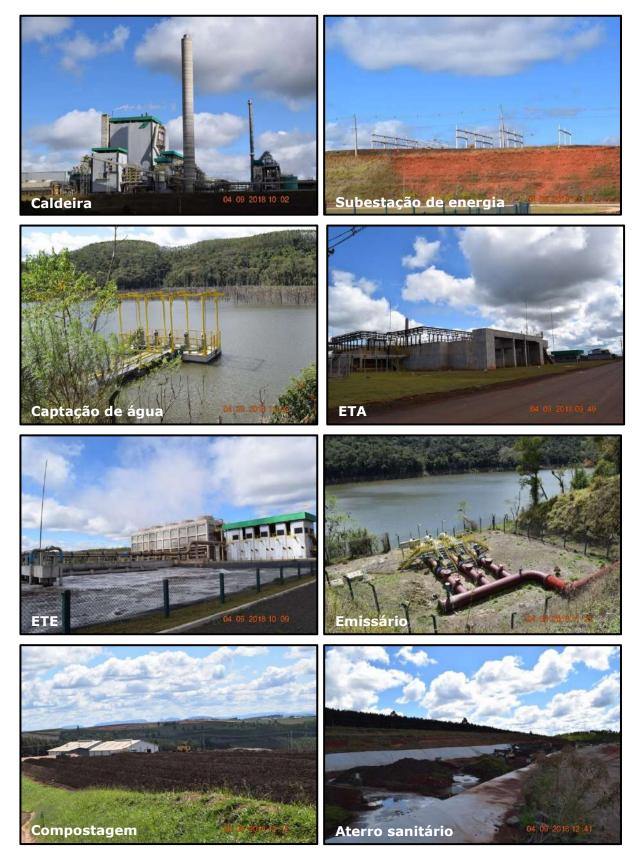


Figura 83 – Infraestruturas de energia, abastecimento de água, tratamento e destinação de efluentes, separação, reaproveitamento, reciclagem, compostagem e destinação final de resíduos sólidos da Unidade Puma.

4.5.2.3. Educação

Com relação à educação, entre 2010 e 2017, o número total de educação básica (ensino infantil, fundamental e médio) na AII apresentou aumento em duas unidades, passando de 110 para 117. Dos 117 estabelecimentos de educação básica em 2017, 65 (56%) eram municipais, 32 (27%) estaduais, 19 (16%) particulares e uma (1%) federal (tabela 32).

Quanto aos municípios, em 2017, Telêmaco Borba é o que apresenta maior quantidade, com 68 estabelecimentos, seguidamente de Ortigueira (36 estabelecimentos) e Imbaú (13 estabelecimentos). Entre 2010 e 2017, Imbaú aumentou em duas unidades, sendo um estadual e um municipal. Telêmaco Borba também obteve elevação no número de estabelecimentos, passando de 64 para 68 no período, sendo que destes quatro a mais, três são municipais e um particular. Por fim, Ortigueira apresentou redução no número de estabelecimentos educacionais, de 40 para 36, de maneira a diminuir cinco unidades municipais e aumentar uma particular.

Tabela 32 – Número de estabelecimentos de educação básica nos municípios da AII por nível administrativo entre 2010 e 2017.

Localidade	Variável	2010	2011	2012	2013	2014	2015	2016	2017
	Federal	-	-	-	-	-	-	-	-
	Estadual	2	2	2	3	3	3	3	3
Imbaú	Municipal	7	7	7	7	8	8	8	8
	Particular	2	2	2	2	2	2	2	2
	Total	11	11	11	12	13	13	13	13
	Federal	-	-	-	-	-	-	-	-
	Estadual	13	13	13	13	13	13	13	13
Ortigueira	Municipal	25	24	24	24	22	22	22	20
	Particular	2	3	3	3	3	3	3	3
	Total	40	40	40	40	38	38	38	36
	Federal	1	1	1	1	1	1	1	1
Telêmaco Borba	Estadual	16	16	16	16	16	16	16	16
	Municipal	34	35	35	35	36	36	36	37
	Particular	13	13	13	14	14	14	14	14

Localidade	Variável	2010	2011	2012	2013	2014	2015	2016	2017
	Total	64	65	65	66	67	67	67	68
	Federal	1	1	1	1	1	1	1	1
	Estadual	31	31	31	32	32	32	32	32
AII	Municipal	66	66	66	66	66	66	66	65
	Particular	17	18	18	19	19	19	19	19
	Total	115	116	116	118	118	118	118	117

Fonte: IPARDES, 2018.

No tocante ao número de matrículas no ensino básico (figura 84), verificase que entre 2010 e 2017 houve redução na AII, dado que no ano inicial
totalizavam 27.217 matrículas e no ano final do período foram 25.220
matrículas. A principal redução foi no ensino fundamental, o qual
apresentava 18.165 matrículas em 2010 e em 2017 atingiu 15.553. O
ensino médio também apresentou redução, entretanto, de um contingente
de 182 matrículas. Por outro lado, a educação infantil apresentou
aumento no período, sendo que entre 2010 e 2011 reduziu, mas cresceu
consecutivamente nos demais anos até atingir 4.541 matrículas em 2017.

Os municípios apresentaram padrão de tendência semelhante ao da AII, sendo apenas em Ortigueira notado um diferencial, relativo ao crescimento de matrículas no ensino médio no período.

Salienta-se que no período de implantação da Unidade Puma (2013 a 2016) não foram verificados crescimentos extraordinários no número de matrículas em qualquer categoria de ensino.

Na figura 85 são apresentados registros fotográficos de estabelecimentos de educação em Ortigueira.

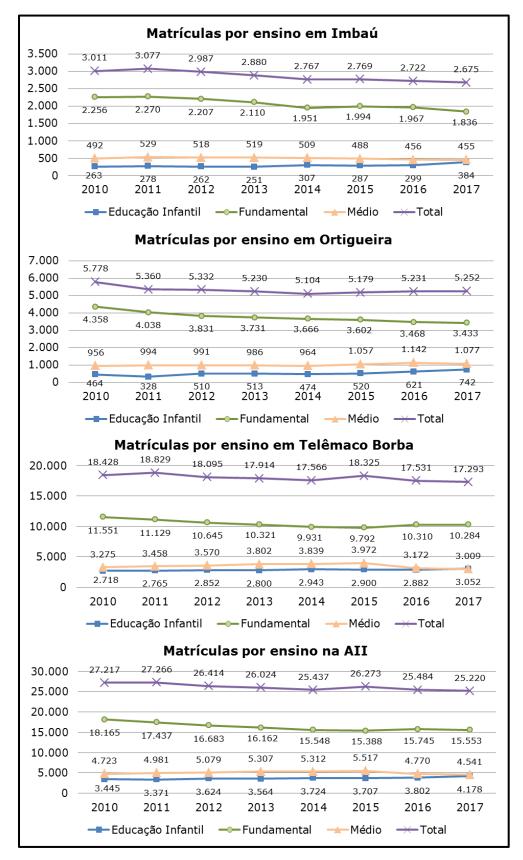


Figura 84 – Evolução do número de matrículas por ensino nos municípios da AII entre 2010 e 2017.

Fonte: IPARDES, 2018.

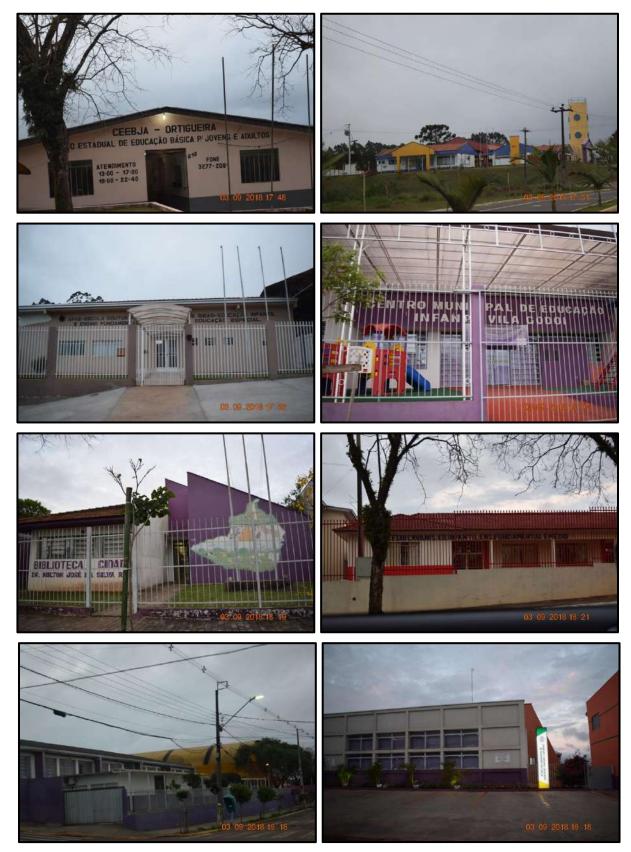


Figura 85 - Estabelecimentos de educação básica em Ortigueira (AID).

4.5.2.4. Saúde

Conforme dados do Cadastro Nacional de Estabelecimentos de Saúde – CNES (2018), na AII há um total de 193 estabelecimentos de saúde, sendo 151 em Telêmaco Borba, 31 em Ortigueira e 11 em Imbaú (tabela 33). Salienta-se que os estabelecimentos de atendimento de maior complexidade e especialidade estão situados principalmente em Telêmaco Borba, tais como hospitais, centros de especialidade, entre outros.

Tabela 33 - Estabelecimento de saúde na AII.

Estabelecimento de saúde	Imbaú	Ortigueira	Telêmaco Borba
Posto de saúde	1	7	3
Centro de saúde/UBS	3	2	16
Policlínica	0	1	3
Hospital geral	0	1	2
Consultórios isolados	3	8	96
Clínica/centro de especialidade	1	1	8
Unidade de apoio diagnose e terapia	1	7	15
Centro de parto normal – isolado	0	0	1
Hospital/dia – isolado	0	0	1
Central de gestão em saúde	1	1	2
Central de atenção hemoterapia e ou hematológica	0	0	1
Centro de atenção psicossocial	0	1	1
Pronto atendimento	0	1	1
Polo academia da saúde	0	0	1
Polo de prevenção de doenças e agravos e promoção da saúde	1	0	0
Farmácia	0	1	0
Total	11	31	151

Fonte: CNES, 2018.

As figuras a seguir apresentam registros fotográficos dos estabelecimentos em Ortigueira (Equipe de Saúde da Família – ESF, Unidade de Atenção Primária – UAPS, Centro de Saúde e Pronto Atendimento), bem como em Telêmaco Borba (Unidade de Pronto Atendimento – UPA, Hospital Regional e Hospital Dr. Feitosa).

Figura 86 - Estabelecimentos de saúde em Ortigueira (AID).

Figura 87 - Estabelecimentos de saúde em Telêmaco Borba (AII).

De forma a verificar o número de internações no Sistema Único de Saúde - SUS na AII foram levantados dados por local de atendimento (figura 88) e de residência (figura 89), ressaltando-se que os dados relativos à Imbaú configuram-se como zerados.

Entre 2008 e 2017 houve redução no número de internações do SUS por local de atendimento na AII, reduzindo-se de 9.250 em 2008 para 6.405 em 2017. O ápice foi em 2009 com 9.880 internações, decaindo para 7.085 em 2014 e voltando a subir nos anos subsequentes até 7.252 internações em 2016, retornando a decair em 2017 para 6.405 internações.

Quanto à Ortigueira, verifica-se tendência de redução no período, com 1.905 internações em 2008 e 1.385 internações em 2016. Verifica-se em 2017 um valor significativamente reduzido, apenas 98 internações.

Em Telêmaco Borba o ápice também ocorreu em 2009 com 8.033 internações, com redução continua até 2014 em que ocorreram 5.716 internações, elevando-se consecutivamente nos anos seguintes atingindo 6.307 internações em 2017.

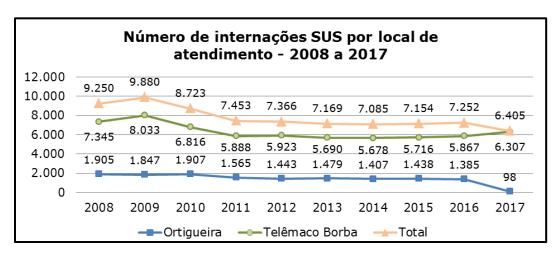


Figura 88 – Número de internações do SUS por local de atendimento na AII entre 2008 e 2017.

Fonte: DATASUS, 2018.

Com relação às internações por local de residência a tendência na AII foi de certa estabilidade com flutuações suaves, dado que em 2008 ocorrem 7.434 internações, atingindo 6.889 em 2013 e elevando-se a 8.029 em 2016, por fim, decaindo em 2017 para 7.517. Logo, verifica-se um aumento de internações de residentes da AII entre 2013 e 2016 (período de obras da Unidade Puma), porém, ressalta-se que o ápice em 2016 foi de apenas 8,21% acima da média de internações por ano no período (7.420 internações). Portanto, denotando-se que o acréscimo de público internações sistema foi relativamente reduzido, no comparativamente ao contingente de mão de obra do projeto.

No tocante à Ortigueira, houve redução entre 2008 e 2013, passando de 2.486 para 1.883 internações, com aumentos nos anos subsequentes de modo a atingir 2.377 internações em 2016 e com nova redução em 2017, totalizando 1.366 internações. Em Telêmaco Borba o padrão foi um pouco diferente, com tendência de crescimento no período.

A figura a seguir apresenta a evolução do número de internações pelo SUS por local de residência entre 2008 e 2017.

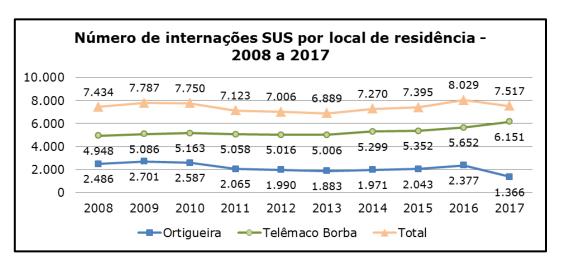


Figura 89 – Número de internações do SUS por local de residência na AII entre 2008 e 2017.

Fonte: DATASUS, 2018.

4.5.2.5. Comunicação

Os municípios da AII possuem cobertura de diferentes operadoras de telefonia móvel, sendo presente nos municípios a Claro, Oi Móvel e Tim Celular e Vivo. A Sercomtel e a Nextel não apresentam cobertura na região, conforme demonstra a tabela a seguir.

Tabela 34 – Existência de cobertura das operadoras de telefonia móvel por município.

Município	CLARO S.A.	NEXTEL TELECOMUNICACOES LTDA	OI MÓVEL S.A.	SERCOMTEL CELULAR S.A.	TELEFÔNICA BRASIL S.A (VIVO).	TIM CELULAR S.A.
Imbaú	Sim (1 ERB)	Não	Sim (1 ERB)	Não	Sim (2 ERB)	Sim (2 ERB)
Ortigueira	Sim (5 ERB)	Não	Sim (1 ERB)	Não	Sim (5 ERB)	Sim (6 ERB)
Telêmaco Borba	Sim	Não	Sim	Não	Sim	Sim

Fonte: ANATEL, 2016.

Nota: ERB - Estação Rádio Base.

4.5.2.6. Estabelecimentos de hospedagem

Em relação ao número de estabelecimentos econômicos classificados como de alojamento/hospedagem nos municípios da AII (figura 90), verifica-se que entre 2006 e 2016 houve uma alteração de 20 para 42 estabelecimentos, representando uma variação de 110% no período (IPARDES, 2018; MTE, 2018). Salienta-se que entre 2012 a 2016 a variação correspondeu a 91%, passando de 22 para 42. Entre os possíveis fatores para esse incremento está a implantação (2013 a 2016) e operação da Unidade Puma.

Ressalta-se que a maioria está situada em Telêmaco Borba, seguidamente de Imbaú e Ortigueira.

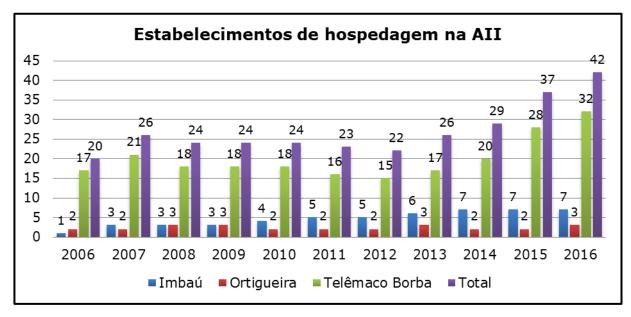


Figura 90 – Número de estabelecimentos de hospedagem na AII e por município entre 2006 e 2016.

Fonte: IPARDES, 2018; MTE, 2018.

4.5.3. Atividades socioeconômicas e mercado de trabalho

Entre os indicadores das atividades econômicas municipais se destaca o Produto Interno Bruto – PIB, o qual mensura em valores monetários toda a produção de bens e serviços finais de uma região em um período de tempo. Estão incluídos no PIB: consumo, investimentos, gastos do governo, as exportações reduzidas das importações e impostos. Este indicador pode ser desmembrado pelos Valores Adicionado (VA) dos setores da economia. Trata-se de toda a produção de bens (e serviços para o setor terciário) finais de cada setor da economia em valores monetário, excluindo os impostos. Os valores do PIB são apenas os obtidos pelos registros da economia formal.

Os dados do PIB municipal são divulgados com uma defasagem de três anos, desta forma, utilizam-se neste estudo os valores entre 2006 e 2015. Verifica-se nesta série histórica (figura 91) que os três municípios da AII apresentaram tendência de crescimento no período, de modo que o maior

aumento foi obtido por Ortigueira, na ordem expressiva de 508%, seguidamente de Telêmaco Borba e Imbaú, respectivamente, com elevações de 200% e 138%. Conforme demonstra a figura a seguir, observa-se que entre 2013 e 2015 foram os períodos de maior elevação do PIB, portanto, coincidindo com a implantação da Unidade Puma da Klabin em Ortigueira.

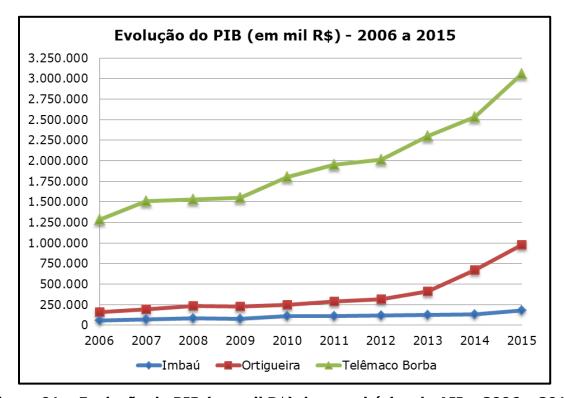


Figura 91 – Evolução do PIB (em mil R\$) dos municípios da AII – 2006 a 2015.

Fonte: IBGE, 2018.

Com relação à composição setorial do PIB (figura 92), nota-se que em 2006 Imbaú e Ortigueira possuíam o setor agropecuário como o mais representativo. Entretanto, a partir de 2013 se verifica alteração no padrão, de modo a aumentar a partição em Imbaú do setor de serviços e impostos, enquanto em Ortigueira, em 2014, aumenta-se de forma expressiva o setor industrial e os impostos. Em relação à Telêmaco Borba, manteve-se o padrão com maior representatividade do setor industrial, inclusive aumentando o percentual de participação, ao passar de 48,8% em 2006 para 53,4% em 2015.

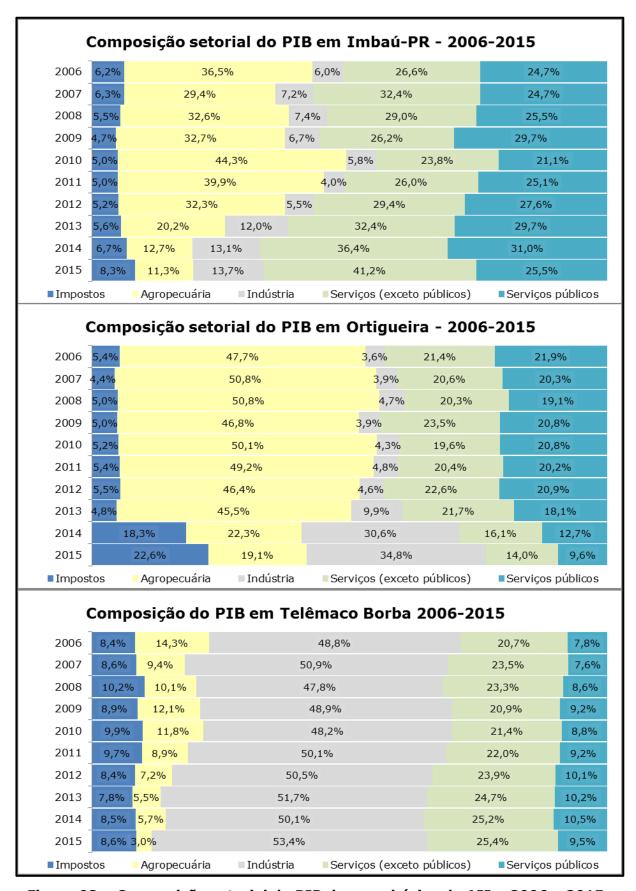


Figura 92 - Composição setorial do PIB dos municípios da AII - 2006 a 2015.

Fonte: IBGE, 2018.

Portanto, verifica-se que a implantação da Unidade Puma (2013 a 2016) coincide com os anos em que houve expressivas melhorias quanto ao PIB nos municípios da AII.

No tocante ao número de estabelecimentos econômicos (tabela 35), entre 2010 e 2016, nos municípios da AII houve aumento no período. Quanto à composição setorial, em Imbaú e Telêmaco Borba os setores de comércio e serviços apresentam a maior representatividade quanto ao número total de estabelecimentos. Enquanto em Ortigueira o setor agropecuário predomina, seguidamente do de comércio, conforme demonstra a tabela a seguir.

Tabela 35 – Estabelecimentos econômicos nos municípios da AII, por setor, entre 2010 e 2016.

Município	Setor	2010	2011	2012	2013	2014	2015	2016
	Indústria	11,2%	10,0%	10,0%	12,3%	11,3%	12,4%	11,0%
	Construção Civil	2,7%	2,6%	3,7%	4,6%	3,6%	3,0%	2,8%
)aú	Comércio	47,3%	46,3%	44,2%	41,1%	43,2%	44,0%	42,7%
Imbaú	Serviços	23,4%	22,6%	24,2%	24,7%	26,6%	27,4%	30,7%
	Agropecuária	15,4%	18,4%	17,9%	17,4%	15,3%	13,2%	12,8%
	Total	188	190	190	219	222	234	218
	Indústria	6,3%	6,1%	7,6%	6,5%	6,1%	7,5%	6,7%
r r	Construção Civil	1,3%	1,7%	1,1%	1,6%	6,9%	7,8%	7,3%
E	Comércio	28,8%	29,8%	29,7%	29,0%	28,6%	28,8%	26,4%
Ortigueira	Serviços	13,7%	13,1%	15,8%	16,4%	16,9%	15,6%	18,1%
0	Agropecuária	49,9%	49,2%	45,9%	46,4%	41,4%	40,4%	41,5%
	Total	459	459	475	489	538	577	564
	Indústria	12,3%	12,4%	12,2%	12,1%	11,5%	11,2%	10,4%
Borba	Construção Civil	4,2%	4,6%	5,4%	5,1%	5,7%	5,7%	5,5%
	Comércio	50,1%	48,0%	47,1%	46,8%	45,6%	45,0%	45,6%
пас	Serviços	29,2%	31,8%	31,9%	33,0%	33,9%	35,6%	35,8%
Telêmaco	Agropecuária	4,2%	3,3%	3,4%	3,0%	3,3%	2,5%	2,6%
Г .	Total	1.418	1.439	1.457	1.516	1.483	1.506	1.512

Fonte: IPARDES, 2018.

Para avaliar o mercado de trabalho na AII foram utilizados dados relativos às populações em idade ativa (PIA), economicamente ativas (PEA), ocupadas (PO) e vínculos de trabalho por setor econômico.

As pessoas em idade ativa (10 anos ou mais) que possuem trabalho ou estão procurando emprego são classificadas como População Economicamente Ativa (PEA). Em 2010, em Imbaú e Telêmaco Borba a PEA corresponde a aproximadamente 55% da PIA, enquanto em Ortigueira o percentual é mais elevado (62%), conforme dados do censo demográfico do IBGE de 2010 (tabela 36).

No tocante à população ocupada (pessoas empregadas), a partir da razão pela PEA é possível obter a taxa de ocupação, a qual em 2010 em Imbaú foi equivalente a 93,8%, enquanto em Ortigueira e Telêmaco Borba, respectivamente, atingiu 95,8% e 91%. Logo, a taxa de desemprego no período em questão foi de 6,2% em Imbaú, 4,2% em Ortigueira e 9% em Telêmaco Borba.

Em relação ao nível de instrução (tabela 36), em 2010, verifica-se nos municípios da AII que de modo geral a população ocupada possui maior taxa de pessoas em categorias de instrução mais elevadas perante à PEA, PIA e população não economicamente ativa. Quando comparada a distribuição da população quanto aos níveis de instrução, nota-se que Imbaú e Ortigueira concentram a maioria da população na categoria sem instrução e fundamental incompleto, enquanto em Telêmaco Borba a PO e a PEA possuem certa equidade entre sem instrução/fundamental incompleto (36%) e ensino médio completo/superior incompleto (34%).

Tabela 36 - Indivíduos em idade ativa por nível de instrução nos municípios da AII, 2010.

Município	População	Sem instrução e fundamental incompleto	Fundamental completo e médio incompleto	Médio completo e superior incompleto	Superior completo	Não determinado	Total
	Ocupada	65,4%	16,7%	13,6%	3,3%	1,0%	4.821
)aú	Economicamente ativa	64,6%	17,7%	13,4%	3,1%	1,1%	5.139
Imbaú	Não economicamente ativa	82,4%	12,1%	3,8%	0,4%	1,3%	4.148
	Em idade ativa	72,5%	15,2%	9,1%	1,9%	1,2%	9.287
	Ocupada	71,6%	13,4%	9,9%	4,1%	1,0%	11.600
eira	Economicamente ativa	70,8%	14,4%	9,9%	3,9%	1,0%	12.110
Ortigueira	Não economicamente ativa	83,9%	9,9%	4,1%	1,2%	0,9%	7.370
	Em idade ativa	75,8%	12,7%	7,7%	2,9%	1,0%	19.480
<u></u>	Ocupada	35,5%	18,7%	34,2%	11,1%	0,4%	29.510
o Borb	Economicamente ativa	35,7%	19,4%	34,1%	10,5%	0,3%	32.418
Felêmaco Borba	Não economicamente ativa	69,6%	16,0%	13,2%	1,1%	0,1%	26.586
	Em idade ativa	51,0%	17,9%	24,7%	6,2%	0,2%	59.004

Fonte: IBGE, 2018.

Com relação ao número de vínculos formais verifica-se que entre 2010 e 2015 os municípios da AII apresentaram crescimento, de modo que Imbaú aumentou no período na ordem de 25% e Telêmaco Borba 26%. Já Ortigueira obteve um incremento mais expressivo, respectivamente, de 278%.

Ressalta-se que este resultado é explicado pela análise da composição setorial dos vínculos, verificando-se que a partir de 2013 o setor de construção civil aumentou consideravelmente no município, passando de nove vínculos em 2012 para 509 em 2013, 3.190 em 2014 e 3.870 em

2015. Crescimento este correlato ao processo de implantação do projeto Puma da Klabin.

Além do setor de construção civil, verifica-se influência em outros setores, tais como no comércio, serviço e indústria de transformação.

Tabela 37 - Vínculos formais de trabalho na AII entre 2010 e 2015.

	Setores de atividade	2010	2011	2012	2013	2014	2015
	Extrativa mineral	0	0	0	7	35	4
	Indústria de transformação	135	160	149	176	165	152
	Construção Civil	7	6	38	58	69	70
,n	Comércio	275	282	261	289	267	306
Imbaú	Serviços	336	330	373	433	393	407
ij	Administração Pública	320	414	413	422	419	409
	Agropecuária, extração vegetal, caça e pesca	50	90	82	83	58	52
	Total	1.123	1.282	1.316	1.468	1.406	1.400
	Extrativa mineral	1	1	0	1	2	1
	Indústria de transformação	261	255	244	246	269	1.829
	Serviços industriais de utilidade pública	0	0	0	0	0	38
מ	Construção Civil	62	77	9	509	3.190	3.870
ueir	Comércio	445	444	505	489	479	597
Ortigueira	Serviços	263	270	363	388	485	784
0	Administração Pública	829	730	720	896	893	954
	Agropecuária, extração vegetal, caça e pesca	421	489	497	494	492	547
	Total	2.282	2.266	2.338	3.023	5.810	8.620
	Extrativa mineral	11	14	15	11	10	10
	Indústria de transformação	5.700	5.822	5.751	6.320	6.707	7.170
- С	Serviços industriais de utilidade pública	0	0	0	1	1	2
orba	Construção Civil	551	550	513	484	677	2.308
9 9	Comércio	3.040	2.952	3.160	3.331	3.290	3.286
mac	Serviços	4.040	3.891	3.785	3.870	4.213	4.504
Telêmaco Borba	Administração Pública	2.005	1.949	1.979	2.109	2.175	2.213
1	Agropecuária, extração vegetal, caça e pesca	202	271	320	156	136	99
	Total	15 540	15.449	15.523	16 202	17.209	19.592

Fonte: MTE, 2018.

4.5.4. Síntese das condições de vida (IDH-M e IPDM)

O Índice de Desenvolvimento Humano Municipal (IDH-M) é uma forma universalizada de medição do desenvolvimento dos países e municípios e foi elaborado pelo Programa das Nações Unidas para o Desenvolvimento (PNUD), possuindo uma série histórica para os anos 1991, 2000 e 2010. Este índice oscila entre 0 a 1, contendo cinco faixas de classificação: muito baixo (de 0 a 0,499); baixo (0,500 a 0,599); médio (de 0,600 a 0,699), alto (0,700 a 0,799) e muito alto (de 0,800 a 1).

Os municípios apresentaram melhora em suas condições socioeconômicas ao longo dos anos observados pelo IDH-M. De modo que Imbaú e Ortigueira eram classificados como de desenvolvimento muito baixo, em 1991, e passaram para desenvolvimento médio, em 2010. Esta variação ocorreu principalmente pela melhoria nas condições de educação da população, perceptível pelas alterações deste componente do índice em questão.

Contudo, nota-se que os três componentes, renda, saúde (traduzido pela longevidade) e educação, nos três municípios em observação, apresentaram melhoras consideráveis. Telêmaco Borba passou de ser classificado como desenvolvimento baixo para desenvolvimento alto. Os dados do IDH-M em sua série história estão dispostos na tabela 38.

Tabela 38 - IDH-M dos municípios da AII.

		Município								
	Ano	Imbaú		Ortigu	eira	Telêmaco Borba				
Dimensão		Índice	% entre anos	Índice	% entre anos	Índice	% entre anos			
Renda	1991	0,511	-	0,486	-	0,632	-			
	2000	0,574	12,3%	0,542	11,5%	0,678	7,3%			
	2010	0,636	10,8%	0,632	16,6%	0,726	7,1%			
	1991	0,623	-	0,652	-	0,644	_			
Longevidade	2000	0,694	11,4%	0,748	14,7%	0,726	12,7%			
	2010	0,785	13,1%	0,811	8,4%	0,828	14,0%			
	1991	0,106	-	0,075	-	0,322	_			
Educação	2000	0,355	234,9%	0,259	227,8%	0,543	68,6%			
	2010	0,481	35,5%	0,441	70,3%	0,657	21,0%			
	1991	0,323	-	0,288	-	0,508	_			
IDHM	2000	0,521	61,3%	0,472	63,9%	0,644	26,8%			
	2010	0,622	19,4%	0,609	29%	0,734	14,0%			

Fonte: PNUD, 2018.

Como efeito comparativo também é interessante analisar o Índice Ipardes de Desenvolvimento Municipal (IPDM) desenvolvido pelo Instituto Paranaense de Desenvolvimento Econômico e Social do Paraná (IPARDES), que mede o desempenho da gestão e ações públicas dos 399 municípios do Estado do Paraná. Diferente do IDHM, IPDM faz a análise ano a ano, se tornando mais atualizado e demonstrando melhor os impactos de políticas econômicas na sociedade. Apesar de grande similaridade na forma de constituir cada índice, não é igual ao produzido pela ONU, utiliza-se de um sistema próprio para consolidar cada um deles.

Analisando um período de cinco anos, entre 2010 e 2015, verifica-se que os três municípios apresentaram aumento, sendo Ortigueira o que apresentou maior crescimento, na ordem de 54%, passando de 0,44 para 0,68, com os maiores aumentos realizados nos três últimos anos da série (figura 93). Já Telêmaco Borba e Imbaú apresentaram crescimentos de 15% e 9%, respectivamente, denotando-se uma escala significativamente menor ao de Ortigueira.

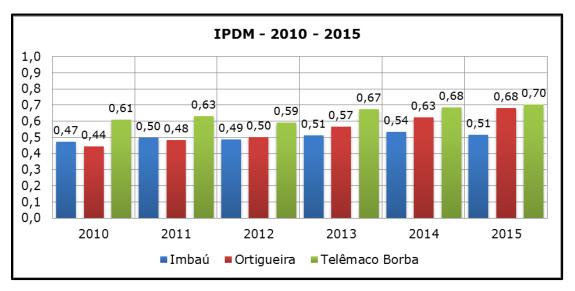


Figura 93 - IPDM dos municípios da AII entre 2010 e 2015.

Fonte: IPARDES, 2018.

A variável que explica expressivo aumento do IPDM de Ortigueira é a emprego, renda e produção agropecuária (figura 94), a qual passou de 0,33 em 2010 para 0,81 em 2015, representando uma elevação de 143%. Pode-se atribuir como fator indutor o processo de implantação da Unidade Puma no município, coincidente com os anos de maiores aumentos. Já Telêmaco Borba aumentou 13%, enquanto Imbaú reduziu 20%.

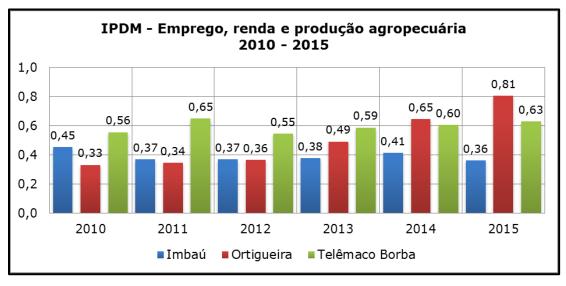


Figura 94 – IPDM - variável emprego, renda e produção agropecuária dos municípios da AII entre 2010 e 2015.

Fonte: IPARDES, 2018.

Quanto às demais variáveis, educação (figura 95) e saúde (figura 96), os três municípios apresentaram aumento no período. Em relação à educação, Imbaú atingiu crescimento de 33%, seguidamente de Ortigueira com 28% e Telêmaco Borba com 11%. No tocante à saúde, Ortigueira foi o que apresentou maior aumento (22%), seguidamente de Telêmaco Borba (21%) e Imbaú (15%).

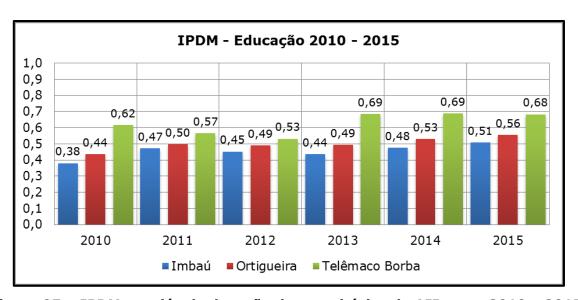


Figura 95 – IPDM - variável educação dos municípios da AII entre 2010 e 2015. Fonte: IPARDES, 2018.

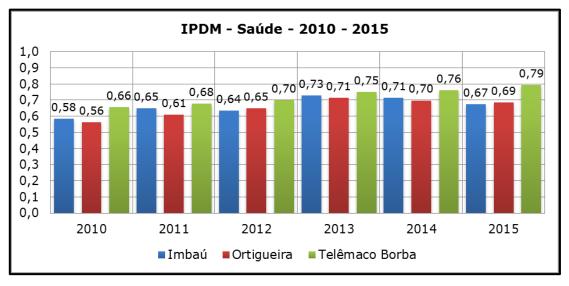


Figura 96 - IPDM - variável saúde dos municípios da AII entre 2010 e 2015.

Fonte: IPARDES, 2018.

Portanto, verifica-se que nas últimas décadas (1991 a 2010), bem como no período entre 2010 e 2015, o IDH-M e o IPDM denotam melhorias nas condições de vida dos municípios da AII, especialmente em Ortigueira.

4.6. Características do empreendimento com relação a efluentes e emissões

4.6.1. Efluentes líquidos

Durante o período de implantação, estima-se que sejam gerados 70 m³/h de efluente sanitário, que poderão ser tratados na ETE existente ou, se necessário, na ETE provisória já implantada, que possui capacidade para 100 m³/h e é composta por gradeamento, caixa de gordura, lagoa aerada e lagoa de decantação.

Figura 97 – ETE provisória.

No âmbito da operação da ampliação, o efluente será originado em diferentes processos produtivos. Inicialmente, o preparo da madeira irá gerar efluentes provenientes da lavagem das toras, que serão recuperados e recirculados, sendo necessária, entretanto, uma quantidade de água para reposição de perdas e manutenção da qualidade.

Na linha de fibras, os efluentes com alta carga orgânica (licor) serão enviados para a evaporação, cujo vapor será utilizado para pré-aquecer os cavacos no silo, enquanto o licor extraído será bombeado para o aquecimento da água antes de ser levado ao tanque de armazenamento de licor fraco na planta de evaporação. A maior parte do efluente do sistema de evaporação será recirculado na própria planta, e o excedente de condensado com menor carga orgânica será enviado para a ETE, conforme descrito anteriormente no item 3.2.13.

A máquina de *Kraftliner* utilizará água no tanque de mistura, portanto seus efluentes conterão fibras, que serão recuperadas em sistema de filtro de discos e retornarão para a máquina. O efluente residual seguirá para tratamento na ETE.

A caldeira de recuperação, por sua vez, recirculará os efluentes de alta carga orgânica (licor) na própria caldeira, assim como o sistema de caustificação também reutiliza os efluentes de alta carga orgânica e inorgânica.

Na segunda fase de ampliação, haverá ainda a geração de efluentes da máquina de cartão e BCTMP. Os efluentes da máquina de cartão conterão fibras, as quais serão recuperadas em sistema de filtro de discos e retornarão para máquina. O efluente seguirá então para a ETE. Quanto a planta BCTMP, o filtrado das lavagens com característica de licor devido à carga de químicos (tanto da impregnação de cavacos quanto do branqueamento) será enviado diretamente à evaporação para mistura com os demais licores da fábrica. O efluente da planta BCTMP que irá para o tratamento de efluentes será apenas o referente à lavagem de cavacos.

A tabela 39 apresenta um levantamento quali-quantitativo dos efluentes que serão gerados após a ampliação, enquanto a tabela 40 apresenta as

concentrações dos parâmetros avaliados na estação de tratamento de efluentes, a eficiência do processo de tratamento e a estimativa de concentrações após a primeira fase da ampliação.

Tabela 39 - Estimativa de geração de efluentes após a ampliação do empreendimento.

Parâmetros									
		âmetros Unid. Celulose branqueada eucalipto		Celulose branqueada pinus Celulose marrom		Máquina BCTMP de papel Kraft		Máquina de cartão	Total
Pro	dução	t/d	3905	1463	2.278	1.450	334	1.593	
Vaz	ão diária	m³/d	101.520	42.432	1.200	14.784	240	15.240	175.416
Vaz	ão horária	m³/h	4.230	1.768	50	616	10	635	7.309
Vaz	ão específica	m³/t	26	29	0,5	10	0,7	10	
	Carga	kg/d	54.618	26.350	120	9.462	800	13.716	105.066
DBO	Concentração	mg/L	538	621	100	640	3.333	900	599
	Carga específica	kg/t	14	18	0,1	7	2	9	
	Carga	kg/d	140.605	68.782	360	24.601	2.400	35.357	272.105
DÓO	Concentração	mg/L	1.385	1.621	300	1.664	10.000	2.320	1.551
۵	Carga específica	kg/t	36	47	0,2	17	7	22	
	Carga	kg/d	39.085	19.010	120	9.166	360	12.192	79.933
SST	Concentração	mg/L	385	448	100	620	1.500	800	456
Š	Carga específica	kg/t	10	13	0,1	6	1,1	8	
_	Carga	kg/d	97.625	65.835	-	-			163.460
Co	Carga específica	kg/t	25	45	-	-			
×	Carga	kg/d	781	439	-	-			1.220
AOX	Carga específica	kg/t	0,2	0,3	-	-			

DBO: demanda biológica de oxigênio; DQO: demanda química de oxigênio; SST: Sólidos suspensos totais; AOX: Compostos organo-halogenados absorvíveis.

28

100

rabela 40 Farametros avanados na Salda da ETE.								
	Parâmetro	ETE atual	Eficiência	ETE ampliação (fases 1 e 2)	Limite outorga**			
	Vazão média (m³/h)	5.431	-	7.309	7.400			
O,	Concentração média entrada (mg/L)	1.440	970/	1551	-			
DÕO	Concentração média saída (mg/L)	190	87%	203	230			
0	Concentração média entrada (mg/L)	Concentração média entrada (mg/L)		599	-			
DBO	Concentração média saída (mg/L)	15	97%	17	30			
<u> </u>	Concentração média entrada (mg/L)	400	94%	456	-			
SST	Concentração média	25	94%	28	100			

Tabela 40 - Parâmetros avaliados na saída da ETE.

25

É importante destacar que, mesmo após a ampliação, a vazão do efluente e os demais parâmetros estabelecidos pela outorga de lançamento de efluentes serão respeitados.

4.6.2. Emissões atmosféricas

saída (mg/L)

Como mencionado anteriormente, o empreendimento consiste na fabricação de celulose e papel, a qual inclui diversas etapas no seu processo produtivo, como o preparo da madeira, caldeira de biomassa, linhas de fibra marrom, máquina de *Kraftliner*, sistema de evaporação, caldeira de recuperação, sistema de caustificação, forno de cal e a estação de tratamento dos efluentes gerados.

Visando aumentar sua capacidade produtiva, a fábrica prevê uma ampliação que compreende a instalação de duas novas linhas de preparo

^{*} A eficiência foi calculada através da equação: Ef=(entrada-saída)/(entrada)*100;

^{**} Outorga de autorização de direito de uso para lançamento de efluentes: Portaria Instituto das Águas do Paraná nº 289/2016, de 04 de março de 2016, válida por 6 anos.

de madeira e uma nova linha de fibras marrom, bem como dos equipamentos necessários para o fluxo de recuperação, como sistemas de evaporação, caustificação e forno de cal, além das caldeiras de biomassa e de recuperação e do turbogerador para geração de energia.

Considerando tanto o processo atual da fábrica como o processo após a ampliação, pode-se destacar como as principais fontes de emissões atmosféricas de poluentes a caldeira de recuperação, a caldeira de biomassa e o forno de cal. As tabelas a seguir apresentam um resumo das condições atuais das emissões de poluentes, bem como das emissões previstas para nos novos equipamentos, juntamente como os limites legislados e aplicáveis.

Tabela 41 – Resumo das emissões da caldeira de recuperação atual e prevista para a fábrica.

		P			
		Equi	pamento	_	
Parâmetro	Unidade ⁽¹⁾	Caldeira de recuperação atual	Nova caldeira de recuperação ⁽²⁾	VMP CDR (3)	
MP	mg/Nm³	20	50	100	
MP	kg/h	16	16	-	
TRS	mg/Nm³	3	6	15	
(como SO ₂)	kg/h	2	2	-	
60v	mg/Nm³	50	50	100	
SOx	kg/h	40	16	-	
NOv	mg/Nm³	140	250	470	
NOx	kg/h	112	82	-	
60	mg/Nm³	200	200	2000	
СО	kg/h	160	65	-	
Vazão (base seca)	Nm³/h	798.837	326.271	-	

⁽¹⁾ Emissões em mg/Nm³ considerando 8% de O₂; (2) Valores de projeto; (3) Valor máximo permitido para Caldeira de Recuperação (indústria de celulose), conforme Resolução SEMA nº 16/2014.

Fonte: Klabin, 2018.

Tabela 42 - Resumo das emissões da caldeira de biomassa atual e prevista para a fábrica.

		Equipa	amento	_	
Parâmetro	Unidade ⁽¹⁾	Caldeira de biomassa atual	Nova caldeira de biomassa ⁽²⁾	V MP CDF ⁽³⁾	
MD	mg/Nm³	15	50	100	
MP	kg/h	6	11	-	
TRS	mg/Nm³	3	5	NA	
(como SO ₂)	kg/h	1	1	-	
CO _Y	mg/Nm³	20	150	NA	
SOx	kg/h	7	34	-	
NOv	mg/Nm³	150	230	500	
NOx	kg/h	56	52	-	
60	mg/Nm³	150	150	500	
CO	kg/h	56	34	-	
Vazão (base seca)	Nm³/h	370.581	224.996	-	

⁽¹⁾ Emissões em mg/Nm³ considerando 8% de O₂; (2) Valores de projeto; (3) Valor máximo permitido conforme Resolução SEMA nº 16/2014.

Fonte: Klabin, 2018.

Tabela 43 - Resumo das emissões dos fornos de cal atuais e do previsto para a fábrica.

			Equipamento		
Parâmetro	Unidade ⁽¹⁾	Forno de cal 1 atual	Forno de cal 2 atual	Novo forno de cal ⁽²⁾	VMP FC (3)
MD	mg/Nm³	15	12	50	100
MP	kg/h	1	1	3	-
TRS	mg/Nm³	7	8	20	30
(como SO ₂)	kg/h	0	1	1	-
CO	mg/Nm³	40	30	100	NA
SOx	kg/h	3	2	6	-
Nov	mg/Nm³	270	290	400	470
NOx	kg/h	17	18	26	-
60	mg/Nm³	25	30	200	1200
СО	kg/h	2	2	13	-
Vazão (base seca)	Nm³/h	62.976	62.976	63.945	-

⁽¹⁾ Emissões em mg/Nm³ considerando 8% de O₂; (2) Valores de projeto; (3) Valor máximo permitido para Forno de Cal (indústria de celulose), conforme Resolução SEMA nº 16/2014.

Fonte: Klabin, 2018.

Como evidenciado nas tabelas acima, tanto as emissões dos equipamentos atuais, de acordo com resultados de automonitoramento, como as dos equipamentos previstos na ampliação estão em total atendimento aos seus respectivos limites definidos na Resolução SEMA nº 16/2014. Complementarmente, vale ressaltar que todas as novas fontes de emissões atmosféricas de poluentes contarão com a instalação de precipitadores eletrostáticos como medida de controle de emissão para a atmosfera.

4.6.3. Resíduos sólidos

As diversas etapas do processo produtivo serão geradoras de resíduos, conforme citado previamente na descrição do empreendimento. Já no preparo da madeira, serão gerados resíduos orgânicos de cascas e quebras de madeira, que serão picados e enviados juntamente com os rejeitos do peneiramento para uma pilha de biomassa coberta, com capacidade de estocagem de aproximadamente 25.000 m³. Extratores móveis retomarão a biomassa da pilha, a qual será na sequência enviada para a caldeira auxiliar. O processo de preparação e lavagem da madeira gera ainda areia na bacia de sedimentação, que seguirá como insumo para a construção civil, conforme gerenciamento já realizado na planta industrial.

A linha de fibras marrom irá gerar rejeitos de celulose, que serão enviados para valorização ou compostagem. A máquina de papel terá como resíduos aparas e refugos de papel, que serão enviados para reciclagem.

A caldeira de biomassa e a caldeira de recuperação irão gerar cinzas e areia, que serão encaminhadas para utilização como insumo agrícola ou

para a construção civil, bem como os *dregs* e *grits* gerados no sistema de caustificação e o resíduo de lama de cal gerado no forno.

Na segunda fase de ampliação, haverá ainda a geração de resíduos referente ao processo de produção de papel de cartão e BCTMP. Os resíduos da máquina de cartão serão aqueles de aparas e refugos de papel, os quais serão enviados para reciclagem. Os rejeitos de celulose (BCTMP) serão enviados para valorização ou compostagem.

A operação da ETE também será responsável pela geração de resíduos, como os lodos (primário, secundário e terciário). O lodo primário será encaminhado para reutilização, o lodo secundário, para compostagem, e o lodo terciário, para utilização como insumo agrícola ou para aterro industrial.

Durante as obras de ampliação, os resíduos gerados serão gerenciados juntamente com aqueles da operação. As tabelas a seguir apresentam a estimativa de geração de resíduos na fase de implantação e na operação, além da estimativa, com base nas informações de geração de resíduos durante as obras de implantação da unidade, do aumento e o destino final de cada resíduo.

Tabela 44 – Estimativa de geração de resíduos durante a implantação.

Resíduos	Geração (t/d)	Destinação final
Resíduos de construção civil	40	Reciclagem
Metal	1	Reciclagem
Madeira	4	Reciclagem
Rejeito	1	Aterro industrial
Papel	0,3	Reciclagem
Plástico	0,5	Reciclagem
Borracha	0,1	Reciclagem
Orgânico	2,5	Aterro sanitário
Sólido contaminado	1	Aterro industrial classe I

Tabela 45 -	Estimativa	de	geração	de	resíduos	durante a	operação.
. abcia ib			30.4940		· coluct	aarance c	. opc.agac.

	Geraç	ão (t)	Incremento		
Resíduos	Resíduos Após (%) ampliação		Destinação final		
Lodo primário	1.200	1.500	25	Matéria-prima para fábricas de papel	
Lodo secundário	4.600	7.500	63	Aterro industrial e insumo agrícola	
Lodo terciário	8.000	12.000	50	Compostagem	
Cascas de madeira	900	1.200	33	Compostagem	
Restos de alimentos	60	90	50	Compostagem	
Cinzas das caldeiras	3.150	4.560	45	Insumo agrícola e obras civis	
Lama de cal	1.500	2.000	33	Insumo agrícola e obras civis	
Grits	150	270	80	Insumo agrícola e obras civis	
Dregs	1.800	2.400	33	Insumo agrícola e obras civis	
Areia de caldeira	370	450	22	Insumo para obras civis	
Rejeito de celulose	120	220	83	Matéria-prima para fábricas de papel ou compostagem	

Figura 98 - Área de armazenamento de resíduos.

Figura 99 - Local onde é realizada a compostagem.

4.6.4. Ruídos

No âmbito do presente Relatório Ambiental Preliminar, torna-se importante o conhecimento da situação atual quanto aos níveis de pressão sonora na área de influência do empreendimento, tendo em vista a compatibilização de tais níveis de pressão sonora com a classificação de uso e ocupação do solo existente. Desta forma, é possível atestar ou não a ocorrência de impactos associados ao acréscimo dos níveis de pressão sonora atual a partir da implantação e operação do empreendimento.

4.6.4.1. Metodologia

4.6.4.1.1. Requisitos legais

Na esfera federal, a regulamentação aplicável a fontes fixas de ruído é a Resolução CONAMA nº 001/1990, que dispõe sobre critérios de padrões de emissão de ruídos decorrentes de quaisquer atividades industriais, comerciais, sociais ou recreativas.

Esta resolução, por sua vez, recorre à NBR 10.151 – Avaliação do ruído em áreas habitadas visando o conforto da comunidade, que estabelece

metodologia de medição de ruídos para comparação com limites, ou Níveis de Critério de Avaliação (NCA), definidos para seis diferentes tipologias de áreas habitadas e períodos (diurno/noturno), os quais são apresentados através da tabela a seguir.

Tabela 46 – NCA por tipologia de área constante na NBR 10.151:2000, em dB(A).

Tinologia do áveza	NCA – dB(A)		
Tipologia de áreas	Diurno	Noturno	
Áreas de sítios e fazendas	40	35	
Áreas estritamente residencial urbana ou de hospitais ou de escolas	50	45	
Área mista, predominantemente residencial	55	50	
Área mista, com vocação comercial e administrativa	60	55	
Área mista, com vocação recreacional	65	55	
Área predominantemente industrial	70	60	

Fonte: ABNT, 2000.

Tendo isto em vista, observa-se que para a avaliação de ruídos há necessidade de adoção de critérios para definição da tipologia de área e padrões aplicáveis. Estes critérios estão associados à interpretação de leis de ordenamento territorial (zoneamento e/ou uso e ocupação do solo), quando existentes, e à avaliação do efetivo uso e ocupação do solo no entorno. Neste sentido, a própria avaliação *in situ* e descrição dos pontos de medição serve como ferramenta de subsídio a esta avaliação.

4.6.4.1.2. Medição dos níveis de ruído

A caracterização dos níveis de ruído atuais recorreu às medições de nível de pressão sonora realizadas em 2018 no âmbito do monitoramento da operação atual da Unidade Puma, que se deu por meio da obtenção e discussão de resultados, de maneira associada aos registros de medição (uso do solo no entorno e fontes sonoras atuantes) e aos padrões de qualidade aplicáveis.

Nestas medições de ruídos foi considerada uma malha amostral de cinco pontos definidos externamente aos limites do empreendimento. A tabela a seguir apresenta as coordenadas dos pontos de medição, cuja localização em relação à área do empreendimento pode ser visualizada através da figura apresentada na sequência.

Tabela 47 – Localização e classificação da tipologia de área dos pontos de medição de ruídos adotados.

Ponto	Descrição	Coordena (SIRGA	adas UTM AS 22J)	Tipo de área - (NBR 10.151:2000)	
		E (m)	S (m)	(NDK 10:131:2000)	
	Ponto de medição			,	
	inserido junto de			Àrea mista,	
P1	residência sutada ao	526415	7320780	predominantemente	
	norte do			residencial	
	empreendimento				
	Ponto de medição			,	
	inserido junto de			Àrea mista,	
P2	residência sutada ao	525211	7320136	predominantemente	
	noroeste do			residencial	
	empreendimento				
	Ponto de medição				
	inserido junto de um			Área mista,	
Р3	estabelecimento	524378	7319365	predominantemente	
	comercial (churrascaria	32 1370	7313303	residencial	
	Monte Alegre), a oeste da			residential	
	unidade				
	Ponto de medição			Área mista,	
Р4	inserido no ponto do	524683	7316527	predominantemente	
	Acesso central de	32 1003	7310327	residencial	
	resíduos			- Testaericiai	
	Ponto de medição			,	
	inserido junto de um			Área mista,	
P5	condomínio residencial	527865	7316537	predominantemente	
	situado na porção			residencial	
	sudeste da unidade				

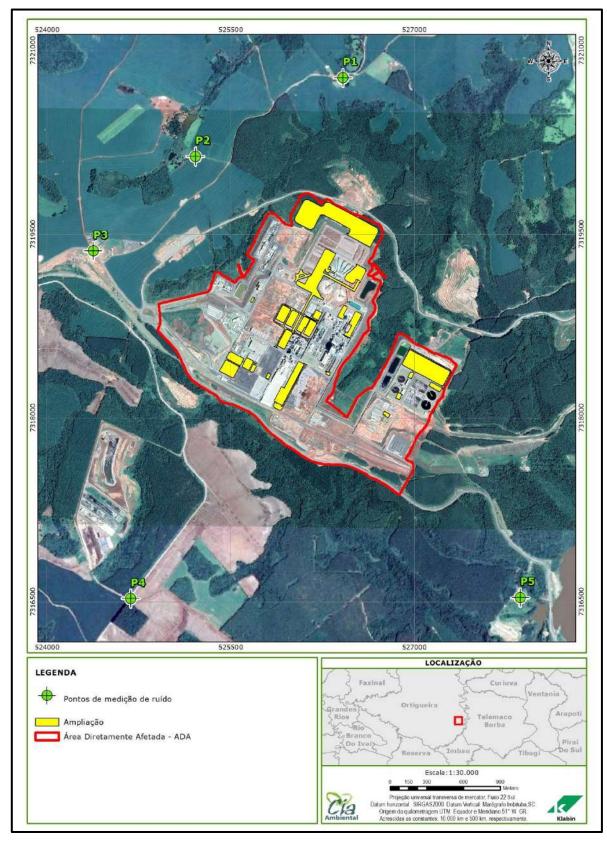


Figura 100 - Localização dos pontos de medição de ruídos no entorno do empreendimento.

Para as medições adotou-se uma amostragem representativa para a caracterização do ruído naquela ocasião. Com isso, as mesmas se deram nos períodos diurno e noturno durante um intervalo de tempo de 5 minutos em cada ponto, com o equipamento utilizado sendo ajustado para o registro do NPS ponderados em "A".

4.6.4.1.3. Avaliação dos resultados

De uma forma geral, a avaliação dos resultados se deu mediante comparação do L_{Aeq} medido em cada um dos pontos e períodos considerados (diurno e noturno) com seus respectivos níveis de critério de avaliação (NCA), de acordo com a tipologia de área adotada.

4.6.4.2. Resultados e discussões

Conforme definido na metodologia, os níveis de ruído nos períodos diurno e noturno foram obtidos para os cinco pontos distribuídos no entorno da AID do empreendimento. O resumo dos resultados apresentado na tabela a seguir corresponde aos dados medidos nas duas últimas campanhas trimestrais realizadas em janeiro e fevereiro/18 (1º trimestre) e junho/18 (2º trimestre) no âmbito da operação atual da Unidade Puma.

Tabela 48 – Resumo dos resultados de L_{Aeq} obtidos no entorno da Unidade Puma.

		NPS					
Donto	_	1º Trimestre		2º Trimestre		NCA	
Ponto monitorado	Período	L _{Aeq bruto}	$oldsymbol{L_{Aeq}}$	L _{Aeq bruto}	\mathcal{L}_{Aeq}	HCA	
	_	dB(A)					
P1	Diurno	51,2	51	40,7	41	55	
	Noturno	45,9	46	45,1	45	50	
חם	Diurno	49,5	50	39,9	40	55	
P2	Noturno	48,1	48	47,3	47	50	
D2	Diurno	50,2	50	42,1	42	55	
Р3	Noturno	48,9	49	59,8	60	50	
D 4	Diurno	48,5	49	49,6	50	55	
P4	Noturno	47,1	47	54,0	54	50	
DE	Diurno	42,0	42	43,2	43	55	
P5	Noturno	46,8	47	46,3	46	50	

Fonte: Klabin (2018).

Com base nos resultados apresentados na tabela anterior, condizentes com a situação atual do entorno, pode-se verificar que as duas campanhas trimestrais realizadas em 2018 apresentaram significativo atendimento aos limites de 55 e 50 dB(A) para o período diurno e noturno, respectivamente, de acordo com a tipologia de área adotada.

Os únicos desacordos foram verificados nas medições noturnas dos pontos P3 e P4 na segunda campanha trimestral de 2018, em que os valores superiores ao padrão noturno de 50 dB(A) estiveram relacionados com o tráfego de veículos leves e pesados, possivelmente relacionados com a Unidade Puma.

Com base nisso, tem-se que as atividades existentes atualmente, variáveis de acordo com os horários e locais considerados, já são suficientes para superar os limites definidos. Contudo, à operação atual da fábrica não apresentam magnitude suficiente para elevar o nível de ruído

junto dos receptores mais próximos, uma vez que os mesmos apresentam distância mínima de 650 m, suficiente para atenuar significativamente os ruídos relacionados à operação interna aos limites do empreendimento.

5. IDENTIFICAÇÃO DOS IMPACTOS AMBIENTAIS

Com base no diagnóstico ambiental elaborado para os três meios (físico, biótico e socioeconômico) e na avaliação das características do empreendimento, descrita no Capítulo 3 deste RAP, é possível identificar uma série de impactos ambientais associados, positivos e negativos, cuja avaliação deve permitir assegurar a viabilidade ambiental do objeto do estudo, através da proposição de medidas mitigadoras, preventivas, compensatórias ou potencializadoras, organizadas ou não na forma de planos e programas.

Considerando que os impactos ambientais apresentam características muito particulares dependendo do aspecto ambiental que os originam, é necessária uma avaliação específica para cada impacto identificado a partir de todo o estudo prévio, em um raciocínio lógico de acordo com as etapas de planejamento, implantação, operação e desativação do empreendimento.

A avaliação dos impactos provenientes destas etapas é iniciada com a avaliação das atividades, produtos e serviços associados ao objeto do estudo, considerando as condições ambientais identificadas na etapa de diagnóstico e prognóstico, além das inter-relações identificadas na análise integrada. Os elementos que podem interagir com o meio ambiente, ocasionando um impacto, são denominados de aspectos ambientais, sendo os impactos a efetiva ou potencial modificação adversa ou benéfica do meio ambiente, resultante em todo ou em parte dos aspectos ambientais.

5.1. Metodologia de avaliação de impactos

Para a avaliação de impactos ambientais emprega-se metodologia quantitativa, com a determinação de um índice de significância baseado na multiplicação de índices numéricos. Estes índices são atribuídos a diversos critérios de avaliação, e associados a um texto de interpretação. Estes textos não têm a pretensão de abranger completamente a conceituação dos diferentes níveis em que o impacto pode se apresentar quanto a cada critério de avaliação, mas sim o objetivo de reduzir a subjetividade de sua seleção. Desta forma, a equipe de avaliação tem a liberdade de ajustar os índices considerando situações atípicas não abrangidas pelos textos, observando a coerência com a escala definida.

A seleção dos índices para cada critério foca-se na percepção do impacto pelo agente impactado, e a avaliação é realizada considerando-se o tempo de duração da etapa considerada ou do horizonte de vida do empreendimento operante.

Comparando-se o índice de significância com uma escala numérica prédefinida, obtém-se a classificação de significância final do aspecto e impacto em análise (pouco significativo a muito significativo), o que permite a sua ordenação (através da matriz de impactos), fundamentando a proposição de medidas e prioridades, e os responsáveis pela implantação.

As informações resultantes da avaliação de cada aspecto e impacto são condensadas em tabelas de AIA, acompanhadas do texto descritivo com as devidas fundamentações para a avaliação realizada.

O texto descritivo de cada impacto apresenta, quando pertinente, a descrição de aspectos como o efeito cumulativo e sinérgico quando considerada a totalidade de impactos gerados pelo empreendimento e a

existência de outros empreendimento e atividades na área de atuação do impacto.

Tabela 49 - Modelo de quadro de AIA para impactos reais.

		F .						/ 11.5		
Aspecto ambiental		[agente causador do impacto ambiental, porém diferente								
			da atividade geradora]							
_		[efeito	causa	do pelo a	specto, a	alteraçã	io das p	oropried	lades	
Impacto	o ambiental	ou car	acteríst	icas do r	meio]					
								P//	4/F	
Ocorrên	ıcia	R		Tempo	ralidad	е				
								(CP/MP/LP)		
Naturez	:a	POS,	/NEG	Origen	n 			DIR,	/IND	
l ocal de	e atuação do				2	_				
	-	Fase	Freq	Imp ou sev	Cont ou rev	Abran	Dur	IS	SIG	
impacto	impacto		ш	<u> </u>	ა ⁻	₹			()	
		Р	1	1	1	1	1	1	PS	
		I	2	2	2	2	2	а	S	
			3	3	3	3	3	243	MS	
		D								
	- [apresentação das medidas]									
das	Mitigadoras		- [apresentação das medidas]							
Medidas	- [apresentação das medidas]									
2	- [apresentação das medidas]									
Responsabilidades		[definição de responsabilidades pela implementação de								
		medidas, especificando o setor da empresa]								

Tabela 50 - Modelo de quadro de AIA para impactos potenciais.

Aspecto	[agente causador do impacto ambiental, porém diferente da atividade geradora]							
Impacto ambiental		[efeito causado pelo aspecto, alteração das propriedades ou características do meio]						
Ocorrência		Р		Temporali	P/A/F (CP/MP/LP)			
Naturez	:a	POS	POS/NEG Origem			DIR,	/IND	
Local de atuação do impacto		Fase	Probabilidade		Severidade	IS	SIG	
		Р	1		1	1	PS	
		I	2		2	а	S	
		0	3		3	16	MS	
		D	4		4			
Preventivas - [apresentação das medidas]			das]					
Mitigadoras		- [apresentação das medidas]						
Medidas	Compensatórias	- [apresentação das medidas]						
Potencializadoras - [apresentação das medidas]								
Responsabilidades		[definição de responsabilidades pela implementação de medidas, especificando o setor da empresa]						

Tabela 51 - Códigos para preenchimento do quadro de AIA.

Critério de avaliação	Código	Significado
Ocorrência	R	Real
	Р	Potencial
Natureza	POS	Positivo
	NEG	Negativo
Temporalidade	Р	Passado
	Α	Atual
	F CP	Futuro curto prazo
	F MP	Futuro médio prazo
	F LP	Futuro longo prazo
Origem	DIR	Direto
	IND	Indireto
Fase	Р	Planejamento
	I	Implantação
	0	Operação
	D	Desativação
Significância	PS	Pouco significativo
	S	Significativo
	MS	Muito significativo

<u>Ocorrência</u>

Consideram-se impactos reais aqueles associados de tal forma ao empreendimento e suas etapas que permitem afirmar a sua ocorrência, e potenciais aqueles para os quais não se pode estabelecer tal condição, apenas estimando-se certo nível de probabilidade de ocorrência. Para os potenciais associam-se especialmente situações de risco, já que mesmo após a adoção de todas as medidas preventivas possíveis, ainda existe uma probabilidade de ocorrer, o mesmo valendo para uma situação oposta.

Em função da diversidade de aspectos e impactos, os critérios (2 critérios) empregados para impactos potenciais (P), de natureza unicamente negativa, formam um conjunto diferente daqueles (5 critérios) empregados para impactos reais (R), de natureza positiva (POS) ou negativa (NEG), já que muitos daqueles associados a uma situação não se aplicariam à outra.

Natureza

Os impactos ambientais podem trazer prejuízos ou benefícios aos agentes impactados (fauna, flora, comunidade, recursos naturais), dada a sua natureza negativa ou positiva, respectivamente.

Temporalidade

É importante ressaltar que os impactos futuros podem ser de curto, médio ou longo prazo. Para esta avaliação, considera-se que impactos de curto prazo iniciam-se apartir do presente em até 01 a 02 anos, de médio prazo até 05 anos, e de longo prazo a partir deste período, levando em consideração a tramitação do processo de licenciamento ambiental, a partir do início do planejamento do empreendimento.

Origem

Quanto à origem, definem-se impactos diretos (primários) e indiretos (secundários). O primeiro caso abrange impactos causados diretamente pelas atividades de determinada fase do empreendimento. Já o segundo se refere aos impactos decorrentes de impactos diretos ou efeitos sinérgicos entre impactos diretos ou não.

Local de atuação

Este campo deve prever, em consonância com o texto descritivo do aspecto e impacto, a delimitação física que sofrerá a ação do impacto ambiental, ou definição equivalente que permita compreender a sua abrangência e especificidades que demandem ações diferenciadas. Devem ser utilizados os conceitos de área de influência (ADA, AID e AII dos meios físico, biótico e antrópico), mas também devem ser incluídas de maneira específica unidades de conservação, terras indígenas, comunidades quilombolas, comunidades em geral, áreas urbanas e outras delimitações que mereçam especial atenção.

Medidas

As medidas propostas devem ser segregadas conforme sua natureza de atuação:

- Preventivas visam evitar que o impacto ocorra, ou minimizar a probabilidade de sua ocorrência;
- Mitigadoras visam reduzir a significância do impacto, que não deixará de ocorrer;
- Compensatórias associam-se à impossibilidade de prevenir e mitigar um impacto, que precisa ocorrer para viabilizar o empreendimento, e então possibilitam a compensação do prejuízo ambiental através de ações e investimentos que tragam benefícios ambientais equivalentes;

 Potencializadoras são empregadas no caso de impactos positivos, elevando a sua significância e contribuindo à viabilidade e aceitação do projeto.

Fluxograma

A figura a seguir resume o método proposto de avaliação de impactos ambientais.

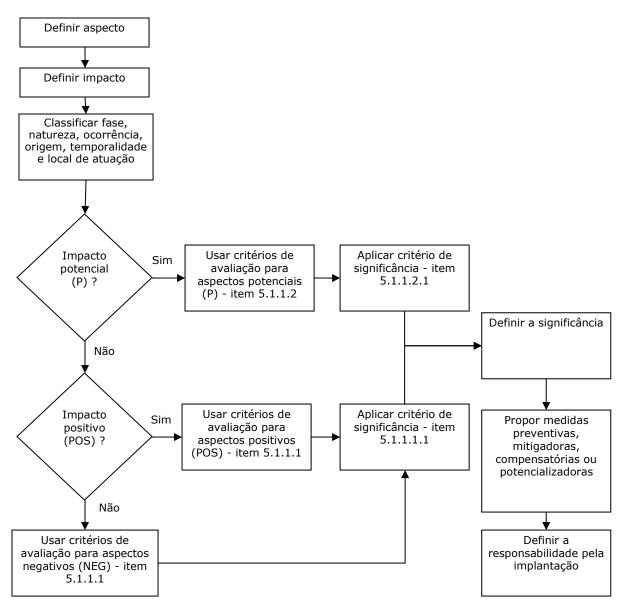


Figura 101 - Fluxograma da metodologia de avaliação de impactos ambientais.

5.1.1.1 Critérios de avaliação para impactos reais positivos e negativos

a) Frequência

Tabela 52 - Critério de avaliação de impactos ambientais: frequência.

Frequência	ia Conceituação			
Baixa	Ocorrência esporádica, irregular ou única (gerado raramente ou uma única vez)	1		
Moderada	Ocorrência periódica (gerado regularmente)	2		
Alta	Ocorrência contínua (gerado ininterruptamente)	3		

b) Importância e severidade

Tabela 53 - Critério de avaliação de impactos ambientais: importância ou severidade.

Importância (para positivos)	Concei	Índice			
Severidade (para negativos)	Positivo (POS)	Positivo (POS) Negativo (NEG)			
Baixa	Resulta na minimização de potenciais ou efetivos efeitos adversos ao ambiente e à sociedade, ou representa pequenas melhorias	Alteração não significativa do meio ambiente, recursos naturais e questões sociais	1		
Moderada	Resulta na eliminação de potenciais ou efetivos efeitos adversos ao ambiente e à sociedade, ou representa melhorias importantes	Considerável alteração nas propriedades do ambiente, do conforto, saúde e segurança	2		
Alta	Resulta na reversão de potenciais ou efetivos efeitos adversos em efeitos benéficos ao ambiente e sociedade, ou representa grandes e significativas melhorias	Altera severamente as propriedades do meio ambiente, de conforto, saúde e segurança, gerando desequilíbrio e grandes prejuízos	3		

c) Continuidade e reversibilidade.

Tabela 54 - Critério de avaliação de impactos ambientais: continuidade ou reversibilidade.

Continuidade (para positivos) Reversibilidade (para negativos)	Concei	Índice	
	Positivo (POS)	Positivo (POS) Negativo (NEG)	
da sua deracao)		Reversível, desaparecendo imediatamente ou em curto prazo após cessada sua fonte de geração ou de degradação	1
Moderada	Resulta em melhoria de média duração (permanece por alguns anos)	Reversível, porém, persistindo por alguns anos depois de cessada sua fonte de geração ou degradação	2
Alta	Resulta em melhoria permanente ou de longa duração (permanece por décadas)	Irreversível	3

d) Abrangência

Tabela 55 - Critério de avaliação de impactos ambientais: abrangência.

Abrangência	Conceituação	Índice
Local	Ocorrência localizada, nas imediações da fonte geradora	1
Regional	Dispersão do impacto em escala regional, afetando localidades e municípios próximos	2
Estratégica	Ocorrência em escala estratégica, assumindo proporções em escala estadual, nacional ou global	3

e) Duração

Tabela 56 - Critério de avaliação de impactos ambientais: duração.

Duração	Conceituação	Índice
Temporária	Impacto com incidência passageira, transitória, dentro da vida útil do empreendimento	1
Cíclica	Impacto com incidência cíclica, que se repete de tempos em tempos, formando ciclos dentro da vida útil do empreendimento	2
Permanente	Impacto de incidência permanente, estável dentro da vida útil do empreendimento	3

5.1.1.1. Avaliação de significância para impactos reais positivos e negativos

O Índice de Significância (IS) para impactos positivos é determinado após a multiplicação dos valores de frequência, importância, continuidade, abrangência e duração, e para aspectos negativos após a multiplicação dos valores de frequência, severidade, reversibilidade, abrangência e duração. O valor do IS, comparado ao critério de classificação apresentado na tabela a seguir, indica a significância do impacto ambiental e respectivo aspecto.

Tabela 57 - Critério para a classificação final do impacto real através do IS.

Índice de significância (IS)	Classificação	Cód
IS < 25	Pouco significativo	PS
25 ≤ IS ≤ 100	Significativo	S
IS > 100	Muito significativo	MS

5.1.1.2. Critérios de avaliação para impactos potenciais

a) Probabilidade

Tabela 58 - Critério de avaliação de impactos ambientais: probabilidade.

Probabilidade	Conceituação	Índice
Baixa	Ocorrência remota (não se espera que ocorra, uma vez que depende de falhas múltiplas no sistema, humanas e equipamentos, ou rupturas de equipamentos de grande porte)	1
Moderada	Ocorrência improvável (não se espera que ocorra, uma vez que depende de falha humana ou de equipamento)	2
Alta	Ocorrência provável (presumindo-se que irá ocorrer durante a vida útil do empreendimento)	3
Muito alta	Ocorrência muito provável (ocorrências já registradas e sem evidência de ações corretivas efetivas, ou presumindo-se que irá ocorrer várias vezes na vida útil do empreendimento)	4

b) Severidade

Tabela 59 - Critério de avaliação de impactos ambientais: severidade.

Severidade	Conceituação	Índice
Baixa	Incidente com potencial de causar incômodo e/ou indisposição (internamente à empresa) e/ou danos insignificantes ao meio ambiente (facilmente reparáveis), sem infrações da legislação e de outros requisitos	1
Moderada	Incidente com potencial de causar incômodo e/ou indisposição (interna e/ou externamente à empresa) e/ou pequenos danos ao meio ambiente, com infrações de normas técnicas e/ou demandas de partes interessadas. Exige serviços de correção internos	2
Alta	Incidente com potencial para causar incômodo e/ou indisposição, doenças e/ou ferimentos (interna e externamente à empresa) e/ou danos significativos ao meio ambiente, envolvendo serviços de emergência internos e externos; infrações da legislação e outros requisitos. Exige ações corretivas imediatas para evitar seu desdobramento em catástrofe	3
Muito alta	Incidente com potencial para causar doenças, ferimentos e vítimas fatais (interna e externamente à empresa) e danos irreversíveis ao meio ambiente, com infrações da legislação e outros requisitos. Exige serviços de emergência internos e externos e ações corretivas imediatas	4

5.1.1.2.1. Avaliação de significância para impactos potenciais (P)

O Índice de Significância (IS) para impactos potenciais é determinado após a multiplicação dos valores de probabilidade e severidade. O valor do IS, comparado ao critério de classificação apresentado na tabela a seguir, indica a significância do impacto ambiental e respectivo aspecto.

Tabela 60 – Critério para a classificação final do impacto potencial através do IS.

Índice de significância (IS)	Classificação	Cód
IS ≤ 6	Pouco significativo	PS
8 ≤ IS ≤ 9	Significativo	S
IS ≥ 12	Muito significativo	MS

5.1.1.3. Matriz de impactos

Para fechamento da seção, os aspectos, impactos, sua avaliação e classificação, são ordenados em uma matriz de impactos ambientais, facilitando a observação geral do produto da avaliação da equipe multidisciplinar. A numeração apresentada na matriz é equivalente à dos quadros de AIA, possibilitando o resgate das informações contidas na descrição geral de cada aspecto e impacto, caso necessário.

A matriz é apresentada em separado para as diferentes fases do empreendimento, e também de forma independente para impactos reais e potenciais, julgando que esta forma de apresentação contribui para a aplicação das medidas no seu tempo adequado.

5.2. Identificação e caracterização de impactos ambientais

5.2.1. Alteração da qualidade do ar

Considerando inicialmente a fase de ampliação da fábrica, o possível impacto de alteração da qualidade do ar estará relacionado às emissões atmosféricas de fontes móveis, como caminhões, e maquinários previstos entre as atividades desta etapa.

Com relação à utilização de veículos e maquinários, os potenciais impactos na qualidade do ar em função das emissões decorrentes da combustão de combustíveis fósseis envolvem a liberação atmosférica de monóxido e dióxido de carbono, óxidos de nitrogênio e de enxofre, além de hidrocarbonetos e material particulado.

Estas emissões são pontuais e devido à dispersão atmosférica tem efeito bastante restrito à proximidade das fontes, além de apresentarem taxas de emissão muito inferiores àquelas associadas ao tráfego em áreas

urbanizadas. Tem-se também que as taxas de emissão previstas para os principais poluentes (óxidos de nitrogênio, monóxido de carbono, material particulado e hidrocarbonetos) ao longo do período do dia são consideradas pouco relevantes para a elevação das concentrações ambientais de poluentes a níveis superiores aos padrões primários de qualidade do ar.

Ainda considerando a fase de ampliação, a movimentação de terra, mesmo que reduzida, poderá ocasionar a suspensão e/ou ressuspensão de poeira, que na maior parte corresponde a partículas mais grosseiras e por períodos limitados, mas que podem ocasionar o incômodo e a degradação temporária da qualidade do ar. Estas ocasiões tendem a ocorrer principalmente em condições de solo bastante secas. A observação dessas situações e a umidificação do solo poderão favorecer em minimizar e até mesmo evitar a suspensão de poeira.

Considerando a operação da fábrica após a ampliação, a alteração da qualidade do ar estará relacionada, predominantemente, com as emissões atmosféricas de poluentes entre as etapas produtivas existentes.

Visando avaliar a possível alteração na qualidade do ar no entorno provocada pela emissão de poluentes relacionados à operação da Unidade Puma (atual e após a ampliação), foi realizado um estudo de dispersão atmosférica por meio da utilização do software AERMOD, desenvolvido pela Agência de Proteção Ambiental Americana (USEPA) e amplamente aceito por órgãos ambientais licenciadores em todo o mundo.

Como mais bem detalhado no documento anexo a este relatório, o estudo de dispersão considerou a identificação e características das fontes de emissão, as condições meteorológicas existentes, bem como relevo e uso

do solo da região de interesse, sendo realizado o estudo para os seguintes cenários:

- Cenário atual: emissões das fontes atuais (caldeira de recuperação 1, caldeira de biomassa 1 e fornos de cal 1 e 2) em condições usuais de operação;
- Cenário futuro: emissões das fontes atuais (caldeira de recuperação 1, caldeira de biomassa 1 e fornos de cal 1 e 2) em condições usuais de operação juntamente com as emissões das fontes novas (caldeira de recuperação 2, caldeira de biomassa 2, e forno de cal 3) em suas condições futuras de operação.

Os poluentes considerados no estudo foram: monóxido de carbono (CO), enxofre total reduzido (ERT), óxidos de nitrogênio (NO $_{\rm X}$ expresso como NO $_{\rm 2}$), partículas totais em suspensão (PTS) e óxidos de enxofre (SO $_{\rm X}$ expresso como SO $_{\rm 2}$). As tabelas a seguir apresentam o resumo dos resultados simulados obtidos para cada um dos cenários considerados, os quais foram comparados com os seus respectivos padrões definidos na Resolução CONAMA no 003/1990 e Resolução SEMA no 16/2014.

Com relação ao poluente enxofre total reduzido (ERT), frente à ausência de limites na Resolução CONAMA nº 003/1990 o mesmo foi comparado com seu limite de percepção do odor (LPO).

Tabela 61 - Resumo das concentrações máximas (atuais e futuras) de CO passíveis de comparação com padrões de qualidade do ar.

		Cenário atual			Cen	Cenário futuro			
Tipo de média	Padrão ⁽¹⁾	Maior	Coor	denadas	Maior	Coor	denadas		
	rauiao	concentração (µg/m³)	UTM-N (m)	UTM-E (m)	concentração (µg/m³)	UTM-N (m)	UTM-E (m)		
		1ª máx. 64,477	511000	7337000	1ª máx. 519,412	525950	7318550		
		2ª máx. 53,695	512000	7336000	2ª máx. 418,651	527150	7319150		
1h	40.000 μg/m³	3ª máx. 53,056	511000	7335000	3ª máx. 369,679	525750	7318550		
		4ª máx. 47,018	526350	7318750	4ª máx. 364,161	527550	7318950		
		5ª máx. 46,527	526150	7318550	5ª máx. 349,791	527350	7319150		
		1ª máx. 29,683	525550	7318350	1ª máx. 276,377	525950	7318550		
		2ª máx. 29,117	525500	7318500	2ª máx. 205,625	525550	7318550		
8h	10.000 μg/m ³	3ª máx. 28,616	525350	7318350	3ª máx. 204,422	525500	7318500		
		4ª máx. 28,291	525550	7318150	4ª máx. 198,097	525750	7318550		
		5ª máx. 28,135	525750	7318150	5ª máx. 191,916	525550	7318350		

⁽¹⁾ Resolução CONAMA nº 003/1990 e Resolução SEMA nº 16/2014.

Tabela 62 - Resumo das concentrações máximas (atuais e futuras) de NO_x passíveis de comparação com padrões de qualidade do ar.

Tipo de média		Cen	nário atual		Cen	Cenário futuro			
	Padrão ⁽¹⁾	Maior	Coordenadas		Maior	Coordenadas			
	média	raulau	concentração (µg/m³)	UTM-N (m)	UTM-E (m)	concentração (µg/m³)	UTM-N (m)	UTM-E (m)	
		1ª máx. 47,282	526350	7318750	1ª máx. 188,532	525950	7318550		
1b 320 μg/	Primário:	2ª máx. 43,799	526150	7318750	2ª máx. 161,737	527150	7319150		
	320 μg/m³ Secundário:	3ª máx. 42,523	526150	7319550	3ª máx. 152,329	527550	7318950		
	190 μg/m ³	4ª máx. 41,697	526350	7319350	4ª máx. 145,939	526350	7318750		
	, .	5ª máx. 41,618	526150	7319350	5ª máx. 143,807	526350	7319150		
		1ª máx. 5,136	525550	7318350	1ª máx. 21,429	525550	7318550		
		2ª máx. 4,908	525750	7318350	2ª máx. 21,428	525500	7318500		
Anual	100 μg/m³	3ª máx. 4,766	252500	7318500	3ª máx. 19,311	525350	7318550		
		4ª máx. 4,761	525550	7318550	4ª máx. 19,203	525550	7318350		
		5ª máx. 4,706	525350	7318350	5ª máx. 18,801	525750	7318550		

⁽¹⁾ Resolução CONAMA nº 003/1990 e Resolução SEMA nº 16/2014.

Tabela 63 - Resumo das concentrações máximas (atuais e futuras) de PTS passíveis de comparação com padrões de qualidade do ar.

Tipo de média		Cer	Cenário atual			Cenário futuro			
	Padrão ⁽¹⁾	Maior	Coordenadas		Maior	Coordenadas			
	média	raulau	concentração (µg/m³)	UTM-N (m)	UTM-E (m)	concentração (µg/m³)	UTM-N (m)	UTM-E (m)	
		1ª máx. 1,958	525750	7318150	1ª máx. 14,132	525950	7318550		
	Primário:	2ª máx. 1,923	525550	7318150	2ª máx. 11,646	585550	7318350		
1h	240 µg/m³ Secundário:	3ª máx. 1,775	525550	7318350	3ª máx. 11,552	525500	7318500		
	150 μg/m ³	4ª máx. 1,767	525750	7317950	4ª máx. 11,433	525750	7318350		
	1 3.	5ª máx. 1,736	525550	7317950	5ª máx. 11,348	525550	7318550		
		1ª máx. 0,589	525550	7318350	1ª máx. 3,975	525500	7318500		
	Primário:	2ª máx. 0,564	525350	7318350	2ª máx. 3,944	525550	7318550		
Anual	80 μg/m³ Secundário:	3ª máx. 0,546	252550	7318150	3ª máx. 3,565	525350	7318550		
	60 μg/m ³	4ª máx. 0,528	525350	7318150	4ª máx. 3,513	525550	7318350		
	- 1 - 31 ···	5ª máx. 0,515	525500	7318500	5ª máx. 3,396	525350	7318350		

⁽¹⁾ Resolução CONAMA nº 003/1990 e Resolução SEMA nº 16/2014.

Tabela 64 - Resumo das concentrações máximas (atuais e futuras) de SO_X passíveis de comparação com padrões de qualidade do ar.

		Cer	ário atual		Cer	ário futuro)
Tipo de	Padrão ⁽¹⁾	Maior	Coor	denadas	Maior	Coordenadas	
média	radiao	concentração (µg/m³)	UTM-N (m)	UTM-E (m)	concentração (µg/m³)	UTM-N (m)	UTM-E (m)
		1ª máx. 1,269	525750	7318150	1ª máx. 17,150	525950	7318550
	Primário:	2ª máx. 1,232	525750	7318350	2ª máx. 13,478	525550	7318350
24h	365 µg/m³ Secundário: 100 µg/m³	3ª máx. 1,217	525550	7318150	3ª máx. 13,447	525500	7318500
		4ª máx. 1,204	525550	7318750	4ª máx. 13,435	525750	7318350
		5ª máx. 1,186	525750	7318950	5ª máx. 12,993	525550	7318550
		1ª máx. 0,411	525550	7318350	1ª máx. 4,560	525500	7318500
	Primário:	2ª máx. 0,391	525750	7318350	2 ^a máx. 4,555	525550	7318550
Anual	80 μg/m³ Secundário:	3ª máx. 0,380	525500	7318500	3ª máx. 4,075	525350	7318550
	40 μg/m ³	4ª máx. 0,378	525550	7318550	4ª máx. 3,951	525950	7318550
	, 5.	5ª máx. 0,376	525350	7318350	5ª máx. 3,940	525750	7318550

⁽¹⁾ Resolução CONAMA nº 003/1990 e Resolução SEMA nº 16/2014.

Tabela 65 - Resumo das concentrações máximas (atuais e futuras) de ERT passíveis de comparação com LPO.

	l imaile a da	Cer	nário atual		Cenário futuro				
Tipo de média	Limite de percepção de	Maior	Coor	denadas	Maior	Coordenadas			
	odor	concentração (µg/m³)	UTM-N (m)	UTM-E (m)	concentração (µg/m³)	UTM-N (m)	UTM-E (m)		
		1ª máx. 1,869	526150	7319550	1ª máx. 4,358	526350	7318750		
	6.55 / 3	2ª máx. 1,852	526150	7318750	2ª máx. 4,065	525950	7318550		
1h	6,55 µg/m³ 0,0047 ppm	3ª máx. 1,833	526350	7319350	3ª máx. 3,489	527550	7318950		
	0,00 i7 ppiii	4ª máx. 1,829	526150	7319350	4ª máx. 3,465	527350	7319150		
		5ª máx. 1,752	525350	7319350	5ª máx. 3,275	527150	7319150		

Diante do exposto, tem-se que os resultados simulados para os poluentes CO, PTS, SO_2 e NO_2 apresentaram concentrações médias horárias (1h, 8h ou 24h) e/ou anuais em total atendimento aos padrões existentes para qualidade do ar, definidos na Resolução CONAMA nº 003/1990 e Resolução SEMA nº 16/2014.

Além de se evidenciar total conformidade aos requisitos legais, é possível concluir que as emissões de poluentes relacionados à operação da Unidade Puma, atualmente e após ampliação, serão incapazes de alterar a qualidade do ar do entorno em que se insere.

Com relação ao poluente ERT, sua avaliação foi realizada apenas com o seu limite de percepção do odor (LPO) frente à ausência de padrões entre as legislações supracitadas. Com base nos resultados simulados, tem-se que tanto na operação atual como na futura, as máximas concentrações resultariam inferiores a este LPO, ou seja, não seriam perceptíveis pelo odor dos possíveis receptores do entorno.

Com base nos resultados simulados, tem-se que tanto a operação atual como a futura apresentam emissões atmosféricas em total atendimento aos requisitos legais e aplicáveis. De forma complementar, o estudo de dispersão atmosférica realizado, que considerou a operação atual e a futura (após ampliação) evidenciou que as máximas concentrações horárias (1h, 8h ou 24h) e anuais resultariam em total conformidade com os limites constantes na Resolução CONAMA nº 03/1990 e Resolução SEMA nº 16/2014.

Apesar de o diagnóstico apresentar valores superiores aos padrões entre os parâmetros avaliados, sobretudo PTS e MP₁₀, os mesmos não apresentam relação direta com a operação do empreendimento, mas sim com o uso do solo do entorno de cada ponto. Diante disso, é possível

inferir que as emissões atmosféricas de poluentes da operação da Unidade Puma não irão contribuir na alteração da qualidade do ar do entorno. Contudo, faz-se necessária a realização de manutenções periódicas dos sistemas/equipamentos da fábrica como um todo, bem como de automonitoramento das emissões atmosféricas dos poluentes, conforme Resolução SEMA nº 16/2014.

Complementarmente, vale ressaltar que todas as novas fontes de emissões atmosféricas de poluentes contarão com a instalação de precipitadores eletrostáticos como medida de controle de emissão para a atmosfera.

AIA 1 – Alteração da qualidade do ar no entorno do empreendimento.

-							_		
Aspect	o ambiental	Emissão de poeira e liberação de gases de combus nas fases de implantação e operação e emissão atmosférica de poluentes na fase de operação.							ustão
Impac	to ambiental	Altera	ação da	qualida o entorn	de do a				
Ocorrê	ncia		₹		oralidad	le		F (CP)
Nature	eza	NEG Origem				D:	IR		
Local o	le atuação do :o	Fase	Freq	Imp ou sev	Cont ou rev	Abran	Dur	IS	SIG
	AID	I	3	1	1	1	1	3	PS
	AID	0	3	1	1	2	3	18	PS
	Preventivas	consid	alizar a deração tenção		o de e		nentos		lo em
Medidas	Mitigadoras	equip conce comb - Fise emiss - Rea áreas emiss - Ser existe auxili instal - sisten manu - Re atmos aplicá - Utili o con	amento entração ustão. Calização de la calizar a calizar	ao da considera de como de com	eículos, poluen densidad hões e r de águ aviment particul sível, ma ação dos ade do a anutençatos existorreta comonito cordo condo co condo cond	visantes r le de naquina, dur adas, anter com le cramer com le crolog	fumaç ários. fante a a fim a vege omo co s das perió s na fá ção. ito da gislaçã ias dis	reduçã missões ca preta de red etação etação dicas dicas em o vige poníveis	ióo na se de la nas se de la dos de la dos de la se de la se de la se para
	Compensatórias	-							
	Potencializadoras	encializadoras -							
Res	sponsabilidades	- Emp	oreende	edor e empreiteira responsável pela obra.					

5.2.2. Emissões de gases de efeito estufa

De acordo com o Ministério do Meio Ambiente (MMA), o efeito estufa é um fenômeno natural relacionado com a troca de energia entre a superfície terrestre e a atmosfera que compreende o aquecimento da superfície da Terra por meio da irradiação da energia solar proporcionada, principalmente, pelos gases dióxido de carbono (CO_2), metano (CH_4), óxido nitroso (N_2O), hexafluoreto de enxofre (SF_6), hidrofluorcarbonos (HFCs) e Perfluorcarbonos (PFCs), os quais são chamados de gases de efeito estufa (GEE).

Apesar de se tratar de um fenômeno natural, o balanço de energia entre a superfície e a atmosfera pode ser alterado devido a mudanças nas concentrações dos GEE relacionadas com o aumento das emissões antrópicas, sobretudo relacionadas com os setores de uso da terra e florestas, agropecuário, de processos industriais, tratamento de resíduos e de energia (MMA, 2018).

Considerando a operação do empreendimento, tem-se que as atividades associadas ao transporte de matéria-prima, os processos industriais existentes, como a operação das caldeiras de óleo combustível, além do transporte do produto final, são fontes de emissões atmosféricas de carbono.

De acordo com seu Relatório de Sustentabilidade de 2017, a Klabin afirma que a redução das emissões atmosféricas faz parte de sua política de atuação, uma vez que o aumento da utilização de combustível de fonte renovável contribui na diminuição das emissões de GEE pelo empreendimento.

Considerando as emissões diretas e indiretas de CO₂ relacionadas a todas as unidades da Klabin, o último relatório de sustentabilidade evidencia que 300

o total de emissões em 2017 foi de 815,39 mil toneladas de CO₂ equivalente. Conforme a tabela a seguir, a comparação das emissões entre os anos de 2016 e 2017 indicam um aumento de 8% nas emissões absolutas de GEE do Escopo 1 devido ao aumento de produção da Klabin. Apesar disso, evidencia um aumento de 15% das emissões provenientes de biomassa (combustível renovável), o que apresenta um avanço na busca de uma matriz energética mais limpa por meio da utilização de combustíveis renováveis.

Tabela 66 – Resumo da variação das emissões de GEE, em mil toneladas de CO₂ eq., de acordo com o Relatório de Sustentabilidade de 2017.

	2017	2016 eladas de C	2015	Variação entre 2016/2017
Emissões diretas de CO ₂ eq.	min ton	elauas ue C	.O2 eq.	2010/2017
Escopo 1 (fóssil)	709,56	657,27	429,94	8%
Biomassa	5272,92	4593,41	3337,11	15%
Emissões indiretas de CO ₂ eq.				
Escopo 2	105,83	99,87	40,32	6%
Emissões de CO ₂ eq.			570,26	·
Escopo 1+2	815,39	745,72		10%

Fonte: Klabin, 2017.

Assumindo que a escala do efeito estufa é global, tem-se que o empreendimento representaria apenas uma fonte pequena de contribuição no efeito estufa. Além disso, a operação de empreendimentos desta tipologia apresenta um balanço de carbono positivo, uma vez que o sequestro de carbono pela fotossíntese associado ao plantio de pinus e eucalipto é superior à quantidade emitida na produção de celulose.

Considerando o estudo de Avaliação do Ciclo de Vida (ACV) de uma das unidades da Klabin, mais especificamente a unidade Monte Alegre, em Telêmaco Borca, foi realizada uma comparação entre o saldo de CO₂ equivalente com base na produtividade de papel cartão e no armazenamento por fotossíntese do plantio de pinus e eucalipto entre os

anos de 1998, 2006, 2007 e 2008. Como apresentado na figura a seguir, em 2018 o saldo foi positivo, evidenciado que o sequestro de carbono associado ao plantio foi superior às emissões do processo produtivo.

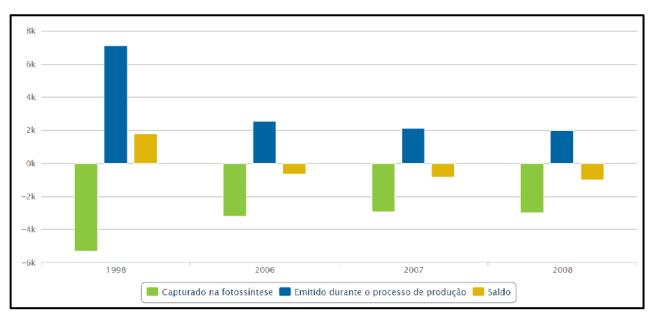


Figura 102 – Variação da pegada de carbono (Carbon Footprint) na produção de papel cartão (cartão LPB)na unidade Monte Alegre.

Fonte: Klabin, 2013.

Como forma de evidenciar seu comprometimento nas relacionadas à sustentabilidade, emissões atmosféricas e mudanças climáticas, a Klabin participa de diversas iniciativas no Brasil e no mundo. Dentre as principais, pode-se destacar o Carbon Disclousure Project (CDP), com foco na minimização dos impactos ambientais frente às mudancas climáticas, a Empresas Pelo Clima (EPC), plataforma empresarial na qual desde 2013 a Klabin atua no âmbito da gestão e redução das emissões de GEE, bem como o GHG Protocol, que consiste em um programa de estímulo para a elaboração e publicação de inventários de GEE.

Diante do exposto, tem-se que a operação da fábrica, atualmente e após sua ampliação, não contribuirá de forma significativa na intensificação do

efeito estufa por meio das emissões dos GEE, uma vez que o próprio plantio de pinus e eucalipto contribui no sequestro do carbono na atmosfera, além da contribuição ser reduzida frente à escala global de ocorrência do fenômeno do efeito estufa. Apesar disso, visando contribuir na redução das emissões da fábrica, deve-se recorrer às melhores tecnologias disponíveis para o controle das emissões, além de permanecer junto a iniciativas relacionadas à temática e buscar continuamente a redução das emissões atmosféricas.

AIA 2 - Emissões de gases do efeito estufa durante a fase de operação.

Aspect	to ambiental	Emiss	são de	GEE rela	cionada	s à op	eração	da fáb	rica	
Impac	to ambiental		Intensificação do efeito estufa ocasionado pela mudança na concentração dos GEE na atmosfera							
Ocorrê	ència	R Temporalidad			de		F (CP)		
Nature	eza	N Origem				DIR,	/IND			
	Local de atuação do impacto			Imp ou sev	Cont ou rev	Abran	Dur	IS	SIG	
Global		0	3	1	3	2	3	54	S	
	Preventivas									
Medidas	Mitigadoras	- Utilização das melhores tecnologias disponíveis para o controle das emissões.							s para	
Mec	Compensatórias									
	Potencializadoras									
Res	sponsabilidades	Empr	eended	lor						

5.2.3. Alteração do ambiente sonoro

Durante a ampliação as atividades acabarão por promover, inequivocamente em alguma das etapas, aumento nos níveis de pressão sonora (NPS) atualmente observados, estes ocasionados por diferentes fontes, como as relacionadas ao tráfego de veículos pesados e/ou máquinas e equipamentos previstos nesta fase. Estas fontes podem,

individualmente, gerar emissões elevadas de ruído, mas que são abatidas durante a propagação das ondas sonoras, reduzindo-se quanto maior à distância ao receptor.

Como abordado anteriormente, o local de ampliação da unidade já apresenta toda a infraestrutura básica necessária e, portanto, as atividades relacionadas à ampliação estarão associadas à construção civil, montagem dos equipamentos e à interligação com a operação atual da fábrica.

Em conformidade com o exposto no item 4.6.4, os receptores distam pelo menos 650 metros dos limites do empreendimento em que as atividades de ampliação estarão concentradas, o que ratifica a significativa atenuação sonora entre as fontes de ruído e os receptores do entorno. Como medidas mitigadoras, ainda assim, devem ser evitadas atividades ruidosas nos períodos de maior sensibilidade, como o noturno, e deve ser realizado o controle da geração na fonte (maquinário) seja pela manutenção adequada ou pela operação distante de receptores (sempre que possível).

Após a etapa de ampliação, a operação da Unidade Puma contará com a operação adicional de uma máquina de *kraftliner* de fibra curta, duas novas linhas de preparo de madeira e uma nova linha de fibras marrom, bem como de todos os equipamentos necessários para a operação da fábrica como um todo, conforme explicitado anteriormente neste relatório. Como evidenciado no diagnóstico dos níveis de ruído, a operação atual no interior dos limites da fábrica é incapaz de resultar em incômodo sonoro na população lindeira, uma vez que os níveis de ruído junto dos principais receptores estiverem predominantemente em conformidade com os padrões legislados e, em ocasiões pontuais de desacordo, as fontes

sonoras não estiverem associadas ao processo de fabricação existente, mas sim ao tráfego veicular nas vias do entorno.

Assim como discutido para a fase de ampliação, os níveis de ruído relacionados à operação da fábrica poderão ser perceptíveis, mas não necessariamente incômodos, uma vez que os receptores mais próximos estão significativamente afastados dos limites da unidade. A continuidade na execução do monitoramento dos níveis de ruído no entorno da fábrica permitirá avaliar o incremento nos NPS após a ampliação e o atendimento aos padrões legislados, bem como ratificar este cenário de reduzido incômodo sonoro junto dos potenciais receptores críticos.

AIA 3 – Alteração do ambiente sonoro no entorno do empreendimento.

Aspect	to ambiental		ão de l eendim	ruídos na ento.	a implar	ntação	e oper	ação do	0
Impac	to ambiental	Altera	ıção do	ambien	ite sono	ro no e	entorno	o.	
Ocorrê	ència	F	₹	Tempo	oralidad	le		F (CP)	
Nature	eza	NEG Origem					D	IR	
Local o	de atuação do to	Fase	Freq	Imp ou sev Cont ou rev Dur					SIG
AID		I	1	1	1	1	1	1	PS
AID		0	3	1	1	1	3	9	PS
	Preventivas	- Restrição de atividades geradoras de ruído no período noturno, sempre que possível.							
Medidas	Mitigadoras	desen critéri - Re corret - Dar	npenho lo, assi alizar civa de contir	le veícu acúst m como e exigi veículos nuidade nbito da	ico (er o estad ir a m s e maqu ao mor	missõe o de n anuter uinário nitoran	s sor nanute nção s.	noras) nção ge prevent	como eral. iva e
	Compensatórias	-							
	Potencializadoras	-							
Res	sponsabilidades	- Empreendedor e empreiteira responsável pela obra							

5.2.4. Aceleração dos processos erosivos

Ao longo da fase de obras do empreendimento os processos erosivos poderão ser acelerados pelas ações de reconformação topográfica, terraplanagem, movimentação de solo, escavações, retaludamento e aterramento que serão executadas. Estas ações são necessárias para o desenvolvimento da obra, contudo, envolvem revolvimento e mobilização de solos o que inevitavelmente contribui ativamente para a aceleração dos processos erosivos. Entretanto, como a maior parte das áreas do projeto de ampliação já estão aptas e preparadas para receberem as estruturas do projeto, a movimentação de solos e terraplenagem a serem

desenvolvidas será reduzida comparativamente à extensão da ampliação pretendida.

Como medidas importantes para evitar ou mitigar os impactos sobre o solo, durante a ação de máquinas, sugere-se a restrição das escavações e movimentações ao mínimo necessário, evitar a exposição prolongada do solo em pontos mais declivosos do terreno e implantar sistema de drenagem mesmo que temporário.

Os sedimentos e solo erodidos poderão ser carreados para os corpos hídricos do entorno e contribuírem com os processos de assoreamento dos mesmos. Como medidas gerais, serão utilizadas barreiras de contenção de sedimentos, evitar as ações de mobilização e revolvimento de solo próximo aos corpos hídricos e também a proteção do solo da ação de chuvas com potencial carreamento de sedimentos.

Ainda como forma de mitigar a aceleração de processos erosivos e o assoreamento serão mantidas as ações de cunho ambiental desenvolvidas pelo empreendedor, sobretudo a implantação e execução do subprograma de monitoramento e controle de processos erosivos e assoreamento no contexto do plano ambiental de construção.

AIA 4 – Aceleração de processos erosivos e assoreamento.

Aspecto	ambiental	Movimentação do solo, aterramento e escavações. Aceleração de processos erosivos e assoreamento.								
Impacto	ambiental	Acele	ração c	le proce	ssos ero	sivos e	e assor	eament	to.	
Ocorrên	icia	F	₹	Tempo	oralidad		F (CP)			
Naturez	a	NEG Origem				D:	IR			
Local de	e atuação do	Fase	Freq	Imp ou sev	Cont ou rev	Abran	Dur	IS	SIG	
ADA		I	2	1	1	1	1	2	PS	
Medidas	Preventivas	de se neces - Util haver - Evi expos	erviço e esário; izar ba fá movi itar qu etos, pr	e movim nrreiras mentaçã ue corte incipalm	ura de nentação de contão de so es es a nente, poráticas	enção lo; terros or long	nas á fiquer os per	estritai reas er m com íodos;	mente n que	
- Recuperar áreas alteradas/degradadas durante obra que não serão mais utilizadas ao longo operação do empreendimento; - Monitoramento e controle de processos erosivos. Compensatórias -								go da		
Potencializadoras -										
Pos			aandad	lor a am	nreiteira					
Kes	ponsabilidades	⊏mpr	eenaea	ior e em	preiteira	1.				

5.2.5. Possibilidade de contaminação do solo, água superficial e subterrânea

Durante a fase de implantação do empreendimento haverá movimentação de máquinas e veículos, instalação de oficinas, áreas e equipamentos destinados à lavagem e manutenção de veículos e estruturas, além do armazenamento de produtos com potencial poluidor (óleo, graxa, tinta, cimento, cal, impermeabilizantes, aditivos etc). Os materiais

armazenados, ou ainda aqueles presentes nos tanques dos veículos, podem, em cenários acidentais, vazar e atingir solo, águas ou sistemas de drenagem, escoando ou infiltrando, com potencial para alterar a qualidade do recurso natural atingido, de maneira pontual ou continuada, de acordo com as características do evento e do local.

As fases de implantação e operação da ampliação do empreendimento também serão responsáveis pela geração de resíduos sólidos e efluentes, incluindo resíduos de construção civil, recicláveis, orgânicos, lodo de ETE, efluentes líquidos industriais, efluentes sanitários, entre outros, conforme apresentado anteriormente no item 4.6.3 e 4.6.1. O gerenciamento inadequado de resíduos e efluentes de qualquer origem pode ocasionar poluição do solo e áqua.

A manutenção preventiva e corretiva dos equipamentos e maquinários que oferecem risco de contaminação consiste na melhor medida preventiva. O adequado acondicionamento e armazenamento de produtos com potencial poluidor em estruturas apropriadas (recipientes e tanques estanques, áreas com piso impermeável e cobertura ou drenagem adequada, e contenção para vazamentos com capacidade compatível aos volumes armazenados) constituem, também, medidas preventivas à ocorrência do impacto.

Como medida preventiva, tais equipamentos devem ser dotados de sistemas de controle confiáveis (bacias de captação) para contenção de vazamentos, além de instalação de caixas separadoras de água e óleo sob essas estruturas.

Possíveis vazamentos de óleo nos equipamentos de produção de papel e celulose devem ser controlados por dispositivos de contenção como pisos impermeáveis e contenções.

No que se refere ao gerenciamento de resíduos, o Plano de Gerenciamento de Resíduos Sólidos (PGRS) do empreendimento já preve ações compatíveis com a legislação, preconizando a segregação de resíduos em classes conforme a norma ABNT NBR 10.004 (classe I, IIa e IIb), e procedimentos de acondicionamento, armazenamento, transporte e destinação compatíveis.

O gerenciamento dos resíduos visa evitar o contato de material potencialmente poluidor com recursos naturais como solo e águas, através de apropriado acondicionamento e armazenamento, e precisa identificação para também evitar misturas entre si.

O transporte e destinação devem ocorrer através de empresas/instituições devidamente licenciadas, mas priorizando-se sempre o reuso e a reciclagem em relação à disposição e destruição térmica.

De forma geral, é essencial que sejam fortalecidos os programas e ações focadas na redução da geração, reuso e reciclagem, de forma a efetivamente mitigar os impactos sobre atributos naturais.

No contexto da geração de efluentes tem-se como medidas principais de controle, o correto dimensionamento da estação de tratamento, o acompanhamento da eficiência da ETE pela análise do efluente bruto e tratado, e monitoramento periódico das águas superficiais do corpo hídrico afetado, a montante e jusante do local de lançamento. A ETE possibilita que a fração a ser lançada no rio apresente característica físico-químicas e biológicas condizentes com os padrões estabelecidos pela legislação. É premissa para a ampliação que o efluente não ultrapasse a vazão autorizada pela outorga do empreendimento.

A possibilidade de ocorrência de contaminação do solo ou água subterrânea é remota, pois está relacionada a cenários acidentais ou a operação inadequada, falta de manutenção de veículos, ou ainda ausência de gerenciamento dos resíduos gerados pela obra.

Uma medida mitigadora que será estendida para a área de ampliação do empreendimento consiste no programa de monitoramento de qualidade da água subterrânea. Este programa já vem sendo desenvolvido no âmbito da operação do empreendimento e visa avaliar eventuais interferências dos processos operacionais na qualidade subterrânea, sobretudo aqueles relacionados à movimentação de produtos químicos e potencialmente contaminantes.

AIA 5 - Possibilidade de contaminação do solo e água subterrânea.

Aspect	o ambiental	Derramamento ou vazamentos de substâncias potencialmente poluidoras, geração de resíduos sólidos e efluentes								
Impac	to ambiental		Possibilidade de contaminação do solo, águas superficiais e/ou subterrâneas							
Ocorrê	ncia	P Temporalidade				F (CP)			
Nature	eza	NE	ΞG	Origem		D:	IR			
Local o	le atuação do to	Fase	Pro	babilidade	Severidade	IS	SIG			
ADA e	AID	I		2	2	4	PS			
ADA		0	O 2 2 4 PS							
Medidas	Preventivas	veícul - Sina vias desloc - Arm em a sisten vazar - Sina - Rea situaç produ - Re	los utilialização de accamenta de accamenta de mentos alização de accamentos de accamentos por ealização de accamentos por ealização de accamenta de	izados nas o o adequada cesso da to; mento de primpermeab drenagem; o e identifica de treinam e risco e tencialmento de processo de proces	e adequada de bras e na operaç e controle de ve obra e áreas odutos com pote ilizadas, com o adequado, e con gerenciamento a poluidores; cedimentos de los e maquinário	ão; elocidad interna ncial po cobertur ntenção e riscos radores adequad risco	le nas les de luidor ra ou para s; s para do de como			

	as devidas medidas de segurança (sinalização, impermeabilização de solo, isolamento da área, operadores treinados etc); - Continuidade do monitoramento da qualidade da água subterrânea; - Realizar o gerenciamento de resíduos em todas as etapas de forma adequada à legislação, priorizando reuso, reciclagem e empregando destinação como última opção; - Realizar transporte e destinação apenas com empresas devidamente licenciadas; - Realizar ações e campanhas de educação ambiental associadas ao tema de gerenciamento de resíduos; - Atualizar o Plano de Gerenciamento de Resíduos Sólidos e da Construção Civil para as etapas de implantação e operação do empreendimento; - Correto dimensionamento da estação de tratamento de efluentes; - Acompanhamento da eficiência da ETE pela análise do efluente bruto e tratado; - Monitoramento periódico das águas superficiais do corpo hídrico afetado, a montante e jusante do local de lançamento.
Mitigadoras	-
Compensatórias	-
Potencializadoras	-
Responsabilidades	Empreendedor e empreiteira.

5.2.6. Alteração da dinâmica hídrica

Alterações na cobertura do solo são esperadas na ampliação do empreendimento. Essas alterações são caracterizadas pela remoção da cobertura do solo num estágio inicial de implantação, quando realizados os movimentos de terra, e posteriormente pela sua substituição por áreas construídas, pavimentadas ou com outro tipo de cobertura substancialmente diferente da original. A ruptura da cobertura do solo tende a deixá-lo exposto à ação das enxurradas, produzindo erosão superficial e consequentemente o aumento do transporte sólido nas bacias e sedimentação nos drenos principais, de menor declividade. As áreas construídas e pavimentadas aumentam gradativamente

impermeabilização dos solos, reduzindo sua capacidade natural de absorver as águas das chuvas, o que retarda a infiltração e eleva o escoamento superficial direto.

Para o controle das vazões de escoamento superficial direto, o empreendimento dispõe de um sistema de microdrenagem perimetral orientado para o aumento da condutividade hidráulica do sistema de drenagem. Este sistema efetua a coleta das águas do escoamento superficial direto, seguida de imediato e rápido transporte dessas águas até o ponto de despejo, a fim de minimizar os danos e interrupções das atividades dentro da área de coleta. O sistema atual, dimensionado considerando a implantação consolidada (total) da unidade, é composto por pavimentos das ruas, guias e sarjetas, bocas de lobo, bocas de leão, rede de galerias e canais de pequenas dimensões.

Outro enfoque empregado no controle das águas pluviais é o de armazenamento das águas e tratamento, quando cabível. Conforme já aplicado às áreas instaladas da unidade, as águas pluviais que incidirem diretamente nas áreas produtivas ampliadas ou que possuam potencial de contaminação por acidentes, serão coletadas e encaminhadas para lagoa de águas pluviais, onde serão monitoradas em relação ao pH, condutividade e aspecto visual. Caso confirme a contaminação, estas águas serão enviadas para o sistema de tratamento de efluentes, caso contrário, elas serão encaminhadas para os corpos d'água receptores.

AIA 6 - Alteração na dinâmica hídrica superficial.

Aspecto	ambiental	Altera	o regime de escoamento de águas superficiais.								
Impacto	ambiental	Altera	ção na	dinâmica	hídrica	superfi	cial.				
Ocorrên	ıcia	ı	R	Tempo	ralidad	F (MP)				
Naturez	a	NI	EG	Origen	n			D	IR		
Local de	e atuação do	Fase	Freq	Imp ou sev	Cont ou rev	Abran	Dur	IS	SIG		
ADA e Al	ID do meio físico	I	1	2	1	1	2	4	PS		
ADA e Al	ID do meio físico	0	2	1	1	1	3	6	PS		
	Preventivas	a obra solo e - Real erosiv	 Minimizar a exposição e movimentação de solo durante a obra, priorizando atividades de maior movimentação de solo em períodos de menor ocorrência de chuvas; Realizar medidas de contenção e controle de processos erosivos. 								
Medidas	- Monitorar e manter adequadamente estruturas e microdrenagem; - Armazenar e tratar, quando necessário, águas pluvia contaminadas; - Realizar ações e campanhas de educação ambient associadas ao tema de resíduos, evitando que o descar inadequado obstrua a rede de drenagem.										
	Compensatórias	-									
	Potencializadoras	-									
Res	ponsabilidades	Empreendedor e empreiteira.									

5.2.7. Alteração na qualidade da água superficial

Conforme detalhado na descrição do processo, a ampliação da unidade promoverá um acréscimo na geração e lançamento de efluentes sanitários e industriais às águas do Rio Tibagi, durante sua implantação e operação. Este acréscimo poderá implicar numa alteração das características qualitativas do corpo hídrico receptor, caso não haja controles de geração e tratamento adequados, com potencial para levar determinados

parâmetros a concentrações superiores àquelas estabelecidas para rios classe 2, definida por meio de enquadramento, com consequente influência sobre o potencial uso das águas a jusante.

Neste contexto, vale ressaltar que os resultados dos monitoramentos conduzidos no âmbito do Programa de Monitoramento de Qualidade da Água apontam para o aporte de cargas poluidoras a montante do ponto de lançamento de efluentes do empreendimento. Verificou-se desacordo aos padrões de qualidade para rios de água doce "classe 2", com amostras coletadas apresentando concentrações elevadas de coliformes termotolerantes (*E.coli*), fósforo total, cor, DBO, clorofila A, cromo e manganês.

Durante o período de implantação, estima-se que sejam gerados 70 m³/h de efluente sanitário, que poderão ser tratados em conjunto ao efluente industrial na ETE existente. Caso seja necessário, estará à disposição uma ETE compacta, com capacidade para tratamento de 100 m³/h, utilizada na época da implantação das estruturas atuais.

No âmbito da operação da ampliação, estima-se um acréscimo na geração de efluentes industriais da ordem de 666 m³/h, passando dos atuais 5.431 m³/h para 6.097 m³/h, na primeira fase da ampliação, e de mais 1.212 m³/h, passando para o total de 7.309 m³/h, na segunda fase da ampliação. Em razão deste acréscimo, serão necessárias adequações/ampliações na estação de tratamento de efluentes.

Observa-se que a demanda total para lançamento (7.309 m³/h, já considerando acréscimos da ampliação) não ultrapassa o limite autorizado para lançamento de efluentes, da ordem de 7.400,00 m³/h, estabelecido por meio de outorga de direito de uso das águas (Portaria nº 289/2016 – DPCA) emitida ao empreendimento pelo ÁGUASPARANÁ. O mesmo ocorre

para as concentrações do efluente de lançamento, as quais atenderão aos limites estabelecidos em outorga de direito para lançamento, conforme ilustrado na tabela 40.

Para fins de subsídio à avaliação da capacidade de suporte e dos efeitos ambientais do lançamento do efluente tratado, foram efetuados estudos de dispersão hídrica e autodepuração das águas do Rio Tibagi, no âmbito do Estudo de Impacto Ambiental (EIA) para implantação da Unidade Puma. Foram rodadas diversas simulações, variando a vazão do rio, os parâmetros em estudo e as condições do Rio Tibagi (com ou sem a instalação da UHE Mauá). Para os estudos, consideraram-se as vazões e concentrações máximas de lançamento (pico de projeto), contemplando, portanto, futuras ampliações.

Baseado nas simulações realizadas, concluiu-se que o lançamento do efluente industrial não impacta a qualidade da água do Rio Tibagi, sendo demonstrado que o rio rapidamente retorna às condições de qualidade apresentadas à montante do lançamento, tendo boa capacidade de depuração da matéria orgânica.

Em todo caso, a liberação de substância no ambiente deve atender aos critérios legais e normativos aplicáveis, seja para a qualidade de águas superficiais, subterrâneas ou do solo. Neste contexto, tem-se como medidas principais de controle o correto dimensionamento da estação de tratamento, o acompanhamento da eficiência da ETE pela análise do efluente bruto e tratado, e monitoramento periódico das águas superficiais do corpo hídrico afetado, a montante e jusante do local de lançamento, conforme periodicidade indicada pelos órgãos fiscalizadores.

AIA 7 - Alteração da qualidade da água superficial.

Aspec	to ambiental	Aport	e de po	oluentes	e sedim	entos	na imp	lantaçã	io e		
ASPEC	to ambientar	opera	ção do	empree	ndiment	Ю.					
Impac	to ambiental	Altera	ição na	qualida	de das á	iguas s	superfi	ciais.			
Ocorré	ència	F	ર	Tempo	oralidad	le		F (CP)			
Nature	eza	NE	NEG Origem DI						DIR		
Local o	de atuação do to	Fase	Freq	Imp ou sev	Cont ou rev	Abran	Dur	IS	SIG		
AID e A	AII do meio físico	I	2	1	1	2	2	8	PS		
AID e A	AII do meio físico	0	3	1	2	2	3	36	S		
	Preventivas	-									
Medidas	Mitigadoras	- Amp - Imp - Rea qualic - Mo tratac	oliação lantaçá alizar dade da nitorar dos e la	de siste de rec monit de água d nento de necados; ento e c	de produ mas de f de de dre corament o corpo dos esgo controle	tratam enager to e a recept otos e	ento d m adeq acompa or; e eflue	e efluei juada; anhame	ento da Jerados,		
	Compensatórias	-									
	Potencializadoras	-									
Res	sponsabilidades	Empr	eendec	lor e em	preiteira	s.					

5.2.8. Conflitos nos usos múltiplos da água

A Lei Federal nº. 9.433/1997, que instituiu a Política Nacional de Recursos Hídricos, apresenta como um dos seus fundamentos o uso múltiplo dos recursos hídricos. O manejo de recursos hídricos dentro do conceito de usos múltiplos objetiva uma exploração concomitante e integrada, na qual as relações entre os produtos gerados sejam complementares ou no mínimo suplementares. As atividades de uso da água envolvem complexas

interações, em que uma atividade provoca impactos tanto positivos quanto negativos nas outras atividades.

A implantação de um empreendimento de porte avançado como a ampliação da Unidade Puma implica em elevadas demandas por recursos hídricos, podendo afetar, consequentemente, a disponibilidade hídrica da bacia do Rio Tibagi em seu entorno próximo, reduzindo a disponibilidade dos recursos a serem utilizados pelos usuários presentes e futuros. Além da disponibilidade, a qualidade da água é outro aspecto que assegura um determinado uso ou um conjunto de usos (usos múltiplos) de recursos em um corpo hídrico.

Com relação à disponibilidade e demandas hídricas, de acordo com as estimativas do PBH-Tibagi para a seção de controle onde se insere o empreendimento há uma disponibilidade hídrica superficial entre 2.500.000 e 4.600.000 m³/dia, enquanto que a demanda autorizada ao empreendimento é da ordem de 201.600 m³/dia (8.400,00 m³/h), conforme outorga de direito emitida pelo ÁGUASPARANÁ (Portaria nº 208/2016-DPCA). Ressalta-se que a vazão autorizada para captação já atende as operações atualmente instaladas e a ampliação aqui abordada.

Quanto à qualidade das águas, conforme detalhado no item 5.2.7, o lançamento de efluentes não resultará em alterações significativas a qualidade do Rio Tibagi, o qual possui boa capacidade de autodepuração.

Visando o uso racional e conservação dos recursos hídricos, deverão ser adotadas práticas, técnicas e tecnologias que proporcionem a melhoria e a eficácia do seu uso. Neste sentido, as práticas de conservação e reuso da água mais comuns consistem basicamente na gestão da demanda, ou seja, na utilização de fontes alternativas de água e na redução dos volumes de água captados por meio de otimização do uso. A adoção

dessas práticas propicia a redução da demanda do recurso, e ao mesmo tempo contribui para minimizar as vazões de escoamento superficial que serão dirigidas aos corpos hídricos.

AIA 8 - Conflitos nos usos da água

Aspecto ambiental Captação de água e geração de efluentes									
Impac	to ambiental	Confli	itos nos	s usos m	últiplos	da águ	ıa		
Ocorrê	ncia	F	R	Tempo	ralidad	F (CP)			
Nature	eza	NEG Origem				D	IR		
Local o	le atuação do to	Fase	Freq Imp ou sev Cont ou rev Dur IS						
AID e A	AII do meio físico	I	2	1	2	1	1	4	PS
AID e A	AII do meio físico	0	3	1	3	1	3	27	S
	Preventivas	-							
Medidas	Mitigadoras	outor Institute - Prior maior - Ince - Implescoal - Real associ	ga de uto das prizar a porte entivar plemento lizar a ciadas a nitorar	captaçãos Águas o captação e volum a conserutar medicações e conserutar medicações e conserutar a qualidados de qualidados e conserutar medicações e conservidador e c	io de á do Paran io de ág e; rvação e didas de ial direto ampanha de recur	gua s ná; nua em reuso e redu o; as de o sos hío	uperfic curso da águ ção e educaç dricos;	s hídrio ua; retenç ão amb	to ao cos de ão do piental
	Compensatórias	-							
	Potencializadoras	-							
Res	sponsabilidades	Empr	eended	lor e em	preiteira	S.			

5.2.9. Remoção de cobertura vegetal

A ampliação da unidade prevê o corte de uma área de plantio comercial de eucalipto de 2,82 hectares para instalação de pátio de estocagem de

toras. Apesar de se tratar de vegetação exótica, a remoção de cobertura vegetal acarreta em exposição do solo e consequente instabilidade, favorecendo processos erosivos, além de alteração da dinâmica do escoamento superficial.

Este impacto é de baixa significância, dada a reduzida dimensão da área a ser cortada, e ocorrerá na fase de implantação, em que haverá o corte da vegetação. Como medida preventiva sugere-se a instrução da equipe de supressão para que esta ocorra somente nos limites da área de plantio de eucalipto, com os devidos cuidados sobre o entorno imediato, sem afetar remanescentes nativos.

Caso haja necessidade de supressão de vegetação nativa, não prevista no projeto atual, deverá ser requerida a devida autorização ambiental junto ao órgão ambiental, bem como efetuadas as medidas de compensação previstas em legislação.

AIA 9 - Remoção de cobertura vegetal.

Aspect	to ambiental	Implantação do empreendimento.										
Impac	to ambiental	Remo	ção da	cobertu	ıra vege	tal.						
Ocorré	ència	F	₹	Tempo	oralidad	de		F (CP)			
Nature	eza	NE	ĒG	Origer	n			D:	IR			
Local	, fator ambiental,			5	ž	_						
grupo	o ou ator social de	Fase	Freq	Imp ou sev	Cont ou rev	Abran	Dur	IS	SIG			
aç	ção do impacto	_	_	1	ပိ	<						
ADA		I	1	1	3	1	3	9	PS			
	Preventivas	- Instrução da equipe de supressão para não afetar										
as	ricventivas	remai	nescen	tes nativ	/0S.							
Medidas	Mitigadoras	-										
Σ	Compensatórias	-										
	Potencializadoras		-									
Pos	sponsabilidades	Empr	eendec	lor e em	presa re	espons	ável pe	ela				
Kes	sponsabilidades	supre	ssão.									

5.2.10. Perda de habitat e risco de acidentes à fauna

Como identificado no diagnóstico, as florestas de monoculturas na região em que o empreendimento está inserido possuem um papel relevante como *habitat*, principalmente para as espécies com menor exigência ambiental, e podem servir também de área de conexão no deslocamento de espécies florestais entre fragmentos florestais nativos remanescentes. Com a supressão de vegetação mesmo que exótica, haverá uma redução do *habitat* disponível, fazendo com as espécies que ali habitam se desloquem para outros ambientes adjacentes, que poderá afetar o adensamento populacional do entorno, aumentando a competição por território e por recurso. Essa tendência poderá ser avaliada a partir dos dados obtidos pelo programa de monitoramento da fauna silvestre, já realizado no âmbito da operação da Unidade Puma e que deverá ter continuidade na implantação e operação da ampliação para avaliar os impactos dessa nova expansão.

Assim, durante a supressão florestal de espécies exóticas existentes no terreno, poderão ser encontrados espécimes da herpetofauna, avifauna e mastofauna, sobretudo àquelas espécies com baixa capacidade de locomoção e espécies com áreas de vida pequenas, hábitos fossoriais, e locais específicos de nidificação e acasalamento. As ações na área de supressão podem afetar o comportamento dos espécimes no local, devido o aumento de hormônios geradores de estresse, o que pode facilitar a fuga espontânea, de outra forma pode deixar os espécimes em estado de defesa tornando-os mais agressivos e resistentes ao afugentamento (FORMAN, ALEXANDER, 1998). Importante destacar que os procedimentos de acompanhamento da supressão de exóticas, por uma equipe de afugentamento de fauna, é uma prática consolidada pela Klabin, durante do ciclo de produção florestal para obtenção de matéria prima.

Neste contexto, será utilizado como medida preventiva o afugentamento da fauna, a partir de procedimentos específicos e já consolidados a partir de técnicas e critérios legais, evitando o contado direto com a fauna local reduzindo o risco morte aos animais. Na impossibilidade da realização do afugentamento, dada às características comportamentais de cada espécie, serão seguidos os procedimentos já executados pela própria Klabin quando da remoção de vegetação de reflorestamento na região. Da mesma forma será utilizada a estrutura existente da Klabin, como o Centro de Reabilitação de Animais Silvestres (CRAS) e áreas de soltura, caso haja necessidade de resgate da fauna.

Adicionada às atividades de supressão, as movimentações de maquinário e caminhões na área do empreendimento fornecem um risco potencial ao atropelamento da fauna, podendo gerar atropelamentos e óbitos à fauna local. Neste contexto, a orientação aos condutores, sinalizações nas vias de acesso e redutores de velocidades são fundamentais para redução deste risco.

AIA 10 - Perda de habitat.

Aspect	o ambiental	Supre	ssão flo	restal de	e monoci	ıltura			
Impact	o ambiental	Perda	de hab	itat					
Ocorrê	ncia	R Temporalidade					F (CP)	
Nature	za	NEG Origem				DIR			
Local d	e atuação do o	Fase Imp ou sev Cont ou rev Dur IS					SIG		
ADA e A	AID	I	I 1 2 3 1 3 18 PS						
as	Preventivas		ressão	controle de veget	•		_	•	
Medidas	Mitigadoras	-							
Σ	Compensatórias	as -							
	Potencializadoras	-							
Re	sponsabilidades	Empreendedor e empreiteira.							

AIA 11 – Risco de acidentes à fauna.

Aspecto	ambiental	Supre	Supressão florestal de monocultura								
Impacto	ambiental	Risco	de acide	entes à fauna	э.						
Ocorrên	icia	ı	Р	Temporali	dade	de F (CP,					
Naturez	a	NI	EG	Origem		DIR					
Local de	e atuação do	Fase	Prol	Severidade	IS	SIG					
ADA e A	ID	I		2	2	4	PS				
ADA e A	ID	0		8	S						
Medidas	Preventivas	seguir região - Oriei segura	ndo pro o; ntação p as e con	cedimentos ; para tráfego npatíveis;	às atividades d já utilizados pela de veículos em vel es de velocidade.	Klabin	para a				
Σ	Mitigadoras		ização d ntados.	lo resgate e	salvamento dos es	pécime	s não				
	Compensatórias	-									
	Potencializadoras	-									
Res	ponsabilidades	Empreendedor e empreiteira.									

5.2.11. Alteração nos ecossistemas aquáticos

A captação de água e lançamento de efluentes são atividades com potencial poluidor do ambiente aquático (Lei nº 6.938/1981). Tais atividades podem causar alterações no ambiente aquático provocando modificações na estrutura das comunidades aquáticas (e. g. abundância e composição de espécies) (ASSIS, 2014).

Das atividades mencionadas, o lançamento de efluentes é a mais preocupante, pois tem o potencial de alterar o padrão de qualidade aumentando os valores de parâmetros como fósforo e nitrogênio, que podem produzir eutrofização no ambiente aquático, elevando o consumo de oxigênio por microorganismos, deplecionando-o e reduzindo a disponibilidade de oxigênio para varias espécies, como: peixes e invertebrados aquáticos, podendo levar à mortandade de espécimes (DANTAS, 2009; CHAGAS et al., 2015; ASSIS, 2014). Além desses parâmetros, uma serie de outros podem originar impactos diretos ou indiretos no ecossistema, podendo se acumular nos níveis tróficos até o topo da cadeia alimentar, como no caso dos metais: mercúrio, chumbo e cádmio, nos processos de bioacumulação e biomagnificação (LIMA et al., 2015).

No estudo de impacto ambiental elaborado para a Unidade Puma (POYRY, 2012) foi previsto um impacto de baixa relevância para os ecossistemas aquáticos em função das captações de água e lançamento de efluentes no Rio Tibagi, durante a operação do empreendimento. Ainda que não operando na capacidade máxima prevista no EIA, observou-se que a partir dos resultados das análises do monitoramento da qualidade das águas (envolvendo a comunidade planctônica) e do monitoramento da ictiofauna nos pontos a jusante e a montante dos pontos de captação de água e lançamento de efluentes, não houve uma diferença significativa na qualidade do ecossistema entre os pontos, demonstrando que o

lançamento dos efluentes não tem afetado as comunidades de forma significativa.

Nas fases de implantação, a intervenção será mínima, pois as infraestruturas de captação e lançamento já se encontram em operação. Todavia, com a ampliação dessas estruturas haverá aumento da produção e consequentemente na captação de águas e no lançamento de efluentes no Rio Tibagi, aumentando o impacto sobre o ecossistema. O aumento previsto não excederá aos valores já previstos nas outorgas de uso da água concedidas ao empreendimento (captação de 8400 m³/h e lançamento de efluente tratado de 7400 m³/h) e autorizados.

Deste modo, medidas preventivas e mitigadoras serão intensificadas, visando atender a nova demanda, evitando ou reduzindo significativamente seus efeitos sobre a fauna aquática, conforme já é possível evidenciar pelos resultados dos monitoramentos. Assim, o impacto pode ser considerando como pouco significativo, uma vez que todas as medidas serão adotadas para manutenção do equilíbrio ambiental.

AIA 12 - Alteração no ecossistema aquático.

Aspect	to ambiental	Operação do empreendimento.									
Impac	to ambiental	Altera	ıção no	ecossis	tema aq	uático					
Ocorrê	encia	F	₹	Tempo	ralidad	e		F ((CP)		
Nature	eza	NEG Origem				С	IR				
Local o	de atuação do to	Fase	Freq	Imp ou sev	Cont ou rev	Abran	Abran Dur IS				
AID		0	3	1	1	1	3	9	PS		
	Preventivas	lança suficie	mento, entes q	o trati utiliza ue atend inuidade	ando t	tecnolo exigên	ogias cias leg	eficien jais vig	tes e entes.		
Medidas	Mitigadoras	- Ro parân qualio	ealizar netros lade c	anhamer o acc obtidos las águ s de peix	ompanha no prog as, bus	amento rama o scando	de mor	nitoram	ento de		
	Compensatórias	as -									
	Potencializadoras	-									
Res	sponsabilidades	Projetistas, empreendedor e empreiteira responsáve pela obra.						onsável			

5.2.12. Geração de expectativas

As atividades de planejamento e implantação de um empreendimento geram expectativas na população em decorrência da circulação de pessoas externas à comunidade e de maquinários, especialmente na fase de implantação, o que promove certa estranheza, insegurança, circulação de rumores e mexe com o imaginário da população local. Logo, propiciando a geração de expectativas positivas e negativas superestimadas quanto ao empreendimento.

Entretanto, o empreendimento em questão se trata do projeto de ampliação da Unidade Puma, logo, todas as áreas objeto de intervenção serão dentro do terreno da Unidade Puma. Adicionalmente, destaque-se que a atividade do empreendimento não é uma dinâmica nova à região, dado que a própria Unidade Puma (em Ortigueira) como a Unidade Monte Alegre (em Telêmaco Borba) já realizam produção de celulose. Assim, a geração de expectativas será significativamente mais reduzida comparativamente à implantação de uma nova unidade e em uma região sem histórico da atividade. Ademais, a empresa já executa ações de comunicação social.

Portanto, com o intuito de manter a população e órgãos municipais informados a respeito do empreendimento, é proposta como medida preventiva e mitigadora à geração de expectativas a continuidade da execução de ações de comunicação social junto à população em geral e aos trabalhadores da operação da unidade, mas estendendo-se também aos operários da obra e terceiros contratados.

AIA 13 - Geração de expectativas.

Asnec	Aspecto ambiental	Ativid	ades d	e planej	amento	e impl	antaçã	o do		
Aspec	to ambientai	empre	eendim	iento.						
Impac	to ambiental	Geraç	ão de	expectat	ivas.					
Ocorré	ència	F	۲	Tempo	oralidad	de		A/F (CP)		
Nature	eza	NEG Origem						IN	IND	
Local	de atuação do to	Fase	Freq	Imp ou sev	Cont ou rev	Abran	Dur	IS	SIG	
AII		P 2 1 1 2 1 4							PS	
AII		I 3 2 1 2 2 24 P							PS	
	Preventivas		de Pu	a realiz ma e e				•		
Medidas	Mitigadoras	Unida ampli - Orie obra	de Pu ação. entação sobr	a realizema e e e e e e e e e e e e e e e e e e	esclarec rceiros c io an	er sob	ore o ados e	proces	so de ios da	
	Compensatórias	ns -								
	Potencializadoras	-								
Res	esponsabilidades Empreendedor e empreiteira responsável pelas obra						obras.			

5.2.13. Interferência sobre infraestrutura/serviços existentes (Risco socioambiental)

Considerando que as atividades de implantação e operação gerarão empregos diretos e indiretos, há a potencialidade de atrair significativo contingente populacional à Ortigueira (AID), Telêmaco Borba e Imbaú (AII).

Neste sentido, a partir do aumento de demanda poderão ocorrer interferências sobre a qualidade de infraestruturas e serviços públicos

ofertados, especialmente no âmbito das obras de ampliação (com estimativa de 10.500 no pico das obras), seja no âmbito da saúde, educação, transporte, moradia/hospedagem, entre outros aspectos. Neste sentido, caso não adotadas medidas preventivas e mitigatórias, a demanda gerada poderá acarretar em diminuição da qualidade destas infraestruturas e serviços, consequentemente, propiciando risco socioambiental.

Assim, propõem-se a adoção do seguinte conjunto de medidas preventivas e mitigatórias:

- Priorizar a contratação de mão de obra local (da AID e AII);
- Ofertar capacitação da mão de obra;
- Ofertar ambulatório na obra;
- Ofertar alojamento aos colaboradores da obra (figura 103);
- Continuar a ofertar na operação ambulatório na Unidade Puma;
- Continuar a ofertar benefícios como planos de assistência médica e odontológica, auxílio-medicamentos, auxílio-creche, sistema de transporte, programa de alimentação, programas de capacitação e treinamento aos colaboradores da operação;
- Ofertar treinamento de segurança e meio ambiente;
- Ofertar transporte aos trabalhadores das obras;
- Continuar a contribuir com as municipalidades a partir da geração de impostos diretos e indiretos, além do efeito renda;
- Promover ações no processo de desmobilização de mão de obra, de forma a estimular o retorno dos trabalhadores migrantes aos seus locais de origem; divulgar o cronograma de obras, informando a comunidade sobre o início e término das obras; e Fornecer orientação de apoio aos trabalhadores dispensados;
- Monitorar os aspectos antrópicos.

Figura 103 – Registro de alojamentos já existentes (utilizados na implantação do Projeto Puma) em Ortigueira e Telêmaco Borba.

Salienta-se que no processo de implantação da Unidade Puma entre 2013 e 2016 os municípios já passaram por processo semelhante, deste modo, demonstra-se que é viável a realização da ampliação do empreendimento de modo a não deteriorar as condições de infraestruturas e serviços existentes, bem como da qualidade de vida, ao mesmo tempo de propiciar efeitos benéficos a partir do aumento de empregos, efeito renda, arrecadação de impostos, aumento da produção de celulose e de geração de energia.

AIA 14 – Interferência sobre infraestrutura/serviços existentes (Risco socioambiental).

i.											
				e implar	-		-				
Aspect	to ambiental			ento. G	eração d	le emp	regos.	Atrativ	idade		
		de po	pulaçã	0.							
Imnac	to ambiental	Interf	erência	a sobre i	nfraestr	utura/	serviço	s existe	entes		
Impac	to ambientai	(Risco	o socio	ambient	al);						
Ocorré	ència	F	R	Tempo	oralidad	le		A/F	(CP)		
Nature	eza	NEG Origem					IN	ID			
Local o	de atuação do to	Fase	Freq	Imp ou sev	Cont ou rev	Abran	Dur	IS	SIG		
AII		I	2	3	2	2	2	48	S		
AII		0	2	2	2	2	3	48	S		
				contrata	ação de	mão d	e obra	local (d	la AID		
		e AII)	•								
		- Ofertar ambulatária na abra:									
		- Ofertar ambulatório na obra;									
		- Ofertar alojamento aos colaboradores da obra;									
		- Continuar a ofertar na operação ambulatório na									
		Unidade Puma; - Continuar a ofertar benefícios como planos de									
								•			
			ência	médic			ntológio	-	uxílio-		
S	Preventivas/			os, auxí		-			•		
Medidas	Mitigadoras			e alimer	-	_		•	itação		
/ed		e trei	namen	to aos c	olaborad	lores c	la oper	ação;			
				inament					_		
				nsporte					•		
				com							
		-		impost	os dire	os e	indiret	os, alé	m do		
			renda	•							
				Ações d	e desm	obiliza	ção da	mão de	e obra		
			orária.			,					
		- Mon	itorar (os aspec	tos anti	ópicos	i.				
	Compensatórias										
	Potencializadoras	-									
Res	sponsabilidades	Empreendedor e empreiteira responsável pelas obras.									

5.2.14. Conflito de uso do solo/entorno

Não se verifica a presença de conflitos de uso do solo no entorno, dado que a unidade da Klabin está a uma distância de 500 metros de propriedades de terceiros (atividades comerciais e de serviços) e de 800 metros da residência mais próxima. Adicionalmente, salienta-se que o Município de Ortigueira emitiu certidão de anuência quanto à Unidade Puma, na qual atesta a conformidade do empreendimento, bem como de seu local, tipologia e atividade estão adequados quanto à legislação municipal de uso e ocupação do solo.

Ressalta-se também que não se trata da implantação de uma nova atividade, mas sim da ampliação da Unidade Puma, no interior de seu terreno.

5.2.15. Acréscimo na geração de tráfego

Contemporaneamente, a Unidade Puma em seu processo de operação gera tráfego decorrente do transporte de seus colaboradores, recebimento de matérias-primas e expedição de produto.

Com a etapa de obras correlatas à ampliação da unidade será gerado acréscimo no número de veículos, tanto para o transporte dos trabalhadores das obras como para transporte de materiais, equipamentos e máquinas relativas às obras. Adicionalmente, na operação após a ampliação o número de colaboradores, matéria-prima e expedição da produção também irão aumentar, consequentemente, elevando a geração de tráfego (número de veículos) no sistema viário intermunicipal e nas vias de acesso.

Apesar do aumento do número de veículos, tanto na implantação como na operação após a ampliação, este impacto se configura como pouco 332

significativo, em ambas as fases, em decorrência que o fluxo diário gerado pelo empreendimento ser inferior à capacidade e ao fluxo diário existente nas rodovias e nas vias de acesso existentes, de modo a não alterar o nível de serviço das vias em uma magnitude que possa prejudicar substancialmente a circulação. Ademais, salienta-se que o empreendedor na fase de instalação da Unidade Puma realizou melhorias no sistema viário, implantando acessos dotados de boa infraestrutura (conforme item 4.5.2.1) e de ramal ferroviário, o qual diminui significativamente o número de caminhões para expedição da produção.

De forma a mitigar este impacto de geração de tráfego se propõem a oferta de transporte aos trabalhadores das obras, como também a continuidade da oferta aos colaboradores da operação.

AIA 15- Acréscimo na geração de tráfego.

Aspec	to ambiental		ades d eendim	e implar	ntação e	opera	ção do		
Twompo	to ombioutal				. da +ud	Sfo.g.o			
_	to ambiental	Acres	CITIO II	a geraçã					
Ocorré	ència	F	₹	Tempo	oralidad		A/F (CP)		
Nature	eza	NEG Origem				DIR,	/IND		
Local	de atuação do to	Fase	Freq	Imp ou sev	Cont ou rev	Abran	Dur	IS	SIG
AII		I	2	2	1	2	2 2		PS
AII		0 2 2 1 2 3						24	PS
	Preventivas	- Ofer	ta de t	ranspor	te aos t	rabalha	dores	das ob	ras;
Medidas	Mitigadoras		ntinuid	ranspor lade da					-
2	Compensatórias	as -							
	Potencializadoras	-							
Res	sponsabilidades	Empreendedor e empreiteira responsável pelas obras.							

5.2.16. Valorização/desvalorização imobiliária

Considerando que as atividades de implantação e operação gerarão empregos diretos e indiretos, há a potencialidade de atrair significativo contingente populacional à Ortigueira (AID), Telêmaco Borba e Imbaú (AII).

Neste contexto será demandada moradias/alojamentos temporários (no caso das obras) ou permanentes (no caso da operação) para os colaboradores. Logo, há tendência do aumento da procura por imóveis com finalidade residencial, de modo a propiciar valorização no preço dos imóveis e/ou aluguel. Salienta-se que a importância deste impacto é maior no âmbito das obras de ampliação, dado que é estimado para o pico da obra até 10.500 colaboradores.

Assim, são propostas como medidas preventivas/mitigatórias a priorização da contratação de mão de obra local, como também a oferta de alojamentos na região, tal como foi realizado no âmbito das obras de implantação da Unidade Puma entre 2013 e 2016 (figura 103 e figura 104). Salienta-se que os alojamentos ofertarão ao menos 3.500 vagas. Ao mesmo tempo, ao se realizar a priorização da mão de obra, evita-se a geração de demanda por moradia. Ademais, poderão ser utilizados estabelecimentos de hospedagem, especialmente para curta permanência.

Figura 104 - Alojamento Capital do Papel em Telêmaco Borba.

AIA 16- Valorização imobiliária.

		Ativid	ades d	e implar	ntação e	opera	ção do			
Aspec	to ambiental	empre	eendim	ento. G	eração c	le emp	regos	e		
		atrati	vidade	de popu	ılação.					
Impac	to ambiental	Valorização imobiliária								
Ocorré	ència	F	₹	Tempo	oralidad		A/F	(CP)		
Nature	eza	NEG Origem						IN	ID	
Local (de atuação do to	Fase	Freq	Imp ou sev	Cont ou rev	Abran	Dur	IS	SIG	
AII		I 2 3 1 2 2 24						PS		
AII		0	0 2 2 1 2 3 24 PS							
	Preventivas	e AII)	;	contrata jamento		mão de	e obra	local (d	la AID	
Medidas	Mitigadoras	e AII)	;	contrata jamento		mão de	e obra	local (d	la AID	
	Compensatórias	-								
	Potencializadoras	-								
Res	sponsabilidades	Empreendedor e empreiteira responsável pelas obras.								

5.2.17. Geração de empregos

A fase de planejamento, elaboração de projetos, estudos de viabilidade, licenciamento ambiental, entre outras atividades de preparação e prévias à obra proporcionam a geração de empregos. Apesar de demandar um contingente de trabalhadores mais reduzido (comparativamente às fases de obras e operação) e de se configurarem como serviços com menor temporalidade (temporários), possuem uma abrangência estratégica, dado que demandam serviços específicos, geralmente situados nos grandes centros do Paraná ou mesmo nacionais.

No tocante à implantação, a partir de estimativa, as obras de ampliação da Unidade Puma empregarão no pico da obra diretamente 10.500 trabalhadores, entretanto, também serão gerados empregos indiretos seja a partir de fornecedores e prestadores de serviços, caminhoneiros, entre outros. Outro aspecto é o efeito-renda, correspondente a geração de emprego e renda:

a partir da transformação da renda dos trabalhadores e empresários em consumo. Parte da receita das empresas auferida em decorrência da venda de seus produtos se transforma, através do pagamento de salários ou do recebimento de dividendos, em renda dos trabalhadores e dos empresários. Ambos gastam parcela de sua renda adquirindo bens e serviços diversos, segundo seu perfil de consumo, estimulando a produção de um conjunto de setores e realimentando o processo de geração de emprego (NAJBERG; PEREIRA, 2004, p. 25).

Assim, com base em Najberg e Pereira (2004), a cada emprego gerado nas atividades de construção civil são gerados na cadeia produtiva, respectivamente, 0,47 empregos indiretos e 1,54 empregos decorrentes do efeito renda (transformação da renda dos trabalhadores e empresários em consumo) 1,54. Assim, estima-se que no pico da obra sejam gerados 31.605 empregos, sendo 10.500 diretos, 4.935 indiretos e 16.170 por efeito renda. Portanto, verifica-se que na fase de obras é um impacto de grande importância, entretanto, em função de ser temporário e a abrangência ser mais local/regional (AII), acaba por se configurar como significativo.

Com relação à operação, atualmente são gerados 1400 empregos e com a ampliação a estimava é que sejam gerados mais 200 empregos diretos. Assim, dada a natureza de duração permanente, configura-se como um impacto muito significativo na operação.

Portanto, como medidas de potencialização se propõem a priorização de contratação e capacitação de mão de obra local, de modo a beneficiar a população local e evitar fluxos migratórios. Entretanto, considerando a

dimensão do contingente de mão de obra na fase de obras e que se configura como temporária, são propostas ações de desmobilização deste contingente, tais como:

- Estimular o retorno dos trabalhadores migrantes aos seus locais de origem;
- Divulgar o cronograma de obras, informando a comunidade sobre o início e término das obras;
- Fornecer orientação de apoio aos trabalhadores dispensados.

AIA 17- Geração de empregos.

Acnos	Aspecto ambiental	Ativid	lades d	le planej	amento	, impla	ntação	e oper	ação		
Aspec	to ambientai	do en	npreen	dimento							
Impac	cto ambiental	Geração de empregos									
Ocorré	- - 	R Temporalidade					A/F (CP, M				
			`	Temp	or amaa.		e LP)				
Natur	eza	POS Origem				DIR	/IND				
Local o	de atuação do to	Freq Imp ou sev Cont ou rev In Dur IS							SIG		
AII		P 1 2 2 3 1 12						PS			
AII		I	3	3	2	2	2	72	S		
AII		0	O 3 3 2 2 3 108 M								
	Preventivas			•							
	Mitigadoras										
y v	Compensatórias										
Medidas		- Prio	rizar a	contrata	ação de	mão d	e obra	local (c	da AID		
۸ed		e AII));								
_	Potencializadoras	- Capacitar a mão de obra local;									
		- Pror	nover	Ações de	e desmo	bilizaç	ão da	mão de	obra		
		temp	orária.								
Re	sponsabilidades	Empreendedor e empreiteira responsável pelas obras.									

5.2.18. Aumento na geração de tributos

Em decorrência da prestação de serviços na fase de planejamento, mobilização de mão de obra local na implantação e operação do empreendimento; da demanda por bens e serviços diversos, como o fornecimento de combustível e demais materiais de consumo, terceirização de algumas atividades e outros; bem como dinamização da economia local/regional, haverá incremento da arrecadação de tributos diretos, indiretos e por efeito renda.

Trata-se de um dos impactos positivos do empreendimento, extensivo ao período de operação do empreendimento e que deve alcançar outras esferas para além da municipal, considerando os encargos de esfera estadual e nacional.

Embora o incremento econômico ocorra de forma difusa e, portanto, difícil de ser mensurada de forma precisa, sua ocorrência é certa, tal como é possível verificar a partir do levantamento das receitas municipais de Ortigueira e contribuição de ICMS por origem do contribuinte entre 2013 e 2016, período de implantação da Unidade Puma, conforme demonstram os gráficos da figura 105.

Salienta-se que é um impacto muito significativo nas obras e operação dado que proporciona à municipalidade a geração de receita, a qual reflete na capacidade do município em realizar investimentos, contratar profissionais, prestar serviços, entre outras ações que possibilitam manutenção e melhoria da qualidade de vida local. Deste modo, propõemse como medidas potencializadoras a priorização da contratação de mão de obra local e garantir que terceiros recolham tributos na AID e/ou AII.

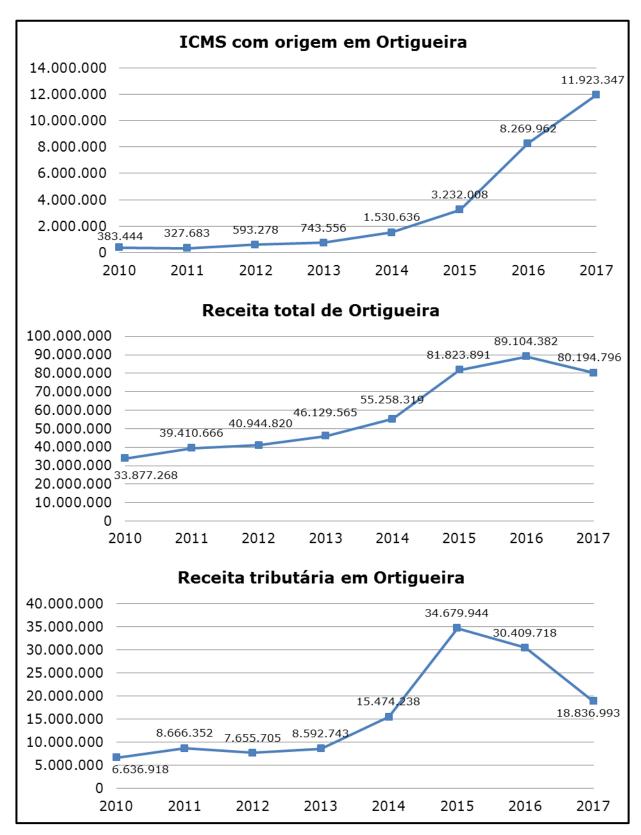


Figura 105 - Geração de ICMS e de receitas em Ortigueira entre 2010 e 2017.

AIA 18- Geração de tributos.

Aspec	Aspecto ambiental		lades c	le planej	iamento	, impla	ntação	o e oper	ação	
Aspec	to ambientar	do en	npreen	dimento						
Impac	to ambiental	Gerag	ão de	tributos						
Ocorré	ância		₹	Tomp	oralida	do		A/F (0	CP, MP	
Ocom	Elicia	'	`	remp	oi aiiua		e LP)			
Natur	eza	POS Origem				DIR	/IND			
Local o	de atuação do to	Fase Imp ou sev Cont ou rev Dur IS							SIG	
AII		P 1 2 1 3 1 12						PS		
AII		I	3	3	2	3	2	108	MS	
AII		0	3	3	2	3	3	162	MS	
	Preventivas				'					
	Mitigadoras									
as	Compensatórias									
Medidas		- Prio	rizar a	contrata	ação de	mão d	e obra	local (c	la AID	
Σ	Potencializadoras	e AII));							
	i otelicializadolas	- Gar	antir q	ue terce	iros rec	olham	tributo	s em		
		Ortig	ueira e	/ou em	Imbaú e	e Telên	naco B	orba.		
Re	sponsabilidades	Empreendedor e empreiteira responsável pelas obras.								

5.2.19. Aumento da produção de celulose

A realização das obras de ampliação da Unidade Puma irão aumentar a capacidade de produção de celulose, de modo a passar das atuais 1,5 milhão de toneladas ano (1,1 milhão de toneladas de fibra curta e 400 mil toneladas de fibra longa). A produção futura após a implantação da fase 1 e fase 2 será de 2.597.000 t/ano, considerando a operação atual de 1.243.000 BHKP e 464.000 BSKP/Fluff, ampliação fase 1 com produção de 450.000 *Kraftliner* e ampliação fase 2 com produção de 440.000 cartões.

Deste modo, ampliando a capacidade de atender o mercado consumidor nacional e mundial com produtos certificados, com matéria prima e processo produtivo ambientalmente e socialmente corretos.

Adicionalmente, a produção de celulose é o fator gerador (aspecto ambiental) da geração de empregos, arrecadação tributária e geração de energia elétrica.

Portanto, configura-se como um impacto muito significativo, sendo proposta a medida potencializadora de priorização da mão de obra local.

Salienta-se que a opção de aumentar a produção de celulose por meio da ampliação de uma estrutura já existe é significativamente menos impactante do que por meio da implantação de nova unidade industrial, dada a inserção em um ambiente já antropizado, utilização de infraestrutura já existente, ausência de necessidade de supressão de espécies nativas, diminuição de processos de preparação de terreno, etc.

	AIA 19 Admente da produção de celulose.									
Aspec	to ambiental	Ativid	lades d	le opera	ção do e	mpree	ndime	nto.		
Impa	cto ambiental	Aume	nto da	produçã	ăo de ce	lulose				
Ocorr	ância	Ī.,	₹	Tomp	orolida.	4.5		F (CP,	MP e	
Ocom	elicia	'		rempe	oralidad	ie.		LI	P)	
Natur	eza	POS Origem DIR							IR	
Local	de atuação do cto	Fase	Freq	Imp ou sev	Cont ou rev	Abran	Dur	IS	SIG	
AII		0	3	3	2	3	3	162	MS	
	Preventivas									
as	Mitigadoras									
Medidas	Compensatórias									
Me	Potencializadoras	- Priorizar a contratação de mão de obra local (da AID								
	rotelicializadoras	e AII)).							
Re	sponsabilidades	Empreendedor e empreiteira responsável pelas obras.								

AIA 19- Aumento da produção de celulose.

5.2.20. Aumento da geração de energia elétrica

Diante do progressivo crescimento de demanda e, respectiva, busca por aumento da oferta de energia elétrica, a contribuição através de novos empreendimentos é relevante para a expansão da geração e adequada operação do Sistema Integrado Nacional (SIN).

A operação da Unidade Puma proporciona a geração de 270 MW de energia a partir de biomassa, de modo a ser autossuficiente (120 MW são destinados à fábrica) e disponibilizar o excedente (150 MW) para o Sistema Elétrico Brasileiro, o suficiente para abastecer uma cidade de 500 mil habitantes. Adicionalmente, a Unidade Puma também possui painéis fotovoltaicos sobre a cobertura de estacionamentos.

Com o projeto de ampliação da Unidade Puma haverá a implantação de uma nova caldeira de biomassa e um novo turbogerador, com isso a

capacidade de geração irá aumentar em cerca de 90 MW. Portanto, de modo a contribuir positivamente na matriz energética da região de forma ainda mais significativa do que contemporaneamente.

Como medida potencializadora há realização de difusão de informação com orientações para economia de energia e evitar desperdícios.

AIA 20- Aumento da geração de energia elétrica.

Aspec	to ambiental	Ativid	lades d	le opera	ção do e	mpree	ndime	nto.	
Impac	to ambiental	Aume	ento da	geração	de ene	rgia el	étrica		
Ocorré	ència	R Temporalidade						F (CP,	, MP e P)
Nature	eza	POS Origem				D:	IR		
Local o	de atuação do to	Freq Imp ou sev Cont ou rev Dur IS						IS	SIG
AII		0	3	3	1	3	3	81	S
	Preventivas			'					
as	Mitigadoras								
Medidas	Compensatórias								
Me	Potencializadoras	- Priorizar a contratação de mão de obra local (da AID e AII).							la AID
Res	sponsabilidades	ilidades Empreendedor e empreiteira responsável pelas obras						obras.	

5.2.21. Risco de acidentes

A circulação de veículos e maquinários essenciais para implantação do empreendimento poderá causar acidentes envolvendo a população transeunte no entorno próximo, ou com os próprios trabalhadores da obra e operação da Unidade Puma.

Outro aspecto que merece a devida atenção é quanto à segurança dos funcionários dentro do canteiro de obras da instalação do

empreendimento. Estes estão frequentemente sujeitos a acidentes em função das próprias atividades executadas, bem como da circulação de maquinários e utilização de equipamentos como: andaimes, bate-estacas, serras, carregadeiras, entre outros, assim, há a possibilidade de ocorrência de acidentes e traumas físicos.

Desta maneira, as medidas preventivas e mitigadoras propostas são o treinamento e integração dos operários sobre normas adequadas de conduta e segurança, conscientização das atividades a serem executadas no canteiro de obras, orientação da correta utilização dos Equipamentos de Proteção Individuais (EPI), elaboração e execução de plano de ação de emergência (PAE) para a fase de obras e atualização do plano existente para operação, o qual determinará as ações do empreendedor e autoridades especializadas, nos casos de sinistros no empreendimento (vazamentos, explosões, incêndios e etc) e execução de Plano Ambiental da Construção (PAC) de acompanhamento ambiental da etapa de construção.

Considerando o aspecto de geração de energia elétrica devem ser consideradas as determinações da NR-10 (Instalações e Serviços em Eletricidade) para colaboradores internos e prestadores de serviço que atuam diretamente nestas instalações, além das determinações do corpo de bombeiros. Para a fase de operação após a ampliação, deverá ser dada continuidade ao conjunto de procedimentos já em andamento na Unidade Puma.

AIA 21 - Risco de acidentes com trabalhadores e transeuntes.

Aspect	to ambiental				ão e operação do)							
T			eendim			.							
Impac	to ambiental	RISCO	de acio	dentes com	trabalhadores e t								
Ocorrê	encia	ı	Р	Temporali	idade		F AD (LD)						
							1P/LP)						
Nature		NI	EG 	Origem		DIR	/IND						
impact	de atuação do to	Fase	Prol	babilidade	Severidade	SI	SIG						
ADA e	entorno	I 2 4 8 PS											
ADA e	entorno	O 1 4 4 F											
Medidas	Preventivas	normaconsolono ca - Sina - Oried Pro- Elab emerging casos explo - Execute de ac	as adecientiza nteiro calização entação oteção ooração gência eended a de sin sões, ii cução o	quadas de co ção das ativ de obras; o adequada o da correta Individuais o e execução (PAE), o qua lor e autorid istros no em ncêndios e e de Plano Am	de plano de açã al determinará as ades especializad apreendimento (v	a; uipame o de s ações das, nos vazame	das entos do s ntos,						
	Mitigadoras	-											
	Compensatórias												
	Potencializadoras												
Res	sponsabilidades	Empreendedor e empreiteiras responsáveis pela obra.											

5.3. Matriz de impactos

A matriz de impactos é apresentada na sequência, separada por fases e classificação da ocorrência dos impactos identificados.

Tabela 67 – Matriz de impactos ambientais reais para a fase de planejamento.

AIA	Local, fator ambiental, grupo ou ator social de ação do impacto	Aspecto	Impacto	Fase	Ocorrência	Natureza	Temporalidade	Origem	Freq. / Prob.	Import. / Sev.	Contin. / Revers.	Abrangência	Duração	Índice de significância	Significância
18	AII	Atividades de implantação e operação do empreendimento	Geração de tributos	Р	R	P	Α	D	1	2	1	3	1	6	Pouco significativo
17	AII	Atividades de implantação e operação do empreendimento	Geração de empregos	Р	R	N	Α	D	1	2	2	3	1	12	Pouco significativo
13	AII	Atividades de planejamento e implantação do empreendimento	Geração de expectativas	р	R	N	Α	I	2	1	1	2	1	4	Pouco significativo

Tabela 68 - Matriz de impactos ambientais potenciais para a fase de implantação.

AIA	Local, fator ambiental, grupo ou ator social de ação do impacto	Aspecto	Impacto	Fase	Ocorrência	Natureza	Temporalidade	Origem	Freq. / Prob.	Import. / Sev.	Contin. / Revers.	Abrangência	Duração	Índice de significância	Significância
21	ADA e AID	Atividades de implantação e operação do empreendimento	Risco de acidentes com trabalhadores e transeuntes	I	Р	N	F	D	2	4				8	Significativo
5	ADA e AID	Derramamento ou vazamento de substâncias potencialmente poluidoras, geração de resíduos sólidos e efluentes	Possibilidade de contaminação do solo, águas superficiais e/ou subterrâneas	I	Р	N	F	D	2	2				4	Pouco significativo
11	ADA e AID	Supressão florestal de monocultura	Risco de acidentes à fauna	I	Р	N	F	D	2	2				4	Pouco significativo

Tabela 69 - Matriz de impactos ambientais reais para a fase de implantação.

AIA	Local, fator ambiental, grupo ou ator social de ação do impacto	Aspecto	Impacto	Fase	Ocorrência	Natureza	Temporalidade	Origem	Freq. / Prob.	Import. / Sev.	Contin. / Revers.	Abrangência	Duração	Índice de significância	Significância
18	AII	Atividades de implantação e operação do empreendimento	Geração de tributos	I	R	P	Α	D	3	3	2	3	2	108	Muito significativo
17	AII	Atividades de implantação e operação do empreendimento	Geração de empregos	I	R	р	Α	D	3	3	2	2	2	72	Significativo
14	AII	Atividades de implantação e operação do empreendimento. Geração de empregos. Atratividade de população	Interferência sobre infraestrutura/serviços existentes (Risco socioambiental)	I	R	N	Α	I	2	3	2	2	2	48	Significativo
13	AII	Atividades de planejamento e implantação do empreendimento	Geração de expectativas	I	R	N	Α	I	3	2	1	2	2	24	Pouco significativo
16	AII	Atividades de implantação e operação do empreendimento. Geração de empregos. Atratividade de população	Valorização imobiliária	I	R	N	А	I	2	3	1	2	2	24	Pouco significativo
10	ADA e AID	Supressão florestal de monocultura	Perda de habitar	I	R	N	F	D	1	2	3	1	3	18	Pouco significativo
15	AII	Atividades de implantação e operação do empreendimento	Acréscimo na geração de tráfego	I	R	N	Α	D	2	2	1	2	2	16	Pouco significativo
9	ADA	Implantação do empreendimento	Remoção da cobertura vegetal	I	R	N	F	D	1	1	3	1	3	9	Pouco significativo

AIA	Local, fator ambiental, grupo ou ator social de ação do impacto	Aspecto	Impacto	Fase	Ocorrência	Natureza	Temporalidade	Origem	Freq. / Prob.	Import. / Sev.	Contin. / Revers.	Abrangência	Duração	Índice de significância	Significância
7	ADA e AID	Aporte de poluentes e sedimentos na implantação e operação do empreendimento	Alteração na qualidade das águas superficiais	I	R	N	F	D	2	1	1	2	2	8	Pouco significativo
6	ADA e AID	Alteração do regime de escoamento de águas superficiais	Alteração na dinâmica hídrica superficial	I	R	N	F	D	1	2	1	1	2	4	Pouco significativo
8	ADA e AID	Captação de água e geração de efluentes	Conflitos nos usos múltiplos da água	I	R	N	F	D	2	1	2	1	1	4	Pouco significativo
1	AID	Emissão de poeira e liberação de gases de combustão nas fases de implantação e operação e emissão atmosférica de poluentes na fase de operação.	Alteração da qualidade do ar e desconforto à população do entorno	I	R	N	F	D	3	1	1	1	1	3	Pouco significativo
4	ADA	Movimentação do solo, aterramento e escavações	Aceleração de processos erosivos e assoreamento	I	R	N	F	D	2	1	1	1	1	2	Pouco significativo
3	AID	Geração de ruídos na implantação e operação do empreendimento.	Alteração do ambiente sonoro no entorno.	I	R	N	F	D	1	1	1	1	1	1	Pouco significativo

Tabela 70 – Matriz de impactos ambientais potenciais para a fase de operação.

AIA	Local, fator ambiental, grupo ou ator social de ação do impacto	Aspecto	Impacto	Fase	Ocorrência	Natureza	Temporalidade	Origem	Freq. / Prob.	Import. / Sev.	Contin. / Revers.	Abrangência	Duração	Índice de significância	Significância
11	ADA e AID	Supressão florestal de monocultura	Risco de acidentes à fauna	0	Р	N	F	D	4	2				8	Significativo
5	ADA	Derramamento ou vazamento de substâncias potencialmente poluidoras, geração de resíduos sólidos e efluentes	Possibilidade de contaminação do solo, águas superficiais e/ou subterrâneas	0	Р	N	F	D	2	2				4	Pouco significativo
21	ADA e AID	Atividades de implantação e operação do empreendimento	Risco de acidentes com trabalhadores e transeuntes	0	Р	N	F	D	1	4				4	Pouco significativo

Tabela 71 – Matriz de impactos ambientais reais para a fase de operação.

AIA	Local, fator ambiental, grupo ou ator social de ação do impacto	Aspecto	Impacto	Fase	Ocorrência	Natureza	Temporalidade	Origem	Freq. / Prob.	Import. / Sev.	Contin. / Revers.	Abrangência	Duração	de significância	Significância
)		Te		F	In	Con	٧		Índice	
19	AII	Atividades de operação do empreendimento	Aumento da produção de celulosa	0	R	P	F	D	3	3	2	3	3	162	Muito significativo
17	AII	Atividades de implantação e operação do empreendimento	Geração de empregos	0	R	р	Α	D	3	3	2	2	3	108	Muito significativo
20	AII	Atividades de operação do empreendimento	Aumento da geração de energia elétrica	0	R	Р	F	D	3	3	1	3	3	81	Significativo
18	AII	Atividades de implantação e operação do empreendimento	Geração de tributos	0	R	P	Α	D	3	3	2	3		0	Pouco significativo
2	ADA, AID e AII	Emissão de GEE relacionados à operação da unidade	Intensificação do efeito estufa ocasionado pela mudança na concentração dos GEE na atmosfera	0	R	N	F	D	3	1	3	2	3	54	Significativo
14	AII	Atividades de implantação e operação do empreendimento. Geração de empregos. Atratividade de população	Interferência sobre infraestrutura/serviços existentes (Risco socioambiental)	0	R	N	А	I	2	2	2	2	3	48	Significativo
7	ADA e AID	Aporte de poluentes e sedimentos na implantação e operação do empreendimento	Alteração na qualidade das águas superficiais	0	R	N	F	D	3	1	2	2	3	36	Significativo
8	ADA e AID	Captação de água e geração de efluntes	Conflitos nos usos múltiplos da água	0	R	N	F	D	3	1	3	1	3	27	Significativo

AIA	Local, fator ambiental, grupo ou ator social de ação do impacto	Aspecto	Impacto	Fase	Ocorrência	Natureza	Temporalidade	Origem	Freq. / Prob.	Import. / Sev.	Contin. / Revers.	Abrangência	Duração	Índice de significância	Significância
15	AII	Atividades de implantação e operação do empreendimento	Acréscimo na geração de tráfego	0	R	N	А	D	2	2	1	2	3	24	Pouco significativo
16	AII	Atividades de implantação e operação do empreendimento. Geração de empregos. Atratividade de população	Valorização imobiliária	0	R	N	А	I	2	2	1	2	3	24	Pouco significativo
1	AID	Emissão de poeira e liberação de gases de combustão nas fases de implantação e operação e emissão atmosférica de poluentes na fase de operação.	Alteração da qualidade do ar e desconforto à população do entorno	0	R	N	F	D	3	1	1	2	3	18	Pouco significativo
3	AID	Geração de ruídos na implantação e operação do empreendimento.	Alteração do ambiente sonoro no entorno.	0	R	N	F	D	3	1	1	1	3	9	Pouco significativo
12	AID	Operação do empreendimento	Alteração no ecossistema aquático	0	R	N	F	D	3	1	1	1	3	9	Pouco significativo
6	ADA e AID	Alteração do regime de escoamento de águas superficiais	Alteração na dinâmica hídrica superficial	0	R	N	F	D	2	1	1	1	3	6	Pouco significativo

6. MEDIDAS MITIGADORAS

As medidas de natureza preventiva, mitigadora e compensatória, para impactos negativos, bem como as de caráter potencializador, para impactos positivos, foram definidas e descritas juntamente com a avaliação de impactos no capítulo anterior, sendo apresentadas nas próprias tabelas de AIA dos impactos que as geram. As tabelas de AIA trazem também a responsabilidade pela implantação destas medidas.

Como forma de facilitar a correlação entre os principais aspectos, impactos e medidas propostas, a seguir é apresentada tabela de compilação, destacando as diferentes etapas temporais de ocorrência de cada evento.

Tabela 72 - Aspectos, impactos e medidas por fase do empreendimento.

P	I	0	Acnosto	Impacto	Medidas	Programa
Ρ	1	U	Aspecto	Impacto	медідаѕ	relacionado
	×	X	Emissão de poeira e liberação de gases de combustão nas fases de implantação e operação e emissão atmosférica de poluentes na fase de operação.	Alteração da qualidade do ar e desconforto à população do entorno	Preventivas: Realizar a seleção de equipamentos levando em consideração a integridade e condições de manutenção. Mitigadoras: Realizar regulagem dos motores de máquinas, equipamentos e veículos, visando à redução na concentração de poluentes nas emissões de combustão. Fiscalização da densidade de fumaça preta nas emissões dos caminhões e maquinários. Realizar aspersão de água, durante as obras, em áreas e vias não pavimentadas, a fim de reduzir a emissão de material particulado. Sempre que possível, manter a vegetação nativa existente no entorno para atuar como cortina verde e auxiliar na minimização dos efeitos das atividades de instalação na qualidade do ar. Realizar manutenções periódicas dos sistemas/equipamentos existentes na fábrica para a manutenção do sua correta operação. Realizar o automonitoramento das emissões atmosféricas de acordo com legislação vigente e aplicável. Utilização das melhores tecnologias disponíveis para o controle das emissões. Monitorar as fontes emissoras na fase de operação.	PAC - Subprograma de gerenciamento de emissões atmosféricas Programa de gerenciamento de emissões atmosféricas Programa de auditoria ambiental
		x	Emissão de GEE relacionadas à operação da fábrica	Intensificação do efeito estufa ocasionado pela mudança na concentração dos GEE na atmosfera	Mitigadoras: - Utilização das melhores tecnologias disponíveis para o controle das emissões.	Programa de gerenciamento de emissões atmosféricas

Р	I	0	Aspecto	Impacto	Medidas	Programa
P	-		Aspecto	Impacto	Medidas	relacionado
					Preventivas:	
					- Restrição de atividades geradoras de ruído no período noturno, sempre que possível.	PAC - Subprograma de gerenciamento de
			Geração de ruídos	Altorno a o do	Mitigadoras:	ruídos
-	X	X	na implantação e operação do empreendimento.	Alteração do ambiente sonoro no entorno.	- Seleção de veículos e equipamentos incluindo o desempenho acústico (emissões sonoras) como critério, assim como o estado de manutenção geral.	Programa de gerenciamento de ruídos e vibrações
					- Realizar e exigir a manutenção preventiva e corretiva de veículos e maquinários.	Programa de auditoria ambiental
					- Realizar o monitoramento trimestral de ruídos no âmbito da operação	
					Preventivas:	
					- Restringir a abertura de vias de acesso, caminhos de serviço e movimentação de solo ao estritamente necessário;	
				^ calcus c≅ a da	- Utilizar barreiras de contenção nas áreas em que haverá movimentação de solo;	DAG subsussus de
-	Х	_	Movimentação do solo, aterramento	Aceleração de processos erosivos e	- Evitar que cortes e aterros fiquem com solo expostos, principalmente, por longos períodos;	PAC – subprograma de monitoramento e controle de processos
			e escavações	assoreamento	- Emprego de boas práticas de engenharia.	erosivos
					Mitigadoras:	
					- Recuperar áreas alteradas/degradadas durante a obra que não serão mais utilizadas ao longo da operação do empreendimento;	
					- Monitoramento e controle de processos erosivos	

Р	I	0	Aspecto	Impacto	Medidas	Programa
P	_		Aspecto	Impacto	Medidas	relacionado
					Preventivas:	
					- Manutenção periódica e adequada de máquinas e veículos utilizados nas obras e na operação e sinalização adequada e controle de velocidade nas vias de acesso da obra e áreas internas de deslocamento;	
					- Armazenamento de produtos com potencial poluidor em áreas impermeabilizadas, com cobertura ou sistema de drenagem adequado, e contenção para vazamentos;	PAC – Subprograma de gerenciamento de resíduos sólidos
					- Sinalização e identificação de produtos e riscos;	PAC – Subprograma de gerenciamento e
			Damana		- Realização de treinamento aos colaboradores para situações de risco e gerenciamento adequado de produtos potencialmente poluidores;	controle de efluentes PAC – Subprograma de
	X	X	Derramamento ou vazamentos de substâncias potencialmente poluidoras,	Possibilidade de contaminação do solo, águas	- Realização de procedimentos de risco como abastecimento de veículos e maquinário apenas com as devidas medidas de segurança (sinalização, impermeabilização de solo, isolamento da área, operadores treinados etc);	desmobilização da obra Programa de gerenciamento de efluentes
			geração de resíduos sólidos e	superficiais e/ou subterrânea	- Continuidade do monitoramento da qualidade da água subterrânea;	Programa de
			efluentes		- Realizar o gerenciamento de resíduos em todas as etapas de forma adequada à legislação, priorizando reuso, reciclagem e empregando destinação como última opção;	gerenciamento de resíduos sólidos - PGRS Programa de
					- Realizar ações e campanhas de educação ambiental associadas ao tema de gerenciamento de resíduos;	monitoramento da qualidade das águas subterrâneas
					- Atualizar o Plano de Gerenciamento de Resíduos Sólidos e da Construção Civil para as etapas de implantação e operação do empreendimento;	Programa de auditoria ambiental
					- Acompanhamento da eficiência da ETE pela análise do efluente bruto e tratado;	
					- Monitoramento periódico das águas superficiais do corpo hídrico afetado, a montante e jusante do local de lançamento.	

P	I	О	Aspecto	Impacto	Medidas	Programa relacionado
					Preventivas:	PAC – Subprograma de gerenciamento de resíduos sólidos
					- Minimizar a exposição e movimentação de solo durante a obra, priorizando atividades de maior movimentação de solo em períodos de menor ocorrência de chuvas;	PAC – Subprograma de gerenciamento e controle de efluentes
_	X	X	Alteração do regime de escoamento de	Alteração na dinâmica hídrica	- Realizar medidas de contenção e controle de processos erosivos. Mitigadoras:	PAC – subprograma de monitoramento e controle de processos erosivos
			águas superficiais	superficial	 Monitorar e manter adequadamente estruturas de microdrenagem; Armazenar e tratar, quando necessário, águas pluviais contaminadas; Realizar ações e campanhas de educação ambiental associadas ao tema de resíduos, evitando que o descarte inadequado obstrua a rede de drenagem. 	PAC – Subprograma de comunicação e educação ambiental aos colaboradores da obra Programa de educação ambiental

P	I	О	Aspecto	Impacto	Medidas	Programa relacionado
						PAC – Subprograma de gerenciamento e controle de efluentes
-	×	x	Aporte de poluentes e sedimentos na implantação e operação do empreendimento	Alteração na qualidade das águas superficiais	Mitigadoras: - Gestão adequada de produtos com potencial poluidor; - Ampliação de sistemas de tratamento de efluentes; - Implantação de rede de drenagem adequada; - Realizar o monitoramento e acompanhamento da qualidade da água do corpo receptor; - Monitoramento dos esgotos e efluentes gerados, tratados e lançados; - Monitoramento e controle de processos erosivos e de assoreamento.	PAC – Subprograma de monitoramento e controle de processos erosivos Progragrama de gerenciamento de resíduos sólidos – PGRS Programa de monitoramento da qualidade das águas superficiais e fitoplâncton Programa de gerenciamento de efluentes Programa de auditoria ambiental

	-		Acres	Tournata	Madidae	Programa
P	Ι	0	Aspecto	Impacto	Medidas	relacionado
-	X	x	Captação de água e geração de efluentes	Conflitos nos usos múltiplos da água	Mitigadoras: - Atender aos limites e recomendações indicados em outorga de captação de água superficial junto ao Instituto das Águas do Paraná; - Priorizar a captação de água em cursos hídricos de maior porte e volume; - Incentivar a conservação e reuso da água; - Implementar medidas de redução e retenção do escoamento superficial direto; - Realizar ações e campanhas de educação ambiental associadas ao tema de recursos hídricos; - Monitorar a qualidade das águas e a disponibilidade hídrica.	PAC – Subprograma de gerenciamento e controle de efluentes Programa de monitoramento da qualidade das águas superficiais e fitoplâncton Programa de gerenciamento de efluentes Programa de auditoria ambiental
-	Х	-	Implantação do empreendimento	Remoção da cobertura vegetal	Preventivas: - Instrução da equipe de supressão para não afetar remanescentes nativos.	PAC – Plano Ambiental da Construção Programa de segurança do trabalhador
-	Х	-	Supressão florestal de monocultura	Perda de habitat	Preventivas: - Realizar o controle da supressão da vegetação evitando a supressão de vegetação nativa ou além da delimitação prevista.	PAC – Plano Ambiental da Construção
-	Х	X	Supressão florestal de monocultura	Risco de acidentes à fauna	Preventivas: - Afugentamento prévio às atividades de supressão, seguindo procedimentos já utilizados pela Klabin para a região; - Orientação para tráfego de veículos em velocidades seguras e compatíveis; - Implantação de redutores de velocidade. Mitigadoras: - Realização do resgate e salvamento dos espécimes não afugentados.	PAC – Plano Ambiental da Construção

Р	I	0	Acresta	Turnanta	Medidas	Programa
	1	0	Aspecto	Impacto	Medidas	relacionado
-	-	x	Operação do empreendimento	Alteração no ecossistema aquático	Preventivas: - Realizar o tratamento dos efluentes antes do lançamento, utilizando tecnologias eficientes e suficientes que atendam às exigências legais vigentes. Mitigadoras: - Dar continuidade ao monitoramento da ictiofauna para acompanhamento da comunidade; - Realizar o acompanhamento dos valores dos parâmetros obtidos no programa de monitoramento de qualidade das águas, buscando correlaciona-los às comunidades de peixes e planctônica.	Programa de acompanhamento e monitoramento da fauna aquática
X	X	-	Atividades de planejamento e implantação do empreendimento	Geração de expectativas	Preventivas: - Continuar a realizar comunicação social quanto à Unidade Puma e esclarecer sobre o processo de ampliação. Mitigadoras: - Continuar a realizar comunicação social quanto à Unidade Puma e esclarecer sobre o processo de ampliação. - Orientação aos terceiros contratados e operários da obra sobre meio ambiente, segurança e relacionamento com a comunidade.	Programa de comunicação social PAC - Subprograma de contratação e capacitação dos trabalhadores PAC - Subprograma de comunicação e educação ambiental aos colaboradores da obra Programa de educação ambiental Programa de segurança do trabalhador Programa de acompanhamento e monitoramento antrópico

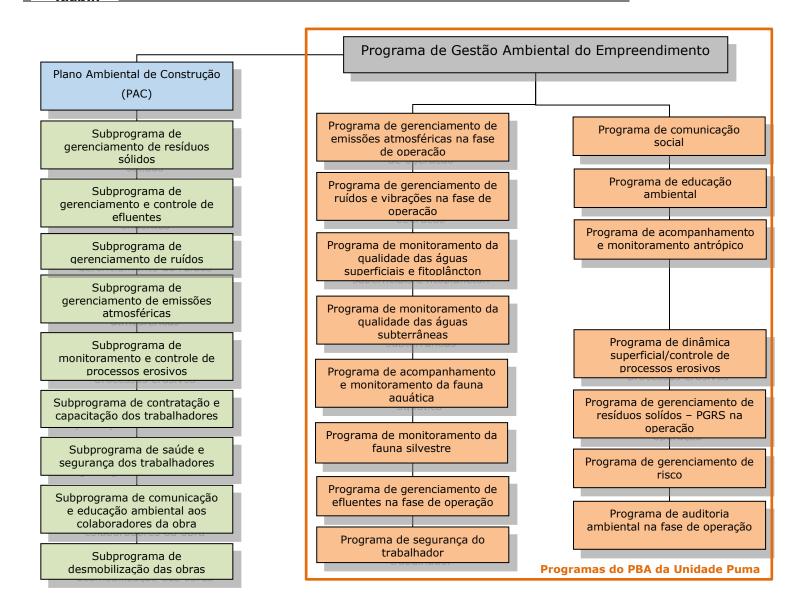
P	I	0	Aspecto	Impacto	Medidas	Programa
-	_		Пороссо		1.54.44.5	relacionado
					Preventivas/mitigadoras:	PAC – Subprograma de contratação e capacitação dos trabalhadores
					- Priorizar a contratação de mão de obra local (da AID e AII);	PAC – Subprograma de
					- Ofertar capacitação da mão de obra;	saúde e segurança dos trabalhadores
					- Ofertar ambulatório na obra;	PAC – Subprograma de
			Atividades de		- Ofertar alojamento aos colaboradores da obra;	comunicação e
			implantação e	Interferências	- Continuar a ofertar na operação ambulatório na Unidade Puma;	educação ambiental aos colaboradores da obra
-	X	X	operação do empreendimento. Geração de emprego.	sobre infraestrutura / serviços existentes (Risco	- Continuar a ofertar benefícios como planos de assistência médica e odontológica, auxílio-medicamentos, auxílio-creche, sistema de transporte, programa de alimentação, programas de capacitação e treinamento aos colaboradores da operação;	PAC – Subprograma de desmobilização das obras
			Atratividade de população	socioambiental)	- Ofertar treinamento de segurança e meio ambiente;	Programa de segurança do trabalhador
					- Ofertar transporte aos trabalhadores das obras;	Programa de educação
					- Contribuir com as municipalidades a partir da geração de impostos diretos e indiretos, além do efeito renda;	ambiental
					,	Programa de comunicação social
					- Promover ações de desmobilização da mão de obra temporária.	
					- Monitorar os aspectos antrópicos.	Programa de acompanhamento e monitoramento antrópico
					Preventivas:	
			Atividades de	Acréscimo na	- Oferta de transporte aos trabalhadores das obras.	Programa de
-	Χ	Х	implantação e operação do	geração de	Mitigadoras:	acompanhamento e monitoramento
			empreeendimento	tráfego	- Oferta de transporte aos trabalhadores das obras;	antrópico
					- Continuidade da oferta aos colaboradores da operação.	

P	Т	0	Aspecto	Impacto	Medidas	Programa
P	-		Aspecto	Impacto	riedidas	relacionado
-	X	X	Atividades de implantação e operação do empreendimento. Geração de emprego. Atratividade de população	Valorização imobiliária	Preventivas: - Priorizar a contratação de mão de obra local (da AID e AII); - Ofertar alojamento. Mitigadoras: - Priorizar a contratação de mão de obra local (da AID e AII); - Ofertar alojamento.	PAC – Subprograma de contratação e capacitação de trabalhadores Programa de acompanhamento e monitoramento antrópico
X	X	X	Atividades de planejamento,	Geração de	Potencializadoras: - Priorizar a contratação de mão de obra local (da AID e AII);	PAC – Subprograma de contratação e capacitação de trabalhadores PAC – Subprograma de comunicação e educação ambiental aos colaboradores da obra PAC – Programa de
X	X	X	implantação e operação do empreendimento	empregos	 Capacitar a mão de obra local; Promover ações de desmobilização da mão de obra temporária. 	PAC – Programa de desmobilização das obras Programa de comunicação social Programa de acompanhamento e monitoramento antrópico

P	I	0	Aspecto	Impacto	Medidas	Programa relacionado
X	X	X	Atividades de planejamento, implantação e operação do empreendimento	Geração de tributos	Potencializadoras: - Priorizar a contratação de mão de obra local (da AID e AII); - Garantir que terceiros recolham tributos em Ortigueira e/ou em Imbaú e Telêmaco Borba.	PAC – Subprograma de contratação e capacitação de trabalhadores Programa de acompanhamento e monitoramento antrópico
-	-	X	Atividades de operação do empreendimento	Aumento da produção de celulose	Potencializadoras: - Priorizar a contratação de mão de obra local (da AID e AII).	PAC – Subprograma de contratação e capacitação de trabalhadores Programa de acompanhamento e monitoramento antrópico
-	-	X	Atividades de operação do empreendimento	Aumento da geração de energia elétrica	Potencializadoras: - Priorizar a contratação de mão de obra local (da AID e AII).	PAC – Subprograma de contratação e capacitação de trabalhadores Programa de acompanhamento e monitoramento antrópico

P	I	0	Aspecto	Impacto	Medidas	Programa relacionado
					Preventivas:	PAC – Subprograma de contratação e capacitação de trabalhadores
					- Treinamento e integração dos operários sobre normas adequadas de conduta e segurança, conscientização das atividades a serem executadas no canteiro de obras;	PAC – Subprograma de saúde e segurança dos trabalhadores
			Atividades de	Risco de	- Sinalização adequada dos locais de obra;	PAC – Subprograma de
_	X	X	implantação e operação do	acidentes com trabalhadores e	- Orientação da correta utilização dos Equipamentos de Proteção Individuais (EPI);	comunicação e educação ambiental aos colaboradores da obra
			empreendimento	transeuntes	- Elaboração e execução de plano de ação de emergência (PAE), o qual determinará as ações do empreendedor e autoridades especializadas, nos casos de sinistros no empreendimento (vazamentos, explosões, incêndios e etc);	Programa de segurança do trabalhador
					- Execução de Plano Ambiental da Construção (PAC) de	Programa de educação ambiental
					acompanhamento ambiental da etapa de construção.	Programa de gerenciamento de risco

Fases: P – planejamento; I – implantação; O – operação.


6.1. Programas ambientais

As ações de monitoramento e acompanhamento, propostas para o empreendimento, compreendem ou se inserem no escopo de programas específicos, os quais são listados no organograma a seguir e descritos individualmente na sequência. Estes programas serão detalhados, em nível executivo, na etapa de licenciamento ambiental de instalação da ampliação.

Cabe ressaltar que grande parte dos programas indicados, a exceção daqueles diretamente vinculados à etapa de obras (PAC – Plano Ambiental de Construção), referem-se a programas já executados na Unidade Puma e que passarão a incluir em seus escopos a ampliação prevista. Neste sentido, estes programas já foram detalhados quando da elaboração do PBA (Programa Básico Ambiental) da Unidade Puma no seu licenciamento de instalação, bem como aprovados pelo órgão licenciador.

Dessa forma no presente estudo são descritos os programas relacionados especificamente à fase de obras, e citados aqueles vinculados à operação pertinentes ao contexto da ampliação, os quais já foram descritos com detalhes no PBA da Unidade Puma, aprovados pelo órgão ambiental licenciador e se encontram em execução pela Klabin.

O organograma a seguir apresenta os programas que devem ser considerados para a ampliação da Unidade Puma, sendo destacada na cor laranja aqueles que se referem a programas em execução no âmbito da Licença de Operação atual da unidade.

6.1.1. Programa de gestão ambiental do empreendimento

O programa de gestão ambiental é atualmente executado no âmbito da operação da Unidade Puma. Tem um objetivo abrangente no contexto da implantação e operação do empreendimento, com o intuito de organizar e coordenar os demais programas e medidas, monitorando-os e realizando a integração multidisciplinar de seus resultados e ações. Em função destas características, relaciona-se a todos os impactos ambientais identificados para o empreendimento, positivos e negativos.

As ações do programa de gestão ambiental integram os esforços associados aos demais programas, na busca da garantia do cumprimento da Política de Sustentabilidade do empreendimento em suas diferentes etapas (desde a implantação à operação), através de mecanismos de acompanhamento, fiscalização e controle.

Neste sentido, será dada continuidade às ações de melhoria contínua, fiscalização e controle conduzidos pelo programa, devendo ser incorporados ao seu escopo os programas e subprogramas adicionais descritos na sequência, desenvolvidos como ferramentas para a estruturação de ações e responsabilidades para que as medidas propostas neste RAP sejam implantadas de forma efetiva, atingindo os resultados propostos em todas as etapas do empreendimento.

As atividades fundamentarão relatórios semestrais, e a responsabilidade pela continuidade de sua implementação e manutenção é do empreendedor.

6.1.2. Plano Ambiental de Construção - PAC

O Plano Ambiental de Construção – PAC indica critérios técnicos ambientais para a execução das atividades de ampliação da Unidade Puma, orientados para o controle dos impactos ambientais identificados neste Relatório Ambiental Prévio (RAP). Estes critérios e procedimentos serão empregados durante a fase de implantação da ampliação de forma a garantir que esta ocorra em consonância com as medidas apresentadas neste RAP, levando-se em consideração as boas práticas ambientais e de engenharia, a legislação ambiental e os critérios de licenciamento.

A sua implementação compreende a presença permanente de uma equipe de profissionais multidisciplinar para avaliar de forma adequada e continuada os efeitos das atividades de construção, além de promover um canal de comunicação entre os colaboradores, empreendedor, empreiteiras, comunidade e os especialistas e gestores dos programas ambientais.

O PAC é dividido em subprogramas específicos, permitindo a ordenação de ações para a prevenção e mitigação de impactos, quais sejam:

- Subprograma de gerenciamento de resíduos sólidos;
- Subprograma de gerenciamento e controle de efluentes;
- Subprograma de gerenciamento de ruídos;
- Subprograma de gerenciamento de emissões atmosféricas;
- Subprograma de monitoramento e controle de processos erosivos;
- Subprograma de contratação e capacitação dos trabalhadores;
- Subprograma de saúde e segurança dos trabalhadores;
- Subprograma de comunicação e educação ambiental aos colaboradores da obra;
- Subprograma de desmobilização da obra.

O PAC, como programa "guarda-chuva", estabelece a estrutura de supervisão e coordenação de seus subprogramas, com a devida integração de informações. Também considerará os procedimentos de gestão ambiental do empreendedor, assim como procedimentos e diretrizes adotados pelas empresas construtoras e empresas subcontratadas, visando sempre a obtenção de desempenho ambiental superior. Neste contexto, o PAC será sistematizado através das seguintes ações:

- Análise dos estudos ambientais e de engenharia;
- Identificação de especificações, instruções de serviço, regulamentos, leis, resoluções e normas técnicas relacionadas ao meio ambiente, aplicáveis ao objetivo de prevenir, mitigar e controlar os impactos ambientais decorrentes da implantação da ampliação;
- Estabelecimento de procedimentos e instrumentos para controle e gerenciamento ambiental da construção do empreendimento com intuito de orientar os colaboradores da empreiteira e as ações de monitoramento da equipe do PAC;
- Capacitação dos colaboradores com as diretrizes do PAC;
- Supervisão das ações de controle ambiental (preconizadas nos subprogramas e especificações técnicas) orientando as atividades preventivas e corretivas;
- Estabelecimento de um banco de dados e registro das ocorrências identificadas em campo na forma de inventário, para acompanhamento estatístico das mesmas;
- Avaliação e revisão periódica de toda a documentação técnica ambiental referente à implantação do empreendimento, garantindo a atualização e pertinência.

A sua implantação deverá ocorrer desde a fase de planejamento e perdurar até o final das obras, sendo a responsabilidade de implementação do empreendedor e empreiteiras envolvidas.

Além dos temas específicos dos subprogramas (resíduos sólidos, efluentes, ruídos, emissões atmosféricas, processos erosivos, contratação e capacitação, saúde e segurança, comunicação e educação ambiental e desmobilização), o PAC deverá acompanhar e monitorar todas as medidas concernentes à fase de obras, ou seja, todas as medidas associadas aos impactos ambientais identificados para esta etapa, incluindo aquelas relacionadas à flora e fauna.

6.1.2.1. Subprograma de gerenciamento de resíduos sólidos

Tem por objetivo minimizar os impactos no meio ambiente decorrentes da geração de resíduos sólidos diversos na etapa de implantação do empreendimento, consistindo em um conjunto de recomendações e procedimentos que visam à redução da geração, o correto manejo, transporte, tratamento e disposição final dos resíduos sólidos gerados durante a obra. Estas ações de manejo de resíduos devem ser embasadas na Resolução CONAMA nº 307/2002 e normas da ABNT.

Compreende o acompanhamento do planejamento das estruturas necessárias, ações de capacitação e conscientização dos colaboradores envolvidos no gerenciamento, identificação, seleção e controle de empresas licenciadas para o transporte e destinação, acompanhamento dos documentos envolvidos neste processo, e controle de todas as etapas de gerenciamento.

A supervisão continuada dar-se-á pela presença constante de técnico(s) na frente de obra, acompanhando o cotidiano das atividades e orientando os colaboradores, quando necessário, respeitando-se a estrutura organizacional da empreiteira. Durante a execução das obras será realizado o monitoramento quali-quantitativo do gerenciamento dos

resíduos e produtos perigosos, com avaliação da eficiência do gerenciamento e acompanhamento da gestão de prestadores de serviço na área de coleta, transporte e destinação.

As ações de planejamento terão início no período pré-obra e durante a fase de obras será realizado o efetivo acompanhamento e controle, cessando após o término das atividades de implantação. Relatórios semestrais serão submetidos ao órgão de controle ambiental. As atividades serão realizadas sob responsabilidade do empreendedor e empreiteira responsável pela obra.

6.1.2.2. Subprograma de gerenciamento e controle de efluentes

O subprograma de gerenciamento e controle de efluentes está relacionado às possíveis alterações da qualidade da água superficial e condições naturais do solo durante as obras de implantação do empreendimento. Tem como objetivo minimizar e prevenir a poluição hídrica durante as obras de ampliação, especialmente em função da geração de esgoto sanitário e efluentes no canteiro e frentes de obras.

As ações envolvem a orientação no planejamento das estruturas sanitárias e sistemas de tratamento de esgotos e efluentes para o canteiro e frentes de obras, já na fase pré-obras. Durante a fase de obras especialista na área coordenará inspeções periódicas para verificação da destinação do material. Conforme descrito no diagnóstico, estima-se que sejam gerados 70 m³/h de efluentes sanitários durante o período de obras, os quais poderão ser tratados em conjunto ao efluente industrial na ETE existente. Caso seja necessário, estará à disposição uma ETE compacta, com capacidade para tratamento de 100 m³/h, utilizada na época da implantação das estruturas atuais da Unidade Puma.

Serão realizadas análises de parâmetros físico-químicos e biológicos dos efluentes para avaliação da eficiência do sistema de tratamento e comparação com padrões de qualidade legais ou de desempenho.

Este subprograma será estruturado antes do início das obras, e perdurará enquanto a obra de implantação do empreendimento não for concluída, prevendo a apresentação de relatórios semestrais. A condução do programa é de responsabilidade do empreendedor e empreiteiras responsáveis pela obra.

6.1.2.3. Subrograma de gerenciamento de ruídos

O subprograma de gerenciamento de ruídos, previsto para execução na fase de instalação da ampliação, tem como objetivo principal avaliar o conforto acústico da comunidade do entorno da unidade e o atendimento aos requisitos legais associados aos níveis de ruídos relacionados com as atividades previstas durante a referida etapa.

De uma forma geral, a metodologia para avaliação ambiental de níveis de ruídos baseia-se na identificação dos equipamentos geradores de ruído, identificação dos vizinhos mais próximos (possíveis receptores), levantamento primário de dados (medição de níveis de ruído) no entorno do empreendimento e interpretação associada às condições em cada medição, com base na legislação aplicável.

A operação atual da Unidade Puma executa o programa de gerenciamento de ruídos no âmbito da operação da fábrica com os mesmos objetivos deste subprograma, ou seja, avaliar o conforto acústico e o atendimento dos NPS aos requisitos legais e aplicáveis. Sua execução compreende medições de ruídos, nos períodos diurno e noturno, em sete pontos distribuídos no entorno do empreendimento, com amostragens de pelo

menos 5 minutos em cada ponto. Além da observação quanto às fontes sonoras atuantes durante as medições, os resultados são avaliados frente aos requisitos da NBR 10.151:2000, a qual recorre a Resolução CONAMA nº 001/1990.

Diante disso, ainda sob responsabilidade do empreendedor, a execução deste subprograma de gerenciamento de ruídos durante a ampliação será executado juntamente com o programa da operação atual, contando com o histórico de monitoramento da fábrica como subsídio para avaliação de alteração do ambiente sonoro associado às atividades de ampliação.

6.1.2.4. Subprograma de gerenciamento de emissões atmosféricas

O subprograma de gerenciamento de emissões atmosféricas, previsto para execução na fase de instalação/ampliação, tem como objetivo principal minimizar eventual incômodo a receptores nas proximidades das atividades de ampliação decorrentes da emissão de poluentes atmosféricos.

As áreas de execução das atividades do subprograma corresponderão ao entorno imediato dos locais onde estejam previstas atividades de movimentação de terra, nos canteiros e nas frentes de obras, bem como nas vias de circulação de veículos e máquinas envolvidos na instalação/ampliação.

As ações gerais previstas compreendem inspeções visuais da condição da qualidade do ar visando obter um panorama das emissões fugitivas, acompanhamento de procedimentos de manutenção de máquinas e equipamentos utilizados nas atividades construtivas, sobretudo dos movidos a diesel, e o monitoramento eventual da emissão de fumaça

preta de motores a diesel por meio da Escala Ringelmann, conforme mais bem descrito nos itens a seguir:

a) Inspeções visuais da condição da qualidade do ar

De maneira associada à execução do Plano Ambiental da Construção (PAC), por técnicos de campo dedicados em tempo integral à execução dos programas, deverá ser procedida inspeção visual, com frequência mínima semanal, e registro formal em Relatório de Inspeção Ambiental (RIA) da condição da qualidade do ar, sobretudo com respeito a emissões fugitivas de poeira.

Quando detectados eventos críticos de poluição por emissões fugitivas de poeira, sobretudo nas proximidades de receptores, deverá ser solicitado formalmente à empreiteira responsável pela obra o abatimento através de umectação das áreas fontes.

b) Manutenção de máquinas e equipamentos

Para garantir a minimização de emissões atmosféricas das máquinas e equipamentos movidos a diesel será realizado o acompanhamento de suas condições através da inspeção e manutenção periódica na fase de instalação, de acordo com o cronograma da empreiteira e/ou empreendedor.

c) Monitoramento de emissão de fumaça preta de motores a diesel A autofiscalização quanto à fumaça preta se dará em máquinas e caminhões a Diesel, no canteiro e/ou em frentes de obra, através de teste de livre aceleração e observação visual das emissões com utilização da Escala Ringelmann, sendo os resultados comparados com os requisitos legais pertinentes, como a Portaria IBAMA nº 85/1996. Ressalta-se que a autofiscalização da frota se dará por meio de colaboradores previamente

treinados para tal atividade.

O acompanhamento em campo será minimamente mensal, e as medições de fumaça preta serão realizadas conforme necessidade, definidas em função dos resultados das inspeções.

A responsabilidade pela implantação deste subprograma será do empreendedor juntamente com a empreiteira responsável pela ampliação.

6.1.2.5. Subprograma de monitoramento e controle de processos erosivos

Este subprograma visa mitigar o impacto relativo à aceleração dos processos erosivos e assoreamento que está relacionado à fase de implantação do empreendimento.

O subprograma será executado durante a fase de instalação do empreendimento e ao longo do período pós-obra (desmobilização) e tem como objetivo geral gerenciar ações de monitoramento e controle dos processos erosivos relacionados à obra de ampliação do empreendimento. O programa também prevê a apresentação de medidas de controle especificas para cada local da obra em que forem identificados processos erosivos instalados.

O subprograma será desenvolvido através de vistorias periódicas, que serão executados pela equipe do programa. Esta ferramenta concederá subsídio para que a equipe envolvida defina ações e estratégias a serem implementadas na obra no contexto abordado pelo programa. Os resultados obtidos e ações desenvolvidas pelo programa serão reportados ao órgão ambiental através da apresentação de relatórios semestrais.

O subprograma será iniciado concomitantemente às atividades da obra e será mantido até a finalização da desmobilização, durante o início do período pós-obra. As ações e propostas de recuperação serão desenvolvidas em conjunto com o programa de recuperação de áreas degradadas e as medidas de controle e proteção ambiental previstas no projeto executivo do empreendimento.

O monitoramento será executado em toda a área do empreendimento em que houver movimentação de solo, escavações, aterramento e nivelamento de solo e outros locais relacionados.

O programa será desenvolvido na ADA, áreas de apoio à obra, jazidas, empréstimos, caminhos de serviço e poderá ser estendido para as outras áreas que eventualmente vierem a ser afetadas pelas obras.

A responsabilidade pela implantação do programa é do empreendedor. Contudo, compete à empreiteira responsável pela obra a execução das medidas apresentadas. A equipe do programa prestará todo o apoio técnico necessário.

6.1.2.6. Subprograma de contratação e capacitação dos trabalhadores

Este subprograma é voltado aos colaboradores envolvidos no processo de ampliação da Unidade Puma, englobando a área diretamente afetada pelo empreendimento. Tem por objetivo auxiliar e monitorar o processo de contratação e capacitação de mão de obra, de modo que seja priorizada a contratação de funcionários locais/regionais e que estes questões ambientais, de saúde e de segurança capacitados nas buscando práticas adequadas ocupacional, as no cotidiano colaboradores enquanto exercerem suas funções.

Sua adoção potencializa os impactos positivos promovidos pela geração de emprego local e geração de tributos. Ao mesmo tempo propicia a prevenção e mitigação de impactos negativos decorrentes da inserção de contingente populacional externo, tais como a interferência sobre infraestrutura/serviços existentes (risco socioambiental) e valorização imobiliária..

O subprograma tem como ações previstas o estabelecimento de parcerias com instituições e desenvolvimento de estratégias para contratação e capacitação da mão de obra, durante as etapas de planejamento e implantação da ampliação da unidade.

O empreendedor, em conjunto com a(s) empreiteira(s) responsável(eis) pelas obras, são responsáveis pela implementação desse subprograma, tendo início ainda na fase de planejamento, persistindo ao longo de toda a implantação e cessando com o processo de desmobilização do canteiro de obras.

6.1.2.7. Subprograma de saúde e segurança dos trabalhadores

Esse subprograma relaciona-se com a geração de emprego e renda (fase de implantação e operação); possível aumento da demanda sobre serviços de saúde; risco de acidentes com a população local e trabalhadores da obra.

Tem como foco a redução/minimização dos riscos de acidentes no ambiente de trabalho; a garantia de condições adequadas à preservação da saúde dos trabalhadores; a adoção de procedimentos de trabalho seguro para prevenção de doenças associadas ao ambiente de trabalho; e o monitoramento das condições de saúde dos trabalhadores.

O treinamento de saúde ocupacional e segurança do trabalho será de responsabilidade compartilhada entre o empreendedor e a(s) empreiteira(s) contratada(s), tendo como base as Normas Regulamentadoras (NRs) do Ministério do Trabalho, entre outras, como normas e procedimentos internos de gestão de segurança e saúde ocupacional (OHSAS 18001) e sistema integrado de gestão.

Deve-se assim contemplar o uso de equipamentos de proteção individual (EPI); transporte, movimentação e manuseio de materiais e insumos, produtos perigosos, combustíveis e inflamáveis; operação de máquinas e equipamentos de terraplenagem; trabalho com risco elétrico; entre outros.

Para a implantação deste subprograma, há diversos procedimentos a serem adotados, incluindo uma série de documentos que são exigidos pela legislação, além de outros programas como o de Prevenção de Riscos Ambientais (PPRA), de Condições e Meio Ambiente de Trabalho na Indústria da Construção Civil (PCMAT) e de Controle Médico de Saúde Ocupacional (PCMSO).

As ações ficam sob responsabilidade dos setores de saúde e segurança, tanto do empreendedor como da empreiteira responsável pelas obras, conforme dimensionamento legal do SESMT, e da Comissão Interna de Prevenção de Acidentes (CIPA).

Deverão ser realizadas reuniões periódicas (mensais) na fase de obras, com participação de todas as empreiteiras contratadas, para avaliação de desempenho, discussão de boas medidas aplicadas, falhas identificadas e realização de planejamento continuado. Deve abranger toda a ADA do empreendimento e qualquer área relacionada ao trabalho.

6.1.2.8. Subprograma de comunicação e educação ambiental aos colaboradores da obra

Considerando que a Unidade Puma da Klabin já possui programa de comunicação social e educação ambiental no âmbito da operação, verificase a necessidade de se estender ações destas naturezas aos colaboradores das obras. Desta forma é proposto o presente subprograma de comunicação e educação ambiental aos colaboradores da obra.

Assim, no processo de integração dos colaboradores devem ser realizadas explicações quanto ao empreendimento (o que é, objetivos, justificativas, cronograma, etc.), contexto socioambiental em que está inserido (breve resumo da região, impactos, medidas e programas) e orientações quanto à saúde, segurança e meio ambiente (inclusive no tocante aos aspectos sociais).

Ao longo do período de obras, de forma a retomar e reforçar os aspectos abordados na integração, de forma semanal serão realizados diálogos de segurança e meio ambiente, com duração de 15 a 30 min.

Adicionalmente, de forma mensal serão elaborados informativos impressos direcionados a estes colaboradores das obras, de forma a conter informações sobre o empreendimento e andamento da obra (comunicação social) e também temáticas ambientais (resíduos sólidos, energia, água/recursos hídricos, fauna e flora, etc.) com dicas de conduta (educação ambiental). Inclusive, estes informativos poderão servir de apoio nos diálogos semanais de segurança e meio ambiente.

O subprograma, de responsabilidade do empreendedor e empreiteira(s) responsável(eis), deve ser implementado pouco antes do início da etapa de obras, estendendo-se até o final das obras.

6.1.2.9. Subprograma de desmobilização da obra

O subprograma de desmobilização da obra se relaciona com a alteração na dinâmica hídrica, alteração das condições naturais do solo, aceleração dos processos erosivos, movimentação de massa, instabilidade de encostas, erosão marginal e assoreamento, exploração de jazidas, alteração na qualidade da água superficial, além de fatores sociais como de interferência sobre infraestrutura/serviços existentes (risco socioambiental) e geração de empregos.

Tem como objetivo promover a desativação do canteiro e estruturas construídas e organizadas para a etapa de obras, e a desmobilização da mão de obra de forma adequada, minimizando impactos ao meio ambiente e comunidades locais.

As principais ações relacionadas à desmobilização do canteiro são promover a correta remoção dos resíduos provenientes das obras; promover a desativação, desinfecção, demolição e aterramento das estruturas temporárias relacionadas às obras; realizar a recuperação das áreas que foram degradadas e processos de recuperação associados aos demais programas ambientais. Essas atividades deverão ser executadas pela(s) empreiteira(s), sob supervisão e orientação do empreendedor.

Em relação à desmobilização da mão de obra ao final das obras, as principais ações devem ser no sentido de estimular o retorno dos trabalhadores migrantes aos seus locais de origem; divulgar o cronograma

de obras, informando a comunidade sobre o início e término das obras; fornecer orientação de apoio aos trabalhadores dispensados.

O subprograma, de responsabilidade do empreendedor e empreiteira(s) responsável(eis), deve ser implementado pouco antes do final da etapa de obras, estendendo-se até o pleno atendimento aos objetivos do subprograma.

6.1.3. Programas ambientais em execução

Conforme indicado anteriormente, diversos programas ambientais são executados para a operação atual da Unidade Puma. Com a sua ampliação os programas continuarão a ser executados com a mesma metodologia e englobando as novas atividades da ampliação.

Considerando que haverá a continuidade dos programas e que os mesmos já foram descritos em detalhes no Programa Básico Ambiental da unidade, bem como já foram aprovados pelo órgão ambiental, cabe neste estudo listar os programas que terão continuidade com a ampliação:

- Programa de gestão ambiental do empreendimento;
- Programa de gerenciamento de resíduos solídos PGRS na operação;
- Programa de gerenciamento de efluentes na fase de operação;
- Programa de monitoramento da qualidade do ar;
- Programa de monitoramento da qualidade das águas superficiais e fitoplâncton;
- Programa de monitoramento da qualidade das águas subterrâneas;
- Programa de gerenciamento das emissões atmosféricas;
- Programa de gerenciamento de ruídos e vibrações;
- Programa de acompanhamento e monitoramento da fauna aquática;
- Programa de comunicação social;

- Programa de educação ambiental;
- Programa de acompanhamento e monitoramento antrópico;
- Programa de gerenciamento de risco;
- Programa de auditoria ambiental na fase de operação;
- Programa de segurança do trabalhador.

Também é importante informar que os pontos de monitoramento e periodicidade das avaliações deverão ser mantidos com a ampliação.

Para alguns dos programas listados haverá necessidade de inclusão de ações vinculadas à ampliação ou extensão do período de execução, conforme indicado por programa na sequência.

6.1.3.1. Programa de acompanhamento e monitoramento antrópico

Salienta-se que este programa já em execução no âmbito da operação, visará compreender também o acompanhamento e monitoramento do conjunto de medidas propostas quanto aos aspectos sociais, tais como:

- Priorizar a contratação de mão de obra local (da AID e AII);
- Ofertar capacitação da mão de obra;
- Ofertar ambulatório na obra;
- Ofertar alojamento aos colaboradores da obra (figura 103);
- Continuar a ofertar na operação ambulatório na Unidade Puma;
- Continuar a ofertar benefícios como planos de assistência médica e odontológica, auxílio-medicamentos, auxílio-creche, sistema de transporte, programa de alimentação, programas de capacitação e treinamento aos colaboradores da operação;
- Ofertar treinamento de segurança e meio ambiente;
- Ofertar transporte aos trabalhadores das obras;

- Continuar a contribuir com as municipalidades a partir da geração de impostos diretos e indiretos, além do efeito renda;
- Promover ações no processo de desmobilização de mão de obra, de forma a estimular o retorno dos trabalhadores migrantes aos seus locais de origem; divulgar o cronograma de obras, informando a comunidade sobre o início e término das obras; e Fornecer orientação de apoio aos trabalhadores dispensados;
- Monitorar os aspectos antrópicos.

Assim, o referido programa no tocante à fase de obras da ampliação será iniciado na fase de pré-implantação e será executado ao longo de toda a fase obras, bem como durante o primeiro ano de operação. Tendo em vista que é justamente na fase de obras em que há demanda por maior número de trabalhadores e na qual se prevê maior possibilidade de migração de pessoas de outras regiões para os municípios da AII.

O programa tem como objetivo identificar possíveis interferências causadas pelo empreendimento – especialmente relacionadas ao aumento populacional – a partir da coleta e monitoramento de indicadores relativos à saúde, educação, economia, segurança e assistência social.

Tais indicadores serão acompanhados e monitorados periodicamente ao longo de toda a obra, de forma a verificar a existência de aumento significativo da demanda e eventuais sobrecargas ou aspectos prejudiciais quanto aos serviços de saúde, educação, segurança pública e assistência social, além dos aspectos positivos na economia (empregos, geração de receita, etc.). Assim, verificando-se potenciais alterações no nível de qualidade dos serviços ofertados, como também possibilitando a avaliação de correlação ou não ao empreendimento, de modo a permitir a proposição de ações que se façam necessárias para a manutenção da qualidade do atendimento destes serviços.

6.1.3.2. Programa de acompanhamento e monitoramento da fauna aquática

O programa executado para a instalação da Unidade Puma contemplou campanhas trimestrais durante a implantação do empreendimento e por dois anos na fase de operação. Em função da ampliação da fábrica, propõem-se a extensão do programa durante a fase de obras de ampliação e por mais dois anos na operação da unidade ampliada, seguindo o cronograma abaixo.

Atividades	Meses da obra de ampliação											
Atividades	01	02	03	04	05	06	07	08	09	10	11	12
Campanhas de monitoramento												
Relatórios de atividade e												
acompanhamento												
Relatório consolidado												

Atividades	Meses da obra de ampliação											
Atividades	13	14	15	16	17	18	19	20				
Campanhas de monitoramento												
Relatórios de atividade e												
acompanhamento												
Relatório consolidado												

Atividades		Meses da operação												
Atividades	01	02	03	04	05	06	07	08	09	10	11	12		
Campanhas de monitoramento														
Relatórios de atividade e														
acompanhamento														
Relatório consolidado														

6.1.3.3. Programa de gerenciamento de risco

O programa de gerenciamento de risco atualmente vigente deverá ser atualizado para contemplar a fase de implantação da ampliação bem como a operação com todas as novas estruturas e equipamentos previstos.

Demais programas listados apresentam caráter permanente durante a operação do empreendimento.

7. CONCLUSÕES

Considerando a expansão das atividades de produção de papel e celulose em função de demandas do mercado externo e interno, bem como o papel estratégico da Klabin neste setor, o presente estudo buscou efetuar o diagnóstico do cenário atual de inserção do projeto Puma, bem como traçar o prognóstico da região com a ampliação do empreendimento.

A etapa de diagnóstico dos meios físico, biótico e socioeconômico contribuiu para entendimento do cenário atual da região, em face à delimitação das áreas de influência propostas. A percepção das diferentes características ambientais, condizente com uma região previamente impactada por diferentes processos de ocupação antrópica, permitiu a avaliação de aspectos e impactos associados ao estabelecimento do empreendimento no universo das áreas de influência.

A avaliação dos aspectos e impactos considerou a fase de implantação como período de maior impacto, principalmente em função do contigente de trabalhadores previstos para as obras de ampliação. A partir de características do processo operacional e tecnologias adotadas, foram levantados os aspectos e impactos relacionados ao período de operação da unidade. Das informações extraídas deste processo de avaliação de impactos, puderam ser propostas diferentes medidas preventivas, mitigadoras ou compensatórias, no caso de impactos negativos e potencializadoras para os positivos.

A realização das obras de ampliação da Unidade Puma irá aumentar a capacidade de produção de celulose, de modo a passar das atuais 1,5 milhão de toneladas ano (1,1 milhão de toneladas de fibra curta e 400 mil toneladas de fibra longa) A produção futura após a implantação da fase 1 e fase 2 será de 2.597.000 t/ano, considerando a operação atual de

1.243.000 BHKP e 464.000 BSKP/Fluff, ampliação fase 1 com produção de 450.000 *Kraftliner* e ampliação fase 2 com produção de 440.000 cartões.

Deste modo, ampliando a capacidade de atender o mercado consumidor nacional e mundial com produtos certificados, com matéria prima e processo produtivo ambientalmente e socialmente corretos.

Adicionalmente, a produção de celulose é o fator gerador (aspecto ambiental) da geração de empregos, arrecadação tributária e geração de energia elétrica. Conforme demonstrado no diagnóstico, a realização das obras de implantação do Projeto Puma (entre 2013 e 2016) propiciou PIB, aumentos significativos no em registros de estabelecimentos econômicos, como também induziu a crescimentos na receita municipal (especialmente na geração de tributos) e, apesar de introduzir um contingente elevado de trabalhadores, não foram verificadas alterações de mesma magnitude na prestação de serviços de saúde e educação.

Portanto, com a devida adoção de medidas que evitem na medida do possível processos migratórios (exemplo: priorizar e capacitar a mão de obra local), como também que previnam e mitiguem a interferência sobre infraestrutura e serviços existentes, é plenamente possível propiciar os impactos positivos sem deteriorar a qualidade de prestação de serviços e de vida da população da região.

A ampliação da Unidade Puma ocorrerá no interior da unidade existente, havendo necessidade de pequena expansão a norte para ampliação de pátio de estocagem de toras, necessário em função do aumento do recebimento de matéria-prima florestal na fábrica ampliada. Esse fato reduz significativamente os impactos aos meios físico e biótico.

A supressão de vegetação ficará restrita à porção de área de reflorestamento da própria Klabin. O acompanhamento das ações de supressão com o intuito de prevenir e mitigar eventuais impactos à flora e fauna deverá ser realizado pela Klabin no âmbito das atividades de manejo florestal amplamente executadas pela empresa com os devidos controles ambientais.

A ampliação da unidade está associada também a alguns impactos negativos decorrentes do incremento da produção, como alteração da qualidade do ar e água e possibilidade de contaminação do solo e águas superficiais e subterrâneas. Tais impactos estão diretamente relacionados ao incremento na geração de emissões atmosféricas, captação de água, lançamentos de efluentes e geração de resíduos . Para controle e proteção do meio ambiente, o projeto prevê a implantação das melhores práticas e tecnologias disponíveis em todos os seus aspectos, ou seja, uso racional de água, minimização da geração de efluentes líquidos, controle das emissões atmosféricas e redução, reuso e reciclagem de resíduos sólidos.

Quanto ao uso da água, mesmo com a ampliação, as vazões de captação de água e de lançamento de efluentes ficarão abaixo daquelas autorizadas nas outorgas existentes para a Unidade Puma, não havendo necessidade de solicitação de novas outorgas para esta fase de ampliação.

Apesar da manutenção dos limites outorgados, haverá incremento nas vazões de captação e lançamento em relação aos montantes atuais consumidos e gerados pela Unidade Puma. Neste sentido, há previsão de expansão da estação de tratamento de efluentes (ETE), bem como da estação de tratamento de água (ETA) para atender a este novo cenário de ampliação e garantir a qualidade requerida dos recursos hídricos para uso na fábrica e para os usos múltiplos, após devido tratamento na ETE e lançamento no Rio Tibagi.

Em consequência do acréscimo de carga de efluentes a serem lançados no Rio Tibagi devem ser considerados eventuais impactos à fauna aquática demonstrando a necessidade de atividades de monitoramento da fauna através de programas específicos já previstos na operação atual da unidade e que devem ser estendidos para englobar a avaliação de eventuais impactos da ampliação.

Salienta-se também que a opção de aumentar a produção de celulose por meio da ampliação de uma estrutura já existe é significativamente menos impactante do que por meio da implantação de nova unidade industrial, dada a inserção em um ambiente já antropizado, utilização de infraestrutura já existente, ausência de necessidade de supressão de vegetação nativa, diminuição de processos de preparação de terreno e operação de uma atividade já inserida na dinâmica da região e que já possui mão de obra capacitada (possibilitando a priorização de mão de obra local).

Com base nesta avaliação, que englobou diagnóstico, avaliação de impactos, definição e detalhamento de medidas, a equipe técnica que elaborou o presente estudo, conclui que, cumprindo-se a regulamentação ambiental vigente e implantando-se as medidas ambientais propostas neste RAP, com o intuito de minimizar os impactos ambientais negativos e potencializar os impactos ambientais positivos, a implantação e operação da aampliação da Unidade Puma, no município de Ortigueira, é viável ambientalmente e consiste em um indutor para o desenvolvimento da região de inserção.

8. REFERÊNCIAS BIBLIOGRÁFICAS

Justificativa do empreendimento

KLABIN. **Relatório de sustentabilidade 2017.** Disponível em http://rs.klabin.com.br/. Acesso em: 11 Set. 2018a.

KLABIN. **Visão e Política de Sustentabilidade.** Disponível em: https://www.klabin.com.br/pt/sustentabilidade/_visao-e-politica-de-sustentabilidade/>. Acesso em: 21 Set. 2018b.

IBÁ – INDÚSTRIA BRASILEIRA DE ÁRVORES. **Estatísticas da Indústria Brasileira de Árvores – Janeiro de 2018.** Disponível em http://iba.org. Acesso em: 11 Set. 2018.

PÖYRY TECNOLOGIA LTDA. Estudo de Impacto Ambiental – EIA. Klabin – Papel e Celulose. São Paulo, 2012.

Clima e condições meteorológicas

AYOADE, J. O. **Introdução à climatologia para os trópicos.** 15ª ed. Bertrand Brasil. Rio de Janeiro, 2011

INMET – Instituto Nacional de Meteorologia. **Normais climatológicas do Brasil**1961-1990.

Disponível

em:

http://www.inmet.gov.br/portal/index.php?r=clima/normaisclimatologica

s>. Acesso em: 18 set. 2018.

IAPAR – Instituto Agronômico do Paraná. **Médias históricas em estações do IAPAR**. 2018. Disponível em: http://www.iapar.br/modules/conteudo/conteudo.php?conteudo=1070>. Acesso em: 18 set. 2018.

ITCG – INSTITUTO DE TERRAS, CARTOGRAFIA E GEOCIÊNCIAS. Mapa dos Climas do Paraná, segundo a classificação de Köppen. Curitiba, 2008.

MAIDMENT, D.R. **Handbook of Hydrology**. McGraw-Hill Professional Publishing. New York, 1993.

PEEL, M. C.; FINLAYSON, B. L.; MCMAHON, T. A. **Updated world map of the Köppen-Geiger climate classification**. 'Hydrol. Earth Syst. Sci.' 11: 1633–1644, 2007.

Qualidade do ar

CONAMA. **Resolução n. 003, de 28 de junho de 1990**. Estabelece padrões de qualidade do ar e amplia o número de poluentes atmosféricos passíveis de monitoramento e controle. Disponível em: http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=100. Acesso em: 20 Ago. 2018.

IAP – Instituto Ambiental do Paraná. **Relatório anual da qualidade do ar na região metropolitana de Curitiba**. 2013.

KLABIN – **Relatório de sustentabilidade 2017**. Disponível em:< http://rs.klabin.com.br/>. Acesso em: 27. Set. 2018.

KLABIN – **Mudanças climáticas e pegada de carbono**. 2013. Disponível em: < http://rs2012.klabin.com.br/pt/desempenho-ambiental/mudancas-climaticas-e-pegada-de-carbono/>. Acesso em: 27. Set. 2018.

LENTZ - Monitoramento de ar ambiente e avaliação da qualidade do ar. Ortigueira, Telêmaco Borba e Imbaú - Klabin S.A. 2018.

MMA – Ministério do Meio Ambiente. **Efeito estufa e aquecimento global**. Disponível em:< http://www.mma.gov.br/informma/item/195-efeito-estufa-e-aquecimento-global>. Acesso em: 27 Set. 2018.

MMA – Ministério do Meio Ambiente. **1º Diagnóstico da rede de monitoramento da qualidade do ar no Brasil**. Brasília, 2014.

MMA – Ministério do Meio Ambiente. **Compromisso pela Qualidade do Ar e Saúde Ambiental**. Brasília, 2009.

MMA – Ministério do Meio Ambiente. **Qualidade do ar**. 2012 Disponível em: http://www.mma.gov.br/cidades-sustentaveis/qualidade-do-ar. Acesso em: 11 Set.. 2018.

Ruídos

ABNT – ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 10.151:2000. Acústica – Avaliação do Ruído em Áreas Habitadas, Visando o Conforto da Comunidade. Rio de Janeiro, 2000.

NBR 7229:1993

BERANEK, L. L. **Noise and vibration control.** McGraw Hill. New York, 1971.

BISTAFA, S. R. **Acústica aplicada ao controle de ruído.** Blucher. São Paulo, 2011.

CONAMA – CONSELHO NACIONAL DO MEIO AMBIENTE. **Resolução CONAMA nº 001/1990.** Dispõe sobre critérios e padrões de emissão de ruídos, das atividades industriais. Brasília, 1990.

FTA – FEDERAL TRANSIT ADMINISTRATION. **Transit Noise and Vibration Impact Assessment.** Washington, 2006.

Recursos hídricos

ACQUAPLAN – ACQUAPLAN TECNOLOGIA E CONSULTORIA AMBIENTAL. Programa de monitoramento da qualidade das águas superficiais e fitoplâncton – Unidade Puma – Klabin Celulose S.A. Relatório técnico. Ortigueira, 2018.

ÁGUASPARANÁ – INSTITUTO DAS ÁGUAS DO PARANÁ. **Sistema de informações hidrológicas – Relatório de análise laboratorial.**Disponível em: < http://www.sih-web.aguasparana.pr.gov.br/sih-web/gerarRelatorioQualidadeAgua.do?action=carregarInterfaceInicial>

Acesso em: 24 set. 2018.

COBRAPE / ÁGUASPARANÁ - COMPANHIA BRASILEIRA DE PROJETOS E EMPREENDIMENTOS / INSTITUTO DAS ÁGUAS DO PARANÁ - **Plano de Recursos Hídricos da Bacia Hidrográfica do Rio Tibagi - Resumo Executivo**. 2013. Disponível em: < http://www.aguasparana.pr.gov.br/pagina-119.html> Acesso em: 21 set. 2018.

ANEEL – AGÊNCIA NACIONAL DE ENERGIA ELÉTRICA. Aprovação da revisão dos estudos de inventário hidrelétrico do Rio Tibagi – Despacho nº 410/2005-SGH/ANEEL, de 1 de abril de 2005.

CONSELHO ESTUAL DE RECURSOS HÍDRICOS DO PARANÁ. Portarias de enquadramento dos cursos d'água do Estado do Paraná – Portaria SUREHMA nº 003 de 21 de março de 1991 (Bacia do Rio Tibagi)

Disponível em:

http://www.recursoshidricos.pr.gov.br/modules/conteudo/conteudo.php?c onteudo=29> Acesso em 21 Set. 2018.

PÖYRY TECNOLOGIA. Estudo de Impacto Ambiental - KLABIN - PAPEL E CELULOSE - PROJETO PUMA - PR. São Paulo, 2012.

VON SPERLING, M. **Introdução à qualidade da água e ao tratamento de esgotos.** 3. Ed. Belo Horizonte: Departamento de Engenharia Sanitária e Ambiental: Universidade Federal de Minas Gerais, 2005.

Caracterização geológica-geoténica

CEPED UFSC. Universidade Federal de Santa Catarina. Centro Universitário de Pesquisas sobre Desastres. **Atlas Brasileiro de Desastres Naturais.** 2º Edição Revista e Atualizada. 2013.

CPRM. Serviço Geológico do Brasil. **Mapa de Pontos com Risco Geológico no Estado do Paraná**. 2016.

EMPRAPA. **Sistema Brasileiro de Classificação de Solos**. 5 ed. Revista e atualizada. Empresa Brasileira de Pesquisa Agropecuária. Centro Nacional de Pesquisa de Solos, Brasília. 2018.

FRAGA, C. G. Introdução ao Zoneamento do Sistema Aquífero Serra Geral no Estado do Paraná. São Paulo, 125 p. Dissertação de Mestrado. Instituto de Geociências, Universidade de São Paulo (USP). 1986.

IAPAR. Instituto Agronômico do Estado do Paraná. **Mapa de Solos do Estado do Paraná.** 2008

MENDES E. A. A.; NAKANDAKARE K. C.; SOUZA A. M; FERNANDES A. M. P; SILVEIRA E. L; FELTRIN J.; GUARDA M. J; **Mananciais Subterrâneos no Estado do Paraná.** 2002.

MILANI, E. J. Evolução Tectono-Estratigráfica da Bacia Do Paraná e seu Relacionamento com a Geodinâmica Fanerozoica do Gondwana Sul-Ocidental. 2 v. Tese (Doutorado) - Universidade Federal do Rio Grande do Sul, Porto Alegre, 1997.

MINEROPAR. Serviço Geológico do Paraná. Mapa Geológico do Estado do Paraná. Escala 1:250.000. 2006.

MINEROPAR. Serviço Geológico do Paraná. Avaliação do potencial de argilas para uso em cerâmica vermelha na região dos Campos Gerais: relatório final. Curitiba. 2009.

MINEROPAR. Serviço Geológico do Paraná. **Avaliação do Potencial para Minerais Industriais na Região Central do Paraná.** Relatório final. Curitiba, 2010.

SANTOS, L. J. C; OKA-FIORI, C; CANALLI, N. E; FIORI. A. P; SILVEIRA, C. T; SILVA, J. M F. **Mapeamento da vulnerabilidade geoambiental do Estado do Paraná**. Revista Brasileira de Geociências. 2007.

SUDERHSA, Superintendência de Desenvolvimento de Recursos Hídricos e Saneamento Ambiental. **Unidades Aquíferas do Estado do Paraná**. Governo do Paraná. 2008.

PÖYRY. Estudo De Impacto Ambiental - EIA Industrial Klabin - Papel e Celulose. Projeto Puma. PÖYRY Tecnologia Ltda. 2012.

Fauna

ALMEIDA, A.F. Influência do tipo de vegetação nas populações de aves em uma floresta implantada de Pinus spp. na região de Agudos, SP. **Instituto de Pesquisas e Estudos Florestais**, 18:59-77. 1979.

ASSIS, L. R. Avaliação do impacto em corpos d'água devido ao lançamento de resíduos de uma estação de tratamento de água de Juiz de Fora – MG. 2014. 61 p. Monografia (Graduação em Engenharia Sanitária e Ambiental) – Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, MG, 2014.

BENNEMANN, S.T.; SHIBATTA, O.A. Dinâmica de uma assembléia de peixes do rio Tibagi. *In* **A bacia do rio Tibagi** (M.E. Medri; E. Bianchini, O.A. Shibatta; J.A. Pimenta, eds.). M. E. Medri, Londrina, p.433-442. 2002.

BENNEMANN, S.T.; SILVA-SOUZA, A.T.; ROCHA, G.R.A. Composición ictiofaunistica em cinco localidades de la cuenca Del rio Tibagi, PR – Brasil. **Interciencia** 20:7-13. 1995.

CHAGAS, P. F.; SALES, R. J. M; ARAÚJO, J. A. F. Estudo de impactos causados por lançamento de efluentes na concessão de outorga através de modelos matemáticos, com aplicação em rios do Rio Grande do Norte – brasil. **XI Fórum Ambiental da Alta Paulista**, v. 11, n. 6, pp. 87-100. 2015.

DANTAS, T. C. M; OLIVEIRA, T. M. B. F.; FILHO, J. R. L.; MORAIS, L. A.; CASTRO, S. S. L.; SOUZA, L. D. **Impacto do lançamento de efluentes em ecossistemas aquáticos no perímetro urbano de Mossoró – RN**. Porto Alegre-RS. 49º Congresso Brasileiro de Química. 2009.

FORMAN, R. T. T.; ALEXANDER, L. E. Roads and Their Major Ecological Effects. **Annual Review of Ecology Evolution and Systematics**. 29. 207, 1998.

LIMA, D.P.; SANTOS, C; SILVA, R. S.; YOSHIOKA, E. T. O. BEZERRA, B. M.. Contaminação por metais pesados em peixes e água da bacia do rio Cassiporé, Estado do Amapá, Brasil. **Acta Amazonica**. v 45(4): 405 – 414, 2015.

Medri, M.E.; Bianchini, E.; Shibatta, O.A.; Pimenta, J.A. (eds.). **A bacia do rio Tibagi.** Londrina: Paraná. 2002.

PÖYRY TECNOLOGIA LTDA. Estudo de Impacto Ambiental – EIA. Klabin – Papel e Celulose. São Paulo, 2012.

SHIBATTA, O.A., GEALH, A.M.; BENNEMANN, S.T. Ictiofauna dos trechos alto e médio da bacia do rio Tibagi, Paraná, Brasil. **Biota Neotropical**. 7(2): 2007.

SHIBATTA, O.A., ORSI, M.L., BENNEMANN, S.T.; SILVA-SOUZA, A.T. Diversidade e distribuição de peixes na bacia do rio Tibagi. *In* **A bacia do rio Tibagi** (M.E. Medri, E. Bianchini, O.A. Shibatta; J.A. Pimenta, eds.). Londrina, M. E. Medri, p.403-423. 2002.

<u>Flora</u>

IBGE. **Manual Técnico da Vegetação Brasileira.** 2ª ed. Rio de Janeiro, RJ, 2012. 271p.

RODERJAN, C. V., GALVÃO, F., KUNIYOSHI, Y. S., HATSCHBACH, G. G.. **As unidades fitogeográficas do estado do Paraná.** Ciência & Ambiente, n. 24, p. 75-92, Jan/Jun. 2002.

Meio socioeconômico

ANATEL – AGÊNCIA NACIONAL DE TELECOMUNICAÇÕES. Cobertura de Estações Radio Base (ERB) no Brasil. Brasília: Anatel, Sistema de serviços de telecomunicações, 2016. Disponível em: http://sistemas.anatel.gov.br/stel/Consultas/SMP/ERBCobertura/tela.asp >. Acesso em: setembro de 2018.

CNES - CADASTRO NACIONAL DE ESTABELECIMENTOS DE SAÚDE.

Consulta: Tipos de estabelecimentos. Brasília: Ministério da Saúde, 2018.

Disponível em: http://cnes2.datasus.gov.br/Mod_Ind_Unidade.asp.

Acesso em setembro de 2018.

DATASUS. **Informações de saúde**: Epidemiológicas e morbidade. Brasília: Ministério da Saúde, 2018. Disponível em: http://www2.datasus.gov.br/DATASUS/index.php?area=0203. Acesso setembro de 2018

FCP - FUNDAÇÃO CULTURAL PALMARES. **Comunidades Remanescentes de Quilombos – CRQ's**. Brasília: FCP, 2018. Disponível em: http://www.palmares.gov.br/?page_id=37551. Acesso em setembro de 2018.

FUNAI – FUNDAÇÃO NACIONAL DO ÍNDIO. **Índios no Brasil: Terras Indígenas.** Brasília: FUNAI, 2018. Disponível em: http://www.funai.gov.br/index.php/indios-no-brasil/terras-indigenas. Acesso em setembro de 2018..

IAP - INSTITUTO AMBIENTAL DO PARANÁ. **Faxinais regulamentados**. Curitiba: IAP, 2018. Disponível em: http://www.iap.pr.gov.br/pagina-1434.html. Acesso em setembro de 2018.

IBGE – INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. **Sistema IBGE de Recuperação Automática – SIDRA**. IBGE, 2018. Disponível em: http://www.sidra.ibge.gov.br/. Acesso em setembro de 2018.

INCRA - INSTITUTO NACIONAL DE COLONIZAÇÃO E REFORMA AGRÁRIA. **Painel de assentamentos**. Brasília: INCRA, 2018. Disponível em: http://painel.incra.gov.br/sistemas/index.php. Acesso em setembro de 2018.

INTERAÇÃO URBANA. **Plano Diretor de Ortigueira**: Produto 2 – Leitura Técnica. São Paulo: Interação Urbana, 2016. Disponível em: http://www.interacaourbana.com.br/hotsite/ortigueira/wp-content/blogs.dir/10/files_mf/produto_2_ortigueira.pdf. Acesso em setembro de 2018.

IPARDES – INSTITUTO PARANAENSE DE DESENVOLVIMENTO ECONÔMICO E SOCIAL. **Base de dados do Estado**. Curitiba: 2018. Disponível em: http://www.ipardes.pr.gov.br/imp/index.php. Acesso em setembro de 2018.

ITCG – INSTITUTO DE TERRAS, CARTOGRAFIA E GEOLOGIA. **Uso e cobertura do solo** 2001/2002. Curitiba: ITCG, 2006. Disponível em: http://www.itcg.pr.gov.br/modules/faq/category.php?categoryid=9#. Acesso em setembro de 2018.

ITCG – INSTITUTO DE TERRAS, CARTOGRAFIA E GEOLOGIA. **Terras e territórios de povos e comunidades tradicionais do Estado do Paraná**. Curitiba: ITCG, 2013. Disponível em: http://www.itcg.pr.gov.br/arquivos/File/Terras_e_territorios_de_Povos_e_Comunidades_Tradicionais_2013.pdf>. Acesso em setembro de 2018.

KLABIN. **Plano de manejo florestal**: Resumo público 2016. Telêmaco Borba: Klabin, s.d. Disponível em: https://www.klabin.com.br/media/1475/resumo_pr_versao_site_2016.p df>.

MTE – Ministério do Trabalho e Emprego. Banco de Informações: RAIS – Relação Anual de Informações Sociais. Brasília: MTE, 2018. Disponível em: http://bi.mte.gov.br/bgcaged/>. Acessado em setembro de 2018.

NAJBERG, S; PEREIRA, R. de O. Novas estimativas do modelo de geração de empregos do BNDES. **Sinopse Econômica**, BNDES, Rio de Janeiro, nº 133 de março de 2004. Disponível em: http://www.bndes.gov.br/SiteBNDES/export/sites/default/bndes_pt/Galerias/Arquivos/conhecimento/sinopse/sinop133_najberg_pereira.pdf. Acesso em setembro de 2018.

PNUD – PROGRAMA DAS NAÇÕES UNIDAS PARA O DESENVOLVIMENTO. **Desenvolvimento humano e IDH**. 2018. Disponível em: http://www.pnud.org.br/IDH/DH.aspx. Acesso em setembro de 2018.

ANEXO I – ART's e certificados de regularidade no Cadastro Técnico Federal (CTF) do IBAMA

ANEXO II - Plantas do projeto de ampliação

ANEXO III - Mapas temáticos

ANEXO IV - Certidão de anuência do município de Ortigueira

ANEXO V - Estudo de dispersão de poluentes atmosféricos

ANEXO VI - Outorgas de uso da água

ANEXO VII – Mapa de uso do solo para a AID do meio socioeconômico (município de Ortigueira)

ANEXO DIGITAL - Sistema de Informações Geográficas (SIG)

CREA-PR Conselho Regional de Engenharia e Agronomia do Paraná Anotação de Responsabilidade Técnica Lei Fed 6496/77 Valorize sua Profissão: Mantenha os Projetos na Obra 1º VIA - PROFISSIONAL

ART Nº 20183866294 Obra ou Serviço Técnico ART Principal

O valor de R\$ 218,54 referente a esta ART foi pago em 24/08/2018 com a guia nº 1000201838662	alor de	e R\$ 218,54 refere	nte a esta ART fo	oi pago em 24	4/08/2018 com a	guia nº	10002018386629
---	---------	---------------------	-------------------	---------------	-----------------	---------	----------------

Profissional Contratado: PEDRO LUIZ FUENTES DIAS (CPF:514.620.289-34) № Carteira: PR-18299/D - № Visto Crea: - Título Formação Prof.: ENGENHEIRO FLORESTAL. Empresa contratada: ASSESSORIA TÉCNICA AMBIENTAL LTDA Nº Registro: 41043 Contratante: KLABIN S/A CPF/CNPJ: 89.637.490/0001-45 Endereço: AVENIDA BRASIL 32 HARMONIA CEP: 84275000 HARMONIA (TELEMACO BORBA) PR Fone: Contrato:5100006727 Local da Obra/Serviço: FAZENDA APUCARANA GRANDE KM 2 Quadra: Lote: DISTRITO DE NATINGUI - ORTIGUEIRA PR CEP: 84350000 Tipo de Contrato PRESTAÇÃO DE SERVIÇOS Dimensão 1 SERV Ativ. Técnica COORDENAÇÃO DE OBRA OU SERVIÇO TÉCNICO 23 Área de Comp. 8203ECQLOGIA

Área de Comp. 8203ECOLOGIA

Tipo Obra/Serv 533 ELABORAÇÃO DO RELATÓRIO DE IMPACTO NO MEIO AMBIENTE

Serviços 130 OUTROS contratados

Dados Compl. 0

Data Início 10

ra do Profissional

 VIr Obra
 R\$ 0,00
 VIr Contrato
 R\$ 75.000,00
 VIr Taxa
 R\$ 218,54
 0

 Base de cálculo:
 TABELA VALOR DE CONTRATO

Base de cálculo: TABELA VALOR DE CONTRATO

Outras Informações sobre a natureza dos serviços contratados, dimensões, ARTs vinculadas, ARTs substituídas, contratantes etc

COORDENAÇÃO DA ELABORAÇÃO DO RELATÓRIO AMBIENTAL PRELIMINAR (RAP), CONFORME TERMO DE

REFERÊNCIA DO INSTITUTO AMBIENTAL DO PARANÁ - IAP, PARA LICENCIAMENTO PRÉVIO DE AMPLIAÇÃO DA

INIDADE PLIMA DA KLARIN EM ORTIGUEIRA DADANÁ

REFERÊNCIA DO INSTITUTO AMBIENTAL DO PARANA - IAP, PARA LICENCIAMENTO PRÉVIO DE AMPLIAÇÃO DA 28/08/2018

UNIDADE PUMA DA KLABIN, EM ORTIGUEIRA, PARANÁ.

Assinatyla to Contretente

1ª **VIA - PROFISSIONAL** Destina-se ao arquivo do Profissional/Empresa. Central de Informações do CREA-PR 0800 041 0067

CREA-PR Conselho Regional de Engenharia e Agronomia do Paraná Anotação de Responsabilidade Técnica Lei Fed 6496/77 Valorize sua Profissão: Mantenha os Projetos na Obra 2º VIA - ÓRGÃOS PÚBLICOS

ART N° 20183866294 Obra ou Serviço Técnico **ART Principal**

O valor de R\$ 218,54 referente a esta ART foi pago em 24/08/2018 com a guia nº 100020183866294

Profissional Contratado: PEDRO LUIZ FUENTES DIAS (CPF:514.620.289-34)

Nº Carteira: PR-18299/D - Nº Visto Crea: Título Formação Prof.: ENGENHEIRO FLORESTAL.

Empresa contratada: ASSESSORIA TÉCNICA AMBIENTAL LTDA

Nº Registro: 41043

Contratante: KLABIN S/A

Endereço: AVENIDA BRASIL 32 HARMONIA

CEP: 84275000 HARMONIA (TELEMACO BORBA) PR Fone: Local da Obra/Serviço: FAZENDA APUCARANA GRANDE KM 2

DISTRITO DE NATINGUI - ORTIGUEIRA PR Tipo de Contrato

Ativ. Técnica Área de Comp.

PRESTAÇÃO DE SERVIÇOS COORDENAÇÃO DE OBRA OU SERVIÇO TÉCNICO

8203ECOLOGIA

533 ELABORAÇÃO DO RELATÓRIO DE IMPACTO NO MEIO AMBIENTE - RIMA Tipo Obra/Serv

Serviços 130 OUTROS contratados

Dados Compl.

CPF/CNPJ: 89.637.490/0001-45

Dimensão

Contrato:5100006727

Quadra:

CEP: 84350000

Data Início Data Conclusão

10/08/2018 05/10/2018

Lote:

1 SERV

VIr Taxa R\$ 218,54

Base de cálculo: TABELA VALOR DE CONTRATO

Outras Informações sobre a natureza dos serviços contratados, dimensões, ARTs vinculadas, ARTs substituídas, contratantes, etc COORDENAÇÃO DA ELABORAÇÃO DO RELATÓRIO AMBIENTAL PRELIMINAR (RAP), CONFORME TERMO DE Inst Insp.: 4269 REFERÊNCIA DO INSTITUTO AMBIENTAL DO PARANÁ - IAP, PARA LICENCIAMENTO PREVIO DE AMPLIAÇÃO DA UNIDADE PUMA DA KLABIN, EM ORTIGUEIRA, PARANÁ. 28/08/2018 CreaWeb 1.0

> do Contratante Assinati

Assinatura do

2ª VIA - ÓRGÃOS PÚBLICOS Destina-se à apresentação nos órgãos de administração pública, cartórios e outros. Central de Informações do CREA-PR 0800 041 0067

A autenticação deste documento poderá ser consultada através do site www.crea-pr.org.br

A Anotação de Responsabilidade Técnica (ART) foi instituída pela Lei Federal 6496/77, e sua aplicação está regulamentada pelo Conselho Federal de Engenharia e Agronomia (CONFEA) através da Resolução 1025/09.

CREA-PR Conselho Regional de Engenharia e Agronomia do Paraná Anotação de Responsabilidade Técnica Lei Fed 6496/77 Valorize sua Profissão: Mantenha os Projetos na Obra 3ª VIA - LOCAL DA OBRA/SERVIÇO

ART N° 20183866294 Obra ou Serviço Técnico **ART Principal**

O valor de R\$ 218,54 referente a esta ART foi pago em 24/08/2018 com a guia nº 100020183866294

Profissional Contratado: PEDRO LUIZ FUENTES DIAS (CPF:514.620.289-34)

N° Carteira: PR-18299/D - N° Visto Crea: Título Formação Prof.: ENGENHEIRO FLORESTAL.

Empresa contratada: ASSESSORIA TÉCNICA AMBIENTAL LTDA

Contratante: KLABIN S/A

CPE/CNP.I: 89 637 490/0004

Endereço: AVENIDA BRASIL 32 HARMONIA

CEP: 84275000 HARMONIA (TELEMACO BORBA) PR Fone: Local da Obra/Serviço: FAZENDA APUCARANA GRANDE KM 2

DISTRITO DE NATINGUI - ORTIGUEIRA PR

Tipo de Contrato Ativ. Técnica

PRESTAÇÃO DE SERVIÇOS COORDENAÇÃO DE OBRA OU SERVIÇO TÉCNICO

8203ECOLOGIA 533 ELABORAÇÃO DO RELATÓRIO DE IMPACTO NO MEIO AMBIENTE - RIMA

Tipo Obra/Serv 130 OUTROS

Serviços contratados

Área de Comp.

CPF/CNPJ: 89.637.490/0001-45

VIr Taxa R\$ 218,54

Contrato:5100006727

Quadra: CEP: 84350000

Dimensão

1 SERV

Dados Compl.

Data Inicio Data Conclusão

10/08/2018 05/10/2018

Lote:

Base de cálculo: TABELA VALOR DE CONTRATO

Outras informações sobre a natureza dos serviços contratados, dimensões, ARTs vinculadas, ARTs substituídas, contratantes, etc COORDENAÇÃO DA ELABORAÇÃO DO RELATÓRIO AMBIENTAL PRELIMINAR (RAP), CONFORME TERMO DE REFERÊNCIA DO INSTITUTO AMBIENTAL DO PARANÁ - IAP, PARA LICENCIAMENTO PRÉVIO DE AMPLIAÇÃO DA UNIDADE PUMA DA KLABIN, EM ORTIGUEIRA, PARANÁ.

Assinatura do Contratante

Assinature de Profissional

CreaWeb

4269 Insp.: 28/08/2018

3º VIA - LOCAL DA OBRA/SERVIÇO Deve permanecer no local da obra/serviço, à disposição das equipes de fiscalização do Crea-PR. Central de Informações do CREA-PR 0800 041 0067

Comprovante de Transação Bancária

Boletos de Cobrança

Data da operação: 24/08/2018 - 11h18

Nº de controle: 281.629.616.454.254.616 | Documento: 0011343

Net Empresa

Conta de débito: Agência: 3329 | Conta: 0002812-6 | Tipo: Conta-Corrente

Empresa: Assessoria Tecnica Ambiental Ltda | CNPJ: 005.688.216/0001-05

Código de barras: 10490 81290 43010 100246 01838 662995 4 76340000021854

Banco destinatário: 104 - CAIXA ECONOMICA FEDERAL

Razao Social Não informado

Beneficiário:

Nome Fantasia Não informado

Beneficiário:

CPF/CNPJ Beneficiário: Não informado

Nome do Pagador: Não informado

CPF/CNPJ do pagador: Não informado

Razao Social Sacador Não informado

Avalista:

CPF/CNPJ Sacador Não informado

Avalista:

Instituição Recebedora: 237 - BANCO BRADESCO S.A.

Data de débito: 24/08/2018

Data de vencimento: 01/09/2018

Valor: R\$ 218,54

Desconto: R\$ 0,00

Abatimento: R\$ 0,00

Bonificação: R\$ 0,00

Multa: R\$ 0,00

Juros: R\$ 0,00

Valor total: R\$ 218,54

Descrição: CREA ART

A transação acima foi realizada por meio do Bradesco Net Empresa.

Autenticação

cOzrsyrB 7Z2BXGZm 3DWMM@bn ?3KU2NTB ZhzbPXHb ?AJjbaiD nLB7kYsB RFUv5we4 hh#NkUHO xhDga@iK ESKa844n OudxCO@3 DnxuXCoG 1X#heA6B nAqK@7#? hgfRz4it WC9BrVtA qG*4z3Fi nV99JFgb 9ZIzwn*C MUTltbXu VSoSFAEo 04341158 13144002

SAC - Serviço de Apoio ao Cliente

Alô Bradesco 0800 704 8383 Deficiente Auditivo ou de Fala 0800 722 0099

Cancelamentos, Reclamações e Informações. Atendimento 24 horas, 7 dias por semana.

Demais telefones consulte o site Fale Conosco.

Ouvidoria 0800 727 9933

Atendimento de segunda a sexta-feira, das 8h às 18h, exceto feriados.

CREA-PR Conselho Regional de Engenharia e Agronomia do Paraná Anotação de Responsabilidade Técnica Lei Fed 6496/77 Valorize sua Profissão: Mantenha os Projetos na Obra

ART Nº 20183894697

Vinculação ART Vinculada: 20183866294 Registro de atividades diferenciadas

O valor de R\$ 82,94 referente a esta ART foi pago em 24/08/2018 com a guia nº 100020183894697

Profissional Contratado: ANA LUCIA TWARDOWSKY RAMALHO DO VALE

Nº Carteira: PR-90865/D - Nº Visto Crea: -

(CPF:022.522.899-88)

Título Formação Prof.: ENGENHEIRA DE SEGURANCA DO TRABALHO, ENGENHEIRA QUIMICA.

Empresa contratada: ASSESSORIA TÉCNICA AMBIENTAL LTDA

1ª VIA - PROFISSIONAL

Contratante: KLABIN S/A

Nº Registro: 41043

CPF/CNPJ: 89.637.490/0001-45

Endereço: AVENIDA BRASIL 32 HARMONIA

Contrato:5100006727

CEP: 84275000 HARMONIA (TELEMACO BORBA) PR Fone: Local da Obra/Serviço: FAZENDA APUCARANA GRANDE KM 2

Quadra:

Lote:

Tipo de Contrato

DISTRITO DE NATINGUI - ORTIGUEIRA PR PRESTAÇÃO DE SERVIÇOS 4

CEP: 84350000

Ativ. Técnica Área de Comp.

Dimensão

1 SERV

Tipo Obra/Serv Serviços contratados

2 ESTUDO, PLANEJAMENTO, PROJETO, ESPECIFICAÇÕES 4100SERVIÇOS TÉC PROFISSIONAIS EM ENG QUÍMICA

268 RELATÓRIOS AMBIENTAIS EIA / RIMA

130 OUTROS

Dados Compl

0

10/08/2018

Data Inicio

05/10/2018

VIr Obra

R\$ 0.00

VIr Contrato

R\$ 75,000,00

VIr Taxa

R\$ 82,94

0

Base de cálculo: TABELA TAXA MÍNIMA

Outras Informações sobre a natureza dos serviços contratados, dimensões, ARTs vinculadas, ARTs substituídas, contratantes, etc

ELABORAÇÃO DO RELATÓRIO AMBIENTAL PRELIMINAR (RAP), EM EQUIPE MULTIDISCIPLINAR, CONFORME TERMO DE REFERÊNCIA DO INSTITUTO AMBIENTAL DO PARANÁ - IAP, PARA LICENCIAMENTO PRÉVIO DE AMPLIAÇÃO DA UNIDADE PUMA DA KLABIN, EM ORTIGUEIRA, PARANÁ.
RESPONSABILIDADE PELA ELABORAÇÃO DAS SEÇÕES DE DIAGNÓSTICO, AVALIAÇÃO DE IMPACTOS AMBIENTAIS, Insp.: 4269
29/08/2018

MEDIDAS MITIGADORAS E PROGRAMAS AMBIENTAIS DOS SEGUINTES ITENS:CARÁCTERIZAÇÃO DO

29/08/2018

CreaWeb 1.08

EMPREENDIMENTO E MEJO FÍSICO.

Ducio TR. de Assinatura do Profissional

1ª VIA - PROFISSIONAL Destina-se ao arquivo do Profissional/Empresa.

Central de Informações do CREA-PR 0800 041 0067

Assinatura do Contratante

CREA-PR Conselho Regional de Engenharia e Agronomia do Paraná Anotação de Responsabilidade Técnica Lei Fed 6496/77 Valorize sua Profissão: Mantenha os Projetos na Obra 2ª VIA - ÓRGÃOS PÚBLICOS

ART Nº 20183894697

Vinculação ART Vinculada: 20183866294 Registro de atividades diferenciadas

ا valor de R\$ 82,94 referente a esta ART foi pago em 24/08/2018 com a guia ا

Profissional Contratado: ANA LUCIA TWARDOWSKY RAMALHO DO VALE

Nº Carteira: PR-90865/D - Nº Visto Crea: -

Título Formação Prof.: ENGENHEIRA DE SEGURANCA DO TRABALHO, ENGENHEIRA QUIMICA.

Empresa contratada: ASSESSORIA TÉCNICA AMBIENTAL LTDA

Contratante: KLABIN S/A

Nº Registro: 41043

CPF/CNPJ: 89.637.490/0001-45

Endereço: AVENIDA BRASIL 32 HARMONIA

CEP: 84275000 HARMONIA (TELEMACO BORBA) PR Fone:

Contrato:5100006727

DISTRITO DE NATINGUI - ORTIGUEIRA PR

Local da Obra/Serviço: FAZENDA APUCARANA GRANDE KM 2

Quadra: CEP: 84350000

Lote:

Tipo de Contrato Ativ. Técnica

Dimensão

1 SERV

Área de Comp.

4 PRESTAÇÃO DE SERVIÇOS 2 ESTUDO, PLANEJAMENTO, PROJETO, ESPECIFICAÇÕES 4100SERVIÇOS TÉC PROFISSIONAIS EM ENG QUÍMICA

Tipo Obra/Serv 268 RELATÓRIOS AMBIENTAIS EIA / RIMA Serviços contratados

0

Dados Compl. Data Conclusão

Ano

10/08/2018 05/10/2018

VIr Taxa R\$ 82,94

0

Base de cálculo: TABELA TAXA MÍNIMA

Outras Informações sobre a natureza dos serviços contratados, dimensões, ARTs vinculadas, ARTs substituídas, contratantes, etc ELABORAÇÃO DO RELATÓRIO AMBIENTAL PRELIMINAR (RAP), EM EQUIPE MULTIDISCIPLINAR, CONFORME TERMO DE REFERÊNCIA DO INSTITUTO AMBIENTAL DO PARANÁ - IAP, PARA LICENCIAMENTO PRÉVIO DE AMPLIAÇÃO DA DE REFERENCIA DO INSTITUTO AMBIENTAL DO PARAINA - IAF, FARA LICENCIAIVIENTO FREVIO DE AMFLIAÇÃO DA UNIDADE PUMA DA KLABIN, EM ORTIGUEIRA, PARANÁ.
RESPONSABILIDADE PELA ELABORAÇÃO DAS SEÇÕES DE DIAGNÓSTICO, AVALIAÇÃO DE IMPACTOS AMBIENTAIS, Insp.: 4269
MEDIDAS MITIGADORAS E PROGRAMAS AMBIENTAIS DOS SEGUINTES ITENS:CARACTERIZAÇÃO DO 29/08/2018

EMPREENDIMENTO E MEIO FÍSICO.

CreaWeb 1.08

Assinatura do Contratante

R. do Jdu Assinatura do Profissional

2ª VIA - ÓRGÃOS PÚBLICOS Destina-se à apresentação nos órgãos de administração pública, cartórios e outros. Central de Informações do CREA-PR 0800 041 0067

A autenticação deste documento poderá ser consultada através do site www.crea-pr.org.br

A Anotação de Responsabilidade Técnica (ART) foi instituída pela Lei Federal 6496/77, e sua aplicação está regulamentada pelo Conselho Federal de Engenharia e Agronomia (CONFEA) através da Resolução 1025/09.

CREA-PR Conselho Regional de Engenharia e Agronomia do Paraná Anotação de Responsabilidade Técnica Lei Fed 6496/77 Valorize sua Profissão: Mantenha os Projetos na Obra

ART Nº 20183894697 Vinculação ART Vinculada: 20183866294 Registro de atividades

diferenciadas

O valor de R\$ 82,94 referente a esta ART foi pago em 24/08/2018 com a guia nº 100020183894697

Profissional Contratado: ANA LUCIA TWARDOWSKY RAMALHO DO VALE

Nº Carteira: PR-90865/D - Nº Visto Crea: -

(CPF:022.522.899-88)

Título Formação Prof.: ENGENHEIRA DE SEGURANCA DO TRABALHO, ENGENHEIRA QUIMICA.

Empresa contratada: ASSESSORIA TÉCNICA AMBIENTAL LTDA

3ª VIA - LOCAL DA OBRA/SERVIÇO

Nº Registro: 41043

Contratante: KLABIN S/A

CPF/CNPJ: 89.637.490/0001-45

Endereço:AVENIDA BRASIL 32 HARMONIA CEP: 84275000 HARMONIA (TELEMACO BORBA) PR Fone:

Contrato:5100006727

Local da Obra/Serviço: FAZENDA APUCARANA GRANDE KM 2 DISTRITO DE NATINGUI - ORTIGUEIRA PR

Quadra:

Lote:

Tipo de Contrato

PRESTAÇÃO DE SERVIÇOS

CEP: 84350000 Dimensão

Ativ. Técnica Área de Comp. ESTUDO, PLANEJAMENTO, PROJETO, ESPECIFICAÇÕES

1 SERV

Tipo Obra/Serv

4100SERVIÇOS TÉC PROFISSIONAIS EM ENG QUÍMICA 268 RELATÓRIOS AMBIENTAIS EIA / RIMA

0

Serviços contratados

Dados Compl.

10/08/2018

Data Inicio Data Conclusão

05/10/2018

R\$ 82,94 VIr Taxa

0

Base de cálculo: TABELA TAXA MÍNIMA

Outras Informações sobre a natureza dos serviços contratados, dimensões, ARTs vinculadas, ARTs substituídas, contratantes, etc ELABORAÇÃO DO RELATÓRIO AMBIENTAL PRELIMINAR (RAP), EM EQUIPE MULTIDISCIPLINAR, CONFORME TERMO DE REFERÊNCIA DO INSTITUTO AMBIENTAL DO PARANÁ - IAP, PARA LICENCIAMENTO PRÉVIO DE AMPLIAÇÃO DA UNIDADE PUMA DA KLABIN, EM ORTIGUEIRA, PARANÁ.

RESPONSABILIDADE PELA ELABORAÇÃO DAS SEÇÕES DE DIAGNÓSTICO, AVALIAÇÃO DE IMPACTOS AMBIENTAIS, Insp.: 4269

29/08/2018

MEDIDAS MITIGADORAS E PROGRAMAS AMBIENTÁIS DOS SEGUINTES ITENS:CARÁCTERIZAÇÃO DO EMPREENDIMENTO E MEIO FÍSICO.

CreaWeb 1.08 T. R. de Jale

Assinatura do Contratante

Assinatura do Profissional

3º VIA - LOCAL DA OBRA/SERVIÇO Deve permanecer no local da obra/serviço, à disposição das equipes de fiscalização do Crea-PR. Central de Informações do CREA-PR 0800 041 0067

Comprovante de Transação Bancária

Boletos de Cobrança

Data da operação: 24/08/2018 - 11h26

Nº de controle: 281.629.616.454.254.616 | Documento: 0011346

Net Empresa

Conta de débito: Agência: 3329 | Conta: 0002812-6 | Tipo: Conta-Corrente

Empresa: Assessoria Tecnica Ambiental Ltda | CNPJ: 005.688.216/0001-05

Código de barras: 10490 81290 43010 100246 01838 946919 1 76350000008294

Banco destinatário: 104 - CAIXA ECONOMICA FEDERAL

Razao Social Não informado

Beneficiário:

Nome Fantasia Não informado

Beneficiário:

CPF/CNPJ Beneficiário: Não informado

Nome do Pagador: Não informado

CPF/CNPJ do pagador: Não informado

Razao Social Sacador Não informado

Avalista:

CPF/CNPJ Sacador Não informado

Avalista:

Instituição Recebedora: 237 - BANCO BRADESCO S.A.

Data de débito: 24/08/2018

Data de vencimento: 02/09/2018

Valor: R\$ 82,94

Desconto: R\$ 0,00

Abatimento: R\$ 0,00

Bonificação: R\$ 0,00

Multa: R\$ 0,00

Juros: R\$ 0,00

Valor total: R\$ 82,94

Descrição: CREA ART

A transação acima foi realizada por meio do Bradesco Net Empresa.

Autenticação

DPBfmWXg n*y@8eYI lqC5Yxwl f#GsVKt4 Ql2MhA86 ss28I#fK PHi5u8S3 y*@OAJ#G KYfBJml@ bpkP*SVQ zgfU2jG? XtqGdPOx Q79B72Av KoC7?QSI FIAUk5MG OOHqBudV F8WBPVw0 #pK#C5k? P?G8ZFM3 WayYiIKY Qq8um*Fr O#2SGfwr 04641198 13244002

SAC - Serviço de Alô Bradesco Apoio ao Cliente

0800 704 8383

Deficiente Auditivo ou de Fala 0800 722 0099

Cancelamentos, Reclamações e Informações. Atendimento 24 horas, 7 dias por semana.

Demais telefones consulte o site Fale Conosco.

Ouvidoria

0800 727 9933 Atendimento de segunda a sexta-feira, das 8h às 18h, exceto feriados.

CREA-PR Conselho Regional de Engenharia e Agronomia do Paraná Anotação de Responsabilidade Técnica Lei Fed 6496/77 Valorize sua Profissão: Mantenha os Projetos na Obra VIA - PROFISSIONAL

ART Nº 20183901928

Corresponsabilidade/Coautoria ART Corresp/Coautoria: 20183866294

O valor de R\$ 82,94 referente a esta ART foi pago em 24/08/2018 com a guia nº 100020183901928

Profissional Contratado: CLARISSA OLIVEIRA DIAS (CPF:064.781.509-50) Título Formação Prof.: ENGENHEIRA AMBIENTAL. Empresa contratada: ASSESSORIA TÉCNICA AMBIENTAL LTDA Nº Carteira: PR-106422/D - Nº Visto Crea: -

Contratante: KLABIN S/A

Endereço: AVENIDA BRASIL 32 HARMONIA CEP: 84275000 HARMONIA (TELEMACO BORBA) PR Fone:

Local da Obra/Serviço: FAZENDA APUCARANA GRANDE KM 2

DISTRITO DE NATINGUI - ORTIGUEIRA PR

Tipo de Contrato PRESTAÇÃO DE SERVIÇOS Ativ. Técnica 23 COORDENAÇÃO DE OBRA OU SERVIÇO TÉCNICO

1208 SERVIÇOS AFINS E CORRELATOS EM SANEAMENTO E MEIO-AMBIENTE Área de Comp.

ELABORAÇÃO DO RELATÓRIO DE IMPACTO NO MEIO AMBIENTE Tipo Obra/Serv - RIMA OUTROS 130

Serviços contratados

Nº Registro: 41043

CPF/CNPJ: 89.637.490/0001-45

Contrato:5100006727

Quadra CEP: 84350000

1 SERV

Dimensão

Dados Compl.

Data Inicip Data Conclusão 10/08/2018 05/10/2018

Lote:

VIr Obra R\$ 0,00 Base de cálculo:

VIr Contrato

R\$ 75.000,00

VIr Taxa R\$ 82,94

0

TABELA TAXA MÍNIMA Outras Informações sobre a natureza dos serviços contratados, dimensões, ARTs vinculadas, ARTs substituídas, contratantes, etc COORDENAÇÃO CONJUNTA E ELABORAÇÃO DO RELATÓRIO AMBIENTAL PRELIMINAR (RAP), CONFORME TERMO DE REFERÊNCIA DO INSTITUTO AMBIENTAL DO PARANÁ - IAP, PARA LICENCIAMENTO PRÉVIO DE AMPLIAÇÃO DA

UNIDADE PUMA DA KLABIN, EM ORTIGUEIRA, PARANÁ.

RESPONSABILIDADE PELA ELABORAÇÃO DAS SEÇÕES DE DIAGNÓSTICO, AVALIAÇÃO DE IMPACTOS AMBIENTAIS, MEDIDAS MITIGADORAS E PROGRAMAS AMBIENTAIS RELACIONADAS AO MEIO FÍSICO.

do contratante

Insp.: 4269

28/08/2018 CreaWeb 1,08

Assinatura do Profissional

1ª VIA - PROFISSIONAL Destina-se ao arquivo do Profissional/Empresa. Central de Informações do CREA-PR 0800 041 0067

Tipo de Contrato

CREA-PR Conselho Regional de Engenharia e Agronomia do Paraná Anotação de Responsabilidade Técnica Lei Fed 6496/77 Valorize sua Profissão: Mantenha os Projetos na Obra 2º VIA - ÓRGÃOS PÚBLICOS

ART Nº 20183901928

Corresponsabilidade/Coautoria ART Corresp/Coautoria: 20183866294

O valor de R\$ 82,94 referente a esta ART foi pago em 24/08/2018 com a guia nº 100020183901928

Profissional Contratado: CLARISSA OLIVEIRA DIAS (CPF:064.781.509-50) Título Formação Prof.: ENGENHEIRA AMBIENTAL. Empresa contratada: ASSESSORIA TÉCNICA AMBIENTAL LTDA Nº Carteira: PR-106422/D - Nº Visto Crea: -

Nº Registro: 41043

Contratante: KLABIN S/A Endereço: AVENIDA BRASIL 32 HARMONIA CPF/CNPJ: 89.637.490/0001-45

CEP: 84275000 HARMONIA (TELEMACO BORBA) PR Fone: Local da Obra/Serviço: FAZENDA APUCARANA GRANDE KM 2 DISTRITO DE NATIÑGUI - ORTIGUEIRA PR

Quadra CEP: 84350000 PRESTAÇÃO DE SERVIÇOS Dimensão

Ativ. Técnica COORDENAÇÃO DE OBRA OU SERVIÇO TÉCNICO

1208 SERVIÇOS AFINS E CORRELATOS EM SANEAMENTO E MEIO-AMBIENTE Área de Comp.

ELABORAÇÃO DO RELATÓRIO DE IMPACTO NO MEIO AMBIENTE

Tipo Obra/Serv - RIMA Serviços contratados 130 OUTROS

Dados Compl.

Contrato:5100006727

Data Início Data Conclusão

10/08/2018 05/10/2018

VIr Taxa R\$ 82,94 0

Lote:

1 SERV

Base de cálculo: TABELA TAXA MÍNIMA

Assinate

Outras Informações sobre a natureza dos serviços contratados, dimensões, ARTs vinculadas, ARTs substituídas, contratantes, etc COORDENAÇÃO CONJUNTA E ELABORAÇÃO DO RELATÓRIO AMBIENTAL PRELIMINAR (RAP), CONFORME TERMO DE REFERÊNCIA DO INSTITUTO AMBIENTAL DO PARANÁ - IAP, PARA LICENCIAMENTO PRÉVIO DE AMPLIAÇÃO DA UNIDADE PUMA DA KLABIN, EM ORTIGUEIRA, PARANÁ.

UNIDADE PUMA DA KLABIN, EM ORTIGUEIRA, PARANÁ.
RESPONSABILIDADE PELA ELABORAÇÃO DAS SEÇÕES DE DIAGNÓSTICO, AVALIAÇÃO DE IMPACTOS AMBIENTAIS, 28/08/2018

CreaWeb 1

Assinatura do Profissional

MEDIDAS MITIGADORAS E PROGRAMAS AMBIENTAIS RELACIONADAS AO MEIO FÍSICO.

Contratante 2ª VIA - ÓRGÃOS PÚBLICOS Destina-se à apresentação nos órgãos de administração pública, cartórios e outros. Central de Informações do CREA-PR 0800 041 0067

A autenticação deste documento poderá ser consultada através do site www.crea-pr.org.br

A Anotação de Responsabilidade Técnica (ART) foi instituída pela Lei Federal 6496/77, e sua aplicação está regulamentada pelo Conselho Federal de Engenharia e Agronomia (CONFEA) através da Resolução 1025/09.

Nº Registro: 41043

VIr Taxa

CREA-PR Conselho Regional de Engenharia e Agronomia do Paraná Anotação de Responsabilidade Técnica Lei Fed 6496/77 Valorize sua Profissão: Mantenha os Projetos na Obra 3ª VIA - LOCAL DA OBRA/SERVICO

Quadra:

ART Nº 20183901928

Corresponsabilidade/Coautoria ART Corresp/Coautoria: 20183866294

O valor de R\$ 82,94 referente a esta ART foi pago em 24/08/2018 com a guia nº 100020183901928

Nº Carteira: PR-106422/D - Nº Visto Crea: Profissional Contratado: CLARISSA OLIVEIRA DIAS (CPF:064.781.509-50) Título Formação Prof.: ENGENHEIRA AMBIENTAL

Empresa contratada: ASSESSORIA TÉCNICA AMBIENTAL LTDA

Contratante: KLABIN S/A

Endereço: AVENIDA BRASIL 32 HARMONIA

CEP: 84275000 HARMONIA (TELEMACO BORBA) PR Fone: Local da Obra/Serviço: FAZENDA APUCARANA GRANDE KM 2

DISTRITO DE NATINGUI - ORTIGUEIRA PR

Tipo de Contrato Ativ. Técnica

Área de Comp.

PRESTAÇÃO DE SERVIÇOS

23 COORDENAÇÃO DE OBRA OU SERVIÇO TÉCNICO 1208 SERVIÇOS AFINS E CORRELATOS EM SANEAMENTO E MEIO-AMBIENTE ELABORAÇÃO DO RELATÓRIO DE IMPACTO NO MEIO AMBIENTE

Tipo Obra/Serv 533 Serviços contratados

- RIMA 130 OUTROS

Dados Compl.

CPF/CNPJ: 89.637.490/0001-45

Dimensão

Contrato:5100006727

CEP: 84350000

Data Início Data Conclusão

10/08/2018 05/10/2018

R\$ 82.94

0

Lote:

1 SERV

Base de cálculo: TABELA TAXA MÍNIMA

Outras Informações sobre a natureza dos serviços contratados, dimensões, ARTs vinculadas, ARTs substituídas, contratantes, etc COORDENAÇÃO CONJUNTA E ELABORAÇÃO DO RELATÓRIO AMBIENTAL PRELIMINAR (RAP), CONFORME TERMO DE REFERÊNCIA DO INSTITUTO AMBIENTAL DO PARANÁ - IAP, PARA LICENCIAMENTO PRÉVIO DE AMPLIAÇÃO DA UNIDADE PUMA DA KLABIN, EM ORTIGUEIRA, PARANÁ.

RESPONSABILIDADE PELA ELABORAÇÃO DAS SEÇÕES DE DIAGNÓSTICO, AVALIAÇÃO DE IMPACTOS AMBIENTAIS, 28/08/2018 MEDIDAS MITIGADORAS E PROGRAMAS AMBIENTAIS RELACIONADAS AO MEIO FÍSICO.

Insp.: 4269 CreaWeb 1.08

Assinatura do Profissional

Assinatur Contratante

3ª VIA - LOCAL DA OBRA/SERVIÇO Deve permanecer no local da obra/serviço, à disposição das equipes de fiscalização do Crea-PR. Central de Informações do CREA-PR 0800 041 0067

Comprovante de Transação Bancária

Boletos de Cobrança

Data da operação: 24/08/2018 - 11h20

Nº de controle: 281.629.616.454.254.616 | Documento: 0011344

Net Empresa

Conta de débito: Agência: 3329 | Conta: 0002812-6 | Tipo: Conta-Corrente

Empresa: Assessoria Tecnica Ambiental Ltda | CNPJ: 005.688.216/0001-05

Código de barras: 10490 81290 43010 100246 01839 019229 2 76350000008294

Banco destinatário: 104 - CAIXA ECONOMICA FEDERAL

Razao Social Não informado

Beneficiário:

Nome Fantasia

Não informado

Beneficiário:

CPF/CNPJ Beneficiário: Não informado

Nome do Pagador:

Não informado

CPF/CNPJ do pagador: Não informado

Razao Social Sacador

Não informado

Avalista:

CPF/CNPJ Sacador Não informado

Avalista:

Instituição Recebedora: 237 - BANCO BRADESCO S.A.

Data de débito: 24/08/2018

Data de vencimento: 02/09/2018

Valor: R\$ 82,94

Desconto: R\$ 0,00

Abatimento: R\$ 0,00

Bonificação: R\$ 0,00

Multa: R\$ 0,00

Juros: R\$ 0,00

Valor total: R\$ 82,94

Descrição: CREA ART

A transação acima foi realizada por meio do Bradesco Net Empresa.

Autenticação

WmwCE5n@ HIA8Kcko WkvAPqxU oDFzzE3q ydIhnoWW KGezr7aa MJ?vBj5d 9wtnQBlq DAUVNWMN DJ6jGm@L MBdVppPt 7J21#Qf5 pCjvcJSK BYN8pSQ? 9HygDn8p JK5?Ae@c ywxMnUhX AdoJ218Z 40Fb7C5k gCtEg3H? 9hHPIr8a fmgSCgD2 04441198 13244002

SAC - Serviço de Apoio ao Cliente

Alô Bradesco 0800 704 8383 Deficiente Auditivo ou de Fala 0800 722 0099

Cancelamentos, Reclamações e Informações. Atendimento 24 horas, 7 dias por semana.

Demais telefones consulte o site Fale Conosco.

Ouvidoria

0800 727 9933

Atendimento de segunda a sexta-feira, das 8h às 18h, exceto feriados.

Serviço Público Federal CONSELHO FEDERAL CONSELHO REGIONAL DE BIOLOGIA - 7ª REGIÃO

ANOTAÇÃO DE RESPONSA	BILIDADE TÉCNICA - /	ART	N°: 07-1861/18			
	CONTRATADO					
Nome: DENILSON ROBERTO JUNGLES D	E CARVALHO R	egistro CRBio: 2	5892/07-D			
CPF: 01824681941	Т	el:				
E-mail: deni.biologo@gmail.com						
Endereço: RUA DR. JOÃO DE OLIVEIRA F	PASSOS,25					
Cidade: CURITIBA	16-	airro: BOM RETI	RO			
CEP: 80520-320	U	F: PR				
	CONTRATANTE					
Nome: Klabin S.A.			(1			
Registro profissional:	CPF/CGC/	CNPJ: 89.637.49	00/0001-45			
Endereço: AV BRIGADEIRO FARIA LIMA						
Cidade: SAO PAULO	Bairro: IT/	AIM BIBI				
CEP: 04538-132	UF: SP					
Site:						
	DA ATIVIDADE PROFI	SSIONAL				
Natureza: Prestação de Serviços - 1.7						
	RIO AMBIENTAL PRELIMI	NAR-RAP DA UN	ITDADE PUMA DA KLABIN			
Identificação: ELABORAÇÃO DO RELATÓRIO AMBIENTAL PRELIMINAR-RAP DA UNIDADE PUMA DA KLABI Município do trabalho: Ortigueira Município da sede: Curitiba UF: PR						
Forma de participação: Equipe		Perfil da equipe: Engenheiros, geólogos e geográfos				
Área do conhecimento: Ecología		Campo de atuação: Meio ambiente				
TERMO DE REFERÊNCIA DO IAP, PARA L EM ORTIGUEIRA-PR. RESPONSÁVEL PEL IMPACTOS AMBIENTAIS, MEDIDAS MITI	A ELABORAÇÃO DAS SEÇ	ÕES DE DIAGNÓ	ÓSTICO, AVALIAÇÃO DE			
Valor: R\$ 7500,00	Total de hora	Total de horas: 100				
Início: 10/08/2018	Término:					
ASSIN	IATURAS		Para verificar a			
Declaro serem verdade	iras as informações ac	ima	autenticidade desta AR			
Data: 25 /08/12 Assinatura do profissional	Data: /	acesse o CRBio7-24 horas em nosso site o depois o serviço Conferência de ART				
Solicitação de baixa por distrato Solicitação de baixa por conclusão Declaramos a conclusão do trabalho anotado na presente ART, razi pela qual solicitamos a devida BAIXA junto aos arquivos desse CRBi						
Assinatura do profissional Data: / /	Data: / Data: / /	A THE	ra do profissional arimbo do contratante			
Assinatura e carimbo do contratante		2.17				

Comprovante de Transação Bancária

Boletos de Cobrança

Data da operação: 28/08/2018 - 10h40

Nº de controle: 127.019.071.336.795.616 | Documento: 0011357

Net Empresa

Conta de débito: Agência: 3329 | Conta: 0002812-6 | Tipo: Conta-Corrente

Empresa: Assessoria Tecnica Ambiental Ltda | CNPJ: 005.688.216/0001-05

Código de barras: 10490 85663 57000 100040 90002 601418 6 76390000004639

Banco destinatário: 104 - CAIXA ECONOMICA FEDERAL

Razao Social Não informado

Beneficiário:

Nome Fantasia Não informado

Beneficiário:

CPF/CNPJ Beneficiário: Não informado

Nome do Pagador: Não informado

CPF/CNPJ do pagador: Não informado

Razao Social Sacador Não informado

Avalista:

CPF/CNPJ Sacador Não informado

Avalista:

Instituição Recebedora: 237 - BANCO BRADESCO S.A.

Data de débito: 28/08/2018

Data de vencimento: 06/09/2018

Valor: R\$ 46,39

Desconto: R\$ 0,00

Abatimento: R\$ 0,00

Bonificação: R\$ 0,00

Multa: R\$ 0,00

Juros: R\$ 0,00

Valor total: R\$ 46,39

Descrição: CREA ART

A transação acima foi realizada por meio do Bradesco Net Empresa.

Autenticação

XEL*icQ5 jyTTevlA gQtMbqks q50Zyull 7yL*HQUP j3GA?ZYr cIbXBNMi R50WoDfb NX*5BQ9R SSNZ8Wul ov*JD3PI DSp7q3AX iMTfJkL7 aOU@UGos GlvseP98 5ZH9Prh* NThphf3V 7*nvZcP# eGUdECGd #RHVSgTb x2x50xPq s9oSEAPK 08741138 13659002

SAC - Serviço de Apoio ao Cliente

Alô Bradesco 0800 704 8383 Deficiente Auditivo ou de Fala 0800 722 0099 Cancelamentos, Reclamações e Informações. Atendimento 24 horas, 7 dias por semana. Demais telefones consulte o site Fale Conosco.

Ouvidoria

0800 727 9933

Atendimento de segunda a sexta-feira, das 8h às 18h, exceto feriados.

CREA-PR Conselho Regional de Engenharia e Agronomia do Paraná Anotação de Responsabilidade Técnica Lei Fed 6496/77 Valorize sua Profissão: Mantenha os Projetos na Obra 1ª VIA - PROFISSIONAL

ART N° 20183923670 Vinculação

ART Vinculada: 20183866294 Registro de atividades diferenciadas

O valor de R\$ 82,94 referente a esta ART foi pago em 28/08/2018 com a guia nº 100020183923670

Profissional Contratado: FABIO MANASSES (CPF:036.343.789-48) Título Formação Prof.: GEOLOGO. Empresa contratada: ASSESSORIA TÉCNICA AMBIENTAL LTDA Nº Carteira: PR-79674/D - Nº Visto Crea: Nº Registro: 41043 CPF/CNPJ: 89.637.490/0001-45

Contratante: KLABIN S/A Endereço: AVENIDA BRASIL 32 HARMONIA

CEP: 84275000 HARMONIA (TELEMACO BORBA) PR Fone: Contrato:5100006727 Local da Obra/Serviço: FAZENDA APUCARANA GRANDE KM 2 DISTRITO DE NATINGUI - ORTIGUEIRA PR Quadra: CEP: 84350000

4 PRESTAÇÃO DE SERVIÇOS
14 CONDUÇÃO DE TRABALHO TÉCNICO
5100SERVIÇOS TÉC PROFISSIONAIS EM GEOLOGIA Tipo de Contrato Ativ. Técnica Área de Comp.

Tipo Obra/Serv 394 RELATÓRIO AMBIENTAL

Serviços contratados OUTROS

Dados Compl.

Dimensão

Data Início 10/08/2018 05/10/2018

VIr Obra R\$ 0,00 VIr Contrato R\$ 75.000,00 VIr Taxa R\$ 82.94 0 Base de cálculo: TABELA TAXA MÍNIMA

Outras Informações sobre a natureza dos serviços contratados, dimensões, ARTs vinculadas, ARTs substituídas, contratantes, etc ELABORAÇÃO DO RELATÓRIO AMBIENTAL PRELIMINAR (RAP), EM EQUIPE MULTIDISCIPLINAR, CONFORME TERMO DE REFERÊNCIA DO INSTITUTO AMBIENTAL DO PARANÁ - IAP, PARA LICENCIAMENTO PRÉVIO DE AMPLIAÇÃO DA UNIDADE PUMA DA KLABIN, EM ORTIGUEIRA, PARANÁ.

RESPONSABILIDADE PELA ELABORAÇÃO DAS SEÇÕES DE DIAGNÓSTICO, AVALIAÇÃO DE IMPACTOS AMBIENTAIS, MEDIDAS MITIGADORAS E PROGRAMAS AMBIENTAIS DOS SEGUINTES ITENS:
- GEOLOGIA, GEOMOR# PLOGIA, PEDOLOGIA E SUSCETIBILIDADE À OCORRÊNCIA DE PROCESSOS DE DINÂMICA

SUPERFICIAL

Insp.: 4269 31/08/2018 CreaWeb 1.08

Lote:

1 SERV

sinatura do Profissional

1ª VIA - PROFISSIONAL Destina-se ao arquivo do Profissional/Empresa.

Contratante

Central de Informações do CREA-PR 0800 041 0067

A autenticação deste documento poderá ser consultada através do site www.crea-pr.org.br

"CLÁUSULA COMPROMISSÓRIA: As partes, livremente e de comum acordo, decidem que qualquer conflito ou litígio originado do presente contrato, inclusive no tocante à sua interpretação ou execução, será definitivamente resolvido por arbitragem, de acordo com as Leis 9,307 de 23 de setembro de 1996 e 13.129 de 26 de maio de 2015, por meio da Câmara de Mediação e Arbitragem do Crea-PR, localizada à Rua Dr. Zamenhof, 35, Alto da Glória, Curitiba, Paraná, e em conformidade com o Regulamento. Ao optarem pela inserção da presente cláusula neste contrato, as partes declaram conhecer o referido Regulamento e concordar, em especial com os seus termos.".

Contratante/Proprietário

Profissional Responsável

Para a adesão à Arbitragem, as assinaturas das partes são obrigatórias.

CREA-PR Conselho Regional de Engenharia e Agronomia do Paraná Anotação de Responsabilidade Técnica Lei Fed 6496/77 Valorize sua Profissão: Mantenha os Projetos na Obra 2º VIA - ÓRGÃOS PÚBLICOS

ART Nº 20183923670

Vinculação ART Vinculada: 20183866294 Registro de atividades diferenciadas

) valor de	R\$ 82,94	referente a	esta ART	foi pago	em 28/08/2018	com a	guia nº	100020183923670
------------	-----------	-------------	----------	----------	---------------	-------	---------	-----------------

Profissional Contratado: FABIO MANASSES (CPF:036.343.789-48) Nº Carteira: PR-79674/D - Nº Visto Crea: -Título Formação Prof.: GEOLOGO. Empresa contratada: ASSESSORIA TÉCNICA AMBIENTAL LTDA Nº Registro: 41043 Contratante: KLABIN S/A CPF/CNPJ: 89.637.490/0001-45 Endereço: AVENIDA BRASIL 32 HARMONIA CEP: 84275000 HARMONIA (TELEMACO BORBA) PR Fone: Contrato:5100006727 Local da Obra/Serviço: FAZENDA APUCARANA GRANDE KM 2 Quadra: Lote: DISTRITO DE NATINGUI - ORTIGUEIRA PR CEP: 84350000 PRESTAÇÃO DE SERVIÇOS Tipo de Contrato Dimensão 1 SERV Ativ. Técnica CONDUÇÃO DE TRABALHO TÉCNICO Área de Comp. 5100SERVIÇOS TÉC PROFISSIONAIS EM GEOLOGIA 394 RELATÓRIO AMBIENTAL Tipo Obra/Serv Serviços contratados

0

Dados Compl Data Início Data Conclusão

10/08/2018 05/10/2018

VIr Taxa

R\$ 82.94

0

Base de cálculo: TABELA TAXA MÍNIMA

Outras Informações sobre a natureza dos serviços contratados, dimensões, ARTs vinculadas, ARTs substituídas, contratantes, etc ELABORAÇÃO DO RELATÓRIO AMBIENTAL PRELIMINAR (RAP), EM EQUIPE MULTIDISCIPLINAR, CONFORME TERMO DE REFERÊNCIA DO INSTITUTO AMBIENTAL DO PARANÁ - IAP, PARA LICENCIAMENTO PRÉVIO DE AMPLIAÇÃO DA UNIDADE PUMA DA KLABIN, EM ORTIGUEIRA, PARANÁ.

RESPONSABILIDADE PELA ELABORAÇÃO DAS SEÇÕES DE DIAGNÓSTICO, AVALIAÇÃO DE IMPACTOS AMBIENTAIS, MEDIDAS MITIGADORAS E PROGRAMAS AMBIENTAIS DOS SEGUINTES ITENS:

Insp.: 4269 31/08/2018

GEOLOGIA, GEOMORFOLOGIA, PEDOLOGIA E SUSCETIBILIDADE À OCORRÊNCIA DE PROCESSOS DE DINÂMICA SUPERFICIAL

CreaWeb 1.08

Assinatura do Contratante

Assinatura do Profissional

2ª VIA - ÓRGÃOS PÚBLICOS Destina-se à apresentação nos órgãos de administração pública, cartórios e outros. Central de Informações do CREA-PR 0800 041 0067

A autenticação deste documento poderá ser consultada através do site www.crea-pr.org.br

"CLÁUSULA COMPROMISSÓRIA: As partes, livremente e de comum acordo, decidem que qualquer conflito ou litígio originado do presente contrato, inclusive no tocante à sua interpretação ou execução, será definitivamente resolvido por arbitragem, de acordo com as Leis 9.307 de 23 de setembro de 1996 e 13.129 de 26 de maio de 2015, por meio da Câmara de Mediação e Arbitragem do Crea-PR, localizada à Rua Dr. Zamenhof, 35, Alto da Glória, Curitiba, Paraná, e em conformidade com o Regulamento. Ao optarem pela inserção da presente cláusula neste contrato, as partes declaram conhecer o referido Regulamento e concordar, em especial e expressamente, com os seus termos.".

Contratante/Proprietário

Profissional Responsável

Para a adesão à Arbitragem, as assinaturas das partes são obrigatórias.

CREA-PR Conselho Regional de Engenharia e Agronomia do Paraná Anotação de Responsabilidade Técnica Lei Fed 6496/77 Valorize sua Profissão: Mantenha os Projetos na Obra 3º VIA - LOCAL DA OBRA/SERVIÇO

ART Nº 20183923670

Vinculação ART Vinculada: 20183866294 Registro de atividades diferenciadas

O valor de R\$ 82,94 referente a esta ART foi pago em 28/08/2018 com a guia nº 100020183923670

Profissional Contratado: FABIO MANASSES (CPF:036.343.789-48) Nº Carteira: PR-79674/D - Nº Visto Crea: -Título Formação Prof.: GEOLOGO. Empresa contratada: ASSESSORIA TÉCNICA AMBIENTAL LTDA Nº Registro: 41043 Contratante: KLABIN S/A CPF/CNPJ: 89.637.490/0001-45 Endereço: AVENIDA BRASIL 32 HARMONIA CEP: 84275000 HARMONIA (TELEMACO BORBA) PR Fone: Contrato:5100006727 Local da Obra/Serviço: FAZENDA APUCARANA GRANDE KM 2 Quadra: Lote: DISTRITO DE NATINGUI - ORTIGUEIRA PR CEP: 84350000 Tipo de Contrato Ativ. Técnica 4 PRESTAÇÃO DE SERVIÇOS 14 CONDUÇÃO DE TRABALHO TÉCNICO 5100SERVIÇOS TÉC PROFISSIONAIS EM GEOLOGIA Dimensão 1 SERV Área de Comp. Tipo Obra/Serv 394 RELATÓRIO AMBIENTAL Serviços contratados OUTROS

Dados Compl.

0

Data Início Data Conclusi

10/08/2018 05/10/2018

R\$ 82 94

0

Base de cálculo: TABELA TAXA MÍNIMA

Outras Informações sobre a natureza dos serviços contratados, dimensões, ARTs vinculadas, ARTs substituídas, contratantes, etc ELABORAÇÃO DO RELATÓRIO AMBIENTAL PRELIMINAR (RAP), EM EQUIPE MULTIDISCIPLINAR, CONFORME TERMO DE REFERÊNCIA DO INSTITUTO AMBIENTAL DO PARANÁ - IAP, PARA LICENCIAMENTO PRÉVIO DE AMPLIAÇÃO DA UNIDADE PUMA DA KLABIN, EM ORTIGUEIRA, PARANÁ.

RESPONSABILIDADE PELA ELABORAÇÃO DAS SEÇÕES DE DIAGNÓSTICO, AVALIAÇÃO DE IMPACTOS AMBIENTAIS, MEDIDAS MITIGADORAS E PROGRAMAS AMBIENTAIS DOS SEGUINTES ITENS:

GEOLOGIA, GEOMORFOLOGIA, PEDOLOGIA E SUSCETIBILIDADE À OCORRÊNCIA DE PROCESSOS DE DINÂMICA SUPERFICIAL

Insp.: 4269 31/08/2018 CreaWeb 1.08

inatura do Prof sional

3ª VIA - LOCAL DA OBRA/SERVIÇO Deve permanecer no local da obra/serviço, à disposição das equipes de fiscalização do Crea-PR. Central de Informações do CREA-PR 0800 041 0067

A autenticação deste documento poderá ser consultada através do site www.crea-pr.org.br

"CLÁUSULA COMPROMISSÓRIA: As partes, livremente e de comum acordo, decidem que qualquer conflito ou litígio originado do presente contrato, inclusive no tocante à sua interpretação ou execução, será definitivamente resolvido por arbitragem, de acordo com as Leis 9.307 de 23 de setembro de 1996 e 13.129 de 26 de maio de 2015, por meio da Câmara de Mediação e Arbitragem do Crea-PR, localizada à Rua Dr. Zamenhof, 35, Alto da Glória, Curitiba, Paraná, e em conformidade com o Regulamento. Ao optarem pela inserção da presente cláusula neste contrato, as partes declaram conhecer o referido Regulamento e concordar, em especial e expressamente, com os seus termos.".

Contratante/Proprietário

Profissional Responsável

VIr Taxa

Para a adesão à Arbitragem, as assinaturas das partes são obrigatórias.

Comprovante de Transação Bancária

Boletos de Cobrança

Data da operação: 28/08/2018 - 10h43

Nº de controle: 127.019.071.336.795.616 | Documento: 0011358

Net Empresa

Conta de débito: Agência: 3329 | Conta: 0002812-6 | Tipo: Conta-Corrente

Empresa: Assessoria Tecnica Ambiental Ltda | CNPJ: 005.688.216/0001-05

Código de barras: 10490 81290 43010 100246 01839 236757 1 76360000008294

Banco destinatário: 104 - CAIXA ECONOMICA FEDERAL

Razao Social Não informado

Beneficiário:

Nome Fantasia Não informado

Beneficiário:

CPF/CNPJ Beneficiário: Não informado

Nome do Pagador: Não informado

CPF/CNPJ do pagador: Não informado

Razao Social Sacador Não informado

Avalista:

CPF/CNPJ Sacador Não informado

Avalista:

Instituição Recebedora: 237 - BANCO BRADESCO S.A.

Data de débito: 28/08/2018

Data de vencimento: 03/09/2018

Valor: R\$ 82,94

Desconto: R\$ 0,00

Abatimento: R\$ 0,00

Bonificação: R\$ 0,00

Multa: R\$ 0,00

Juros: R\$ 0,00

Valor total: R\$ 82,94

Descrição: CREA ART

A transação acima foi realizada por meio do Bradesco Net Empresa.

Autenticação

r6?CH#8B *t2tHbwY yyZSa#B9 WZ*9a#9G imXTESM3 B4vbE7lr I*swrhiL A?FIhb5g TjNo33gv t80s*yHJ lGIJF@xB JHFqaD6a 7vimlvus 6Vr?LJ@6 XVGuUSJk @lkss7Cm Iwqaq?42 alQ@064b miXJDE2? kzmHivzU e6a?rNWW czYSGv9y 08841198 13354002

SAC - Serviço de Alô Bradesco

Apoio ao Cliente 0800 704 8383

Deficiente Auditivo ou de Fala

0800 722 0099

Cancelamentos, Reclamações e Informações. Atendimento 24 horas, 7 dias por semana.

Demais telefones consulte o site Fale Conosco.

Ouvidoria

0800 727 9933

Atendimento de segunda a sexta-feira, das 8h às 18h, exceto feriados.

CREA-PR Conselho Regional de Engenharia e Agronomia do Paraná Anotação de Responsabilidade Técnica Lei Fed 6496/77 Valorize sua Profissão: Mantenha os Projetos na Obra 1ª VIA - PROFISSIONAL

ART Nº 20183905508

Vinculação ART Vinculada: 20183866294 Registro de atividades diferenciadas

O valor de R\$ 82,94 referente a esta ART foi pago em 24/08/2018 com a guia nº 100020183905508

Profissional Contratado: FERNANDO ALBERTO PROCHMANN (CPF:035.168.999-05)

Nº Carteira: PR-86218/D - Nº Visto

Crea: -

CPF/CNPJ: 89.637.490/0001-45

Contrato:5100006727

Dimensão

CEP: 84350000

Quadra:

Nº Registro: 41043

Título Formação Prof.: ENGENHEIRO BIOQUÍMICO, ENGENHEIRO DE SEGURANCA DO TRABALHO.

Empresa contratada: ASSESSORIA TÉCNICA AMBIENTAL LTDA

Contratante: KLABIN S/A

Endereço: AVENIDA BRASIL 32 HARMONIA

CEP: 84275000 HARMONIA (TELEMACO BORBA) PR Fone: Local da Obra/Serviço: FAZENDA APUCARANA GRANDE KM 2

DISTRITO DE NATINGUI - ORTIGUEIRA PR

Tipo de Contrato

Ativ. Técnica

Área de Comp. Tipo Obra/Serv Serviços contratados

PRESTAÇÃO DE SERVIÇOS

22 SUPERVISÃO DE OBRA OU SERVIÇO TÉCNICO 4108SERVIÇOS AFINS E CORRELATOS EM ENG QUÍMICA

132 OUTRAS OBRAS/SERVIÇOS 165 SUPERVISÃO/COORD/ORIENTAÇÃO

Dados Compl.

Data Início

Data Conclusão

10/08/2018 05/10/2018

Lote:

1 SERV

VIr Obra

R\$ 0,00

VIr Contrato

R\$ 75.000,00

R\$ 82,94 VIr Taxa

0

29/08/2018

CreaWeb 1.08

Base de cálculo: TABELA TAXA MÍNIMA

Outras Informações sobre a natureza dos serviços contratados, dimensões, ARTs vinculadas, ARTs substituídas, contratantes, etc SUPERVISÃO DA ELABORAÇÃO DO RELATÓRIO AMBIENTAL PRELIMINAR (RAP), CONFORME TERMO DE Insp.: 4269

REFERÊNCIA DO INSTITUTO AMBIENTAL DO PARANÁ - IAP, PARA LICENCIAMENTO PRÉVIO DE AMPLIAÇÃO DA UNIDADE PUMA DA KLABIN, EM ORTIGUEIRA, PARANÁ.

Assinatura do Contratante

Assinatura do Profissional

1ª VIA - PROFISSIONAL Destina-se ao arquivo do Profissional/Empresa. Central de Informações do CREA-PR 0800 041 0067

CREA-PR Conselho Regional de Engenharia e Agronomia do Paraná Anotação de Responsabilidade Técnica Lei Fed 6496/77 Valorize sua Profissão: Mantenha os Projetos na Obra 2ª VIA - ÓRGÃOS PÚBLICOS

Profissional Contratado: FERNANDO ALBERTO PROCHMANN (CPF:035.168.999-05)

VIr Taxa R\$ 82,94

ART Nº 20183905508

Vinculação ART Vinculada: 20183866294 Registro de atividades diferenciadas

O valor de R\$ 82,94 referente a esta ART foi pago em 24/08/2018 com a guia nº 100020183905508

Nº Carteira: PR-86218/D - Nº Visto Crea: -Título Formação Prof.: ENGENHEIRO BIOQUÍMICO, ENGENHEIRO DE SEGURANCA DO TRABALHO. Empresa contratada: ASSESSORIA TÉCNICA AMBIENTAL LTDA Nº Registro: 41043 Contratante: KLABIN S/A CPF/CNPJ: 89.637.490/0001-45 Endereço: AVENIDA BRASIL 32 HARMONIA CEP: 84275000 HARMONIA (TELEMACO BORBA) PR Fone: Contrato:5100006727 Local da Obra/Serviço: FAZENDA APUCARANA GRANDE KM 2 Quadra: Lote: DISTRITO DE NATINGUI - ORTIGUEIRA PR CEP: 84350000 Tipo de Contrato PRESTAÇÃO DE SERVIÇOS Dimensão 1 SERV 22 SUPERVISÃO DE OBRA OU SERVIÇO TÉCNICO Ativ. Técnica Área de Comp. 4108SERVIÇOS AFINS E CORRELATOS EM ENG QUÍMICA Tipo Obra/Serv 132 OUTRAS OBRAS/SERVIÇOS Serviços 165 SUPERVISÃO/COORD/ORIENTAÇÃO contratados Dados Compl. Data Início 10/08/2018 Data Conclusão 05/10/2018

Base de cálculo: TABELA TAXA MÍNIMA

Outras Informações sobre a natureza dos serviços contratados, dimensões, ARTs vinculadas, ARTs substituídas, contratantes, etc SUPERVISÃO DA ELABORAÇÃO DO RELATÓRIO AMBIENTAL PRELIMINAR (RAP), CONFORME TERMO DE Insp.: 4269 REFERÊNCIA DO INSTITUTO AMBIENTAL DO PARANÁ - IAP, PARA LICENCIAMENTO PRÉVIO DE AMPLIAÇÃO DA 29/08/2018 UNIDADE PUMA DA KLABIN, EM ORTIGUEIRA, PARANÁ. CreaWeb 1.08

Assinatura do Contratante

2º VIA - ÓRGÃOS PÚBLICOS Destina-se à apresentação nos órgãos de administração pública, cartórios e outros. Central de Informações do CREA-PR 0800 041 0067

A autenticação deste documento poderá ser consultada através do site www.crea-pr.org.br

A Anotação de Responsabilidade Técnica (ART) foi instituída pela Lei Federal 6496/77, e sua aplicação está regulamentada pelo Conselho Federal de Engenharia e Agronomia (CONFEA) através da Resolução 1025/09.

CREA-PR Conselho Regional de Engenharia e Agronomia do Paraná Anotação de Responsabilidade Técnica Lei Fed 6496/77 Valorize sua Profissão: Mantenha os Projetos na Obra 38 VIA - LOCAL DA OBRA/SERVIÇO

ART Nº 20183905508

Vinculação ART Vinculada: 20183866294 Registro de atividades diferenciadas

O valor de R\$ 82,94 referente a esta ART foi pago em 24/08/2018 com a guia nº 100020183905508

Profissional Contratado: FERNANDO ALBERTO PROCHMANN (CPF:035.168.999-05)

Nº Carteira: PR-86218/D - Nº Visto

Crea: -

CPF/CNPJ: 89.637.490/0001-45

Contrato:5100006727

CEP: 84350000

Quadra:

Nº Registro: 41043

Título Formação Prof.: ENGENHEIRO BIOQUÍMICO, ENGENHEIRO DE SEGURANCA DO TRABALHO.

Empresa contratada: ASSESSORIA TÉCNICA AMBIENTAL LTDA

Contratante: KLABIN S/A

Endereço: AVENIDA BRASIL 32 HARMONIA

CEP: 84275000 HARMONIA (TELEMACO BORBA) PR Fone: Local da Obra/Serviço: FAZENDA APUCARANA GRANDE KM 2

DISTRITO DE NATINGUI - ORTIGUEIRA PR

Tipo de Contrato Ativ. Técnica

PRESTAÇÃO DE SERVIÇOS 22

SUPERVISÃO DE OBRA OU SERVIÇO TÉCNICO 4108SERVIÇOS AFINS E CORRELATOS EM ENG QUÍMICA

Área de Comp. Tipo Obra/Serv Serviços

contratados

132 OUTRAS OBRAS/SERVIÇOS

165 SUPERVISÃO/COORD/ORIENTAÇÃO

Dados Compl.

Dimensão

Data Início Data Conclusão

10/08/2018 05/10/2018

Lote:

1 SERV

VIr Taxa R\$ 82,94

0

Outras Informações sobre a natureza dos serviços contratados, dimensões, ARTs vinculadas, ARTs substituídas, contratantes, etc SUPERVISÃO DA ELABORAÇÃO DO RELATÓRIO AMBIENTAL PRELIMINAR (RAP), CONFORME TERMO DE

REFERÊNCIA DO INSTITUTO AMBIENTAL DO PARANÁ - IAP, PARA LICENCIAMENTO PRÉVIO DE AMPLIAÇÃO DA

Insp.: 4269 29/08/2018

UNIDADE PUMA DA KLABIN, EM ORTIGUEIRA, PARANÁ.

CreaWeb 1.08

Assinatura do Contratante

Base de cálculo: TABELA TAXA MÍNIMA

Assinatura do Profissional

3º VIA - LOCAL DA OBRA/SERVIÇO Deve permanecer no local da obra/serviço, à disposição das equipes de fiscalização do Crea-PR. Central de Informações do CREA-PR 0800 041 0067

Comprovante de Transação Bancária

Boletos de Cobrança

Data da operação: 24/08/2018 - 11h12

N° de controle: 281.629.616.454.254.616 | Documento: 0011341

Net Empresa

Conta de débito: Agência: 3329 | Conta: 0002812-6 | Tipo: Conta-Corrente

Empresa: Assessoria Tecnica Ambiental Ltda | CNPJ: 005.688.216/0001-05

Código de barras: 10490 81290 43010 100246 01839 055025 4 76350000008294

Banco destinatário: 104 - CAIXA ECONOMICA FEDERAL

Razao Social Não informado

Beneficiário:

Nome Fantasia Não informado

Beneficiário:

CPF/CNPJ Beneficiário: Não informado

Nome do Pagador: Não informado

CPF/CNPJ do pagador: Não informado

Razao Social Sacador Não informado

Avalista:

CPF/CNPJ Sacador Não informado

Avalista:

Instituição Recebedora: 237 - BANCO BRADESCO S.A.

Data de débito: 24/08/2018

Data de vencimento: 02/09/2018

Valor: R\$ 82,94

Desconto: R\$ 0,00

Abatimento: R\$ 0,00

Bonificação: R\$ 0,00

Multa: R\$ 0,00

Juros: R\$ 0,00

Valor total: R\$ 82,94

Descrição: CREA ART

A transação acima foi realizada por meio do Bradesco Net Empresa.

Autenticação

fHXOpWt8 g#mwH#nG a9@oPD6N IwMQePSe KQU7NdZO FmALjliH 418nfGaD LLzIICYo MBda76bQ 2v?ByjEF 3MKFTn93 gYRY8c6X y3zYXsbC F61y*DN3 I29@5WOg zbZh4Uq9 VfLX9cQt 3Qm2xyPo kK2IZ2po meAJjlku aWaB2OKD QwsSAwCE 04141198 13244002

SAC - Serviço de Apoio ao Cliente 0800 704 8383

Alô Bradesco

Deficiente Auditivo ou de Fala 0800 722 0099

Cancelamentos, Reclamações e Informações. Atendimento 24 horas, 7 dias por semana.

Demais telefones consulte o site Fale Conosco.

Ouvidoria

0800 727 9933 Atendimento de segunda a sexta-feira, das 8h às 18h, exceto feriados.

CREA-PR Conselho Regional de Engenharia e Agronomia do Paraná Anotação de Responsabilidade Técnica Lei Fed 6496/77 Valorize sua Profissão: Mantenha os Projetos na Obra 1ª VIA - PROFISSIONAL

ART N° 20183910250 Vinculação ART Vinculada: 20183866294 Registro de atividades

diferenciadas

O valor de R\$ 82,94 referente a esta ART foi pago em 27/08/2018 com a guia nº 100020183910250

Profissional Contratado: ORESTES JARENTCHUK JUNIOR (CPF:030.052.039- Nº Carteira: PR-110236/D - Nº Visto Crea: -Título Formação Prof.: GEOGRAFO. Empresa contratada: ASSESSORIA TÉCNICA AMBIENTAL LTDA Nº Registro: 41043 Contratante: KLABIN S/A CPF/CNPJ: 89.637.490/0001-45 Endereço:AVENIDA BRASIL 32 HARMONIA CEP: 84275000 HARMONIA (TELEMACO BORBA) PR Fone: Local da Obra/Serviço: FAZENDA APUCARANA GRANDE KM 2 Contrato:5100006727 Quadra: Lote: DISTRITO DE NATINGUI - ORTIGUEIRA PR CEP: 84350000 Tipo de Contrato Dimensão 1 SERV

4 PRESTAÇÃO DE SERVIÇOS 2 ESTUDO, PLANEJAMENTO, PROJETO, ESPECIFICAÇÕES 6406SERVIÇOS AFINS E CORRELATOS EM GEOGRAFIA Ativ. Técnica Área de Comp. Tipo Obra/Serv

136 OUTRAS OBRAS/SERVIÇOS Serviços 130 OUTROS

contratados

Dados Compl.

Data Início Data Conclusão 10/08/2018 05/10/2018

VIr Contrato R\$ 75.000,00 VIr Taxa R\$ 82.94 0 Base de cálculo: TABELA TAXA MÍNIMA

Outras Informações sobre a natureza dos serviços contratados, dimensões, ARTs vinculadas, ARTs substituídas, contratantes, etc ELABORAÇÃO DO RELATÓRIO AMBIENTAL PRELIMINAR (RAP), EM EQUIPE MULTIDISCIPLINAR, CONFORME TERMO DE REFERÊNCIA DO INSTITUTO AMBIENTAL DO PARANÁ - IAP, PARA LICENCIAMENTO PRÉVIO DE AMPLIAÇÃO DA

UNIDADE PUMA DA KLABIN, EM ORTIGUEIRA, PARANÁ.
RESPONSABILIDADE PELOS MAPEAMENTOS TEMÁTICOS E ELABORAÇÃO DAS SEÇÕES DE DIAGNÓSTICO, AVALIAÇÃO DE IMPACTOS AMBIENTAIS, MEDIDAS MITIGADORAS E PROGRAMAS AMBIENTAIS DO MEIO SOCIOECONÔMICO

Insp.: 4269 03/09/2018 CreaWeb 1.08

Assinatura do Profissional

Assinatura do Contratante

1ª VIA - PROFISSIONAL Destina-se ao arquivo do Profissional/Empresa. Central de Informações do CREA-PR 0800 041 0067

Nº Registro: 41043

CREA-PR Conselho Regional de Engenharia e Agronomia do Paraná Anotação de Responsabilidade Técnica Lei Fed 6496/77 Valorize sua Profissão: Mantenha os Projetos na Obra 2ª VIA - ÓRGÃOS PÚBLICOS

ART Nº 20183910250

Vinculação ART Vinculada: 20183866294 Registro de atividades diferenciadas

O valor de R\$ 82,94 referente a esta ART foi pago em 27/08/2018 com a guia nº 100020183910250

Profissional Contratado: ORESTES JARENTCHUK JUNIOR (CPF:030.052.039- Nº Carteira: PR-110236/D - Nº Visto Crea: -

Título Formação Prof.: GEOGRAFO.

Empresa contratada: ASSESSORIA TÉCNICA AMBIENTAL LTDA

Contratante: KLABIN S/A Endereço: AVENIDA BRASIL 32 HARMONIA

CEP: 84275000 HARMONIA (TELEMACO BORBA) PR Fone:

Local da Obra/Serviço: FAZENDA APUCARANA GRANDE KM 2

Tipo Obra/Serv

Serviços contratados

DISTRITO DE NATINGUI - ORTIGUEIRA PR

Tipo de Contrato 4 PRESTAÇÃO DE SERVIÇOS

Ativ. Técnica 2 ESTUDO, PLANEJAMENTO, PROJETO, ESPECIFICAÇÕES
Área de Comp. 6406SERVIÇOS AFINS E CORRELATOS EM GEOGRAFIA

136 OUTRAS OBRAS/SERVIÇOS

Dados Compl.

Dimensão

0

Data Início Data Conclusão

CPF/CNPJ: 89.637.490/0001-45

Contrato:5100006727

CEP: 84350000

Quadra:

10/08/2018 05/10/2018

Lote:

1 SERV

VIr Taxa R\$ 82,94 0

Base de cálculo: TABELA TAXA MÍNIMA

Outras Informações sobre a natureza dos serviços contratados, dimensões, ARTs vinculadas, ARTs substituídas, contratantes, etc ELABORAÇÃO DO RELATÓRIO AMBIENTAL PRELIMINAR (RAP), EM EQUIPE MULTIDISCIPLINAR, CONFORME TERMO DE REFERÊNCIA DO INSTITUTO AMBIENTAL DO PARANÁ - IAP, PARA LICENCIAMENTO PRÉVIO DE AMPLIAÇÃO DA UNIDADE PUMA DA KLABIN, EM ORTIGUEIRA, PARANÁ.

RESPONSABILIDADE PELOS MAPEAMENTOS TEMÁTICOS E ELABORAÇÃO DAS SEÇÕES DE DIAGNÓSTICO, AVALIAÇÃO DE IMPACTOS AMBIENTAIS, MEDIDAS MITIGADORAS E PRÓGRAMAS AMBIENTAIS DO MEIO

SOCIOÉCONÓMICO.

Insp.: 4269 03/09/2018

CreaWeb 1.08

Assinatura do Profissional

Assinatura do Contratante

2ª VIA - ÓRGÃOS PÚBLICOS Destina-se à apresentação nos órgãos de administração pública, cartórios e outros. Central de Informações do CREA-PR 0800 041 0067

A autenticação deste documento poderá ser consultada através do site www.crea-pr.org.br

A Anotação de Responsabilidade Técnica (ART) foi instituída pela Lei Federal 6496/77, e sua aplicação está regulamentada pelo Conselho Federal de Engenharia e Agronomia (CONFEA) através da Resolução 1025/09.

CREA-PR Conselho Regional de Engenharia e Agronomia do Paraná Anotação de Responsabilidade Técnica Lei Fed 6496/77 Valorize sua Profissão: Mantenha os Projetos na Obra 3ª VIA - LOCAL DA OBRA/SERVIÇO

ART Nº 20183910250

Vinculação ART Vinculada: 20183866294 Registro de atividades diferenciadas

Insp.: 4269

03/09/2018

CreaWeb 1.08

Assinatura do Profissional

O valor de R\$ 82,94 referente a esta ART foi pago em 27/08/2018 com a guia nº 100020183910250

Profissional Contratado: ORESTES JARENTCHUK JUNIOR (CPF:030.052.039- Nº Carteira: PR-110236/D - Nº Visto Crea: -56) Título Formação Prof.: GEOGRAFO.

Empresa contratada: ASSESSORIA TÉCNICA AMBIENTAL LTDA Nº Registro: 41043

Contratante: KLABIN S/A CPF/CNPJ: 89.637.490/0001-45

Endereço: AVENIDA BRASIL 32 HARMONIA CEP: 84275000 HARMONIA (TELEMACO BORBA) PR Fone: Contrato:5100006727

Local da Obra/Serviço: FAZENDA APUCARANA GRANDE KM 2 Quadra: Lote: DISTRITO DE NATINGUI - ORTIGUEIRA PR CEP: 84350000 Tipo de Contrato Dimensão 1 SERV

4 PRESTAÇÃO DE SERVIÇOS 2 ESTUDO, PLANEJAMENTO, PROJETO, ESPECIFICAÇÕES 6406SERVIÇOS AFINS E CORRELATOS EM GEOGRAFIA Ativ. Técnica Área de Comp

Tipo Obra/Serv 136 OUTRAS OBRAS/SERVIÇOS

Serviços contratados

Assinatura do Contratante

Dados Compl.

Data Início Data Conclusão 10/08/2018 05/10/2018 VIr Taxa R\$ 82.94 0

Base de cálculo: TABELA TAXA MÍNIMA Outras Informações sobre a natureza dos serviços contratados, dimensões, ARTs vinculadas, ARTs substituídas, contratantes, etc ELABORAÇÃO DO RELATÓRIO AMBIENTAL PRELIMINAR (RAP), EM EQUIPE MULTIDISCIPLINAR, CONFORME TERMO DE REFERÊNCIA DO INSTITUTO AMBIENTAL DO PARANÁ - IAP, PARA LICENCIAMENTO PRÉVIO DE AMPLIAÇÃO DA

UNIDADE PUMA DA KLABIN, EM ORTIGUEIRA, PARANÁ. RESPONSABILIDADE PELOS MAPEAMENTOS TEMÁTICOS E ELABORAÇÃO DAS SEÇÕES DE DIAGNÓSTICO,

AVALIAÇÃO DE IMPACTOS AMBIENTAIS, MEDIDAS MITIGADORAS E PROGRAMAS AMBIENTAIS DO MEIO

SOCIOÉCONÔMICO.

3º VIA - LOCAL DA OBRA/SERVIÇO Deve permanecer no local da obra/serviço, à disposição das equipes de fiscalização do Crea-PR. Central de Informações do CREA-PR 0800 041 0067

Comprovante de Transação Bancária

Boletos de Cobrança

Data da operação: 27/08/2018 - 09h38

Nº de controle: 487.051.421.063.974.606 | Documento: 0011353

Net Empresa

Conta de débito: Agência: 3329 | Conta: 0002812-6 | Tipo: Conta-Corrente

Empresa: Assessoria Tecnica Ambiental Ltda | CNPJ: 005.688.216/0001-05

Código de barras: 10490 81290 43010 100246 01839 102553 9 76360000008294

Banco destinatário: 104 - CAIXA ECONOMICA FEDERAL

Beneficiário:

Razao Social Não informado

Nome Fantasia Não informado

Beneficiário:

CPF/CNPJ Beneficiário: Não informado

Nome do Pagador: Não informado

CPF/CNPJ do pagador: Não informado

Razao Social Sacador Não informado

Avalista:

CPF/CNPJ Sacador Não informado

Avalista:

Instituição Recebedora: 237 - BANCO BRADESCO S.A.

Data de débito: 27/08/2018

Data de vencimento: 03/09/2018

Valor: R\$ 82,94

Desconto: R\$ 0,00

Abatimento: R\$ 0,00

Bonificação: R\$ 0,00

Multa: R\$ 0,00

Juros: R\$ 0,00

Valor total: R\$ 82,94

Descrição: CREA ART

A transação acima foi realizada por meio do Bradesco Net Empresa.

Autenticação

LURCUSed YiBWAX#Q aq#?o*XT q5UnI4Tp C?dio7Wt W2zHET#q QTSEyZ3@ JwYiNYvD qdrCS?8p 9QZEg5aE 348gbbrR 7FFJvSFw PdypFHMG QKEGCNO@ lyuuIzSz 6i5VyiuN uFubTx9? 3*PFUdJ4 dCc@l#cD C?YxcLMG WNX5DAbY wV6SDgHu 07341198 13354002

SAC - Serviço de Apoio ao Cliente Alô Bradesco 0800 704 8383

0800 722 0099

Deficiente Auditivo ou de Fala Cancelamentos, Reclamações e Informações. Atendimento 24 horas, 7 dias por semana.

Demais telefones consulte o site Fale Conosco.

Ouvidoria

0800 727 9933

Atendimento de segunda a sexta-feira, das 8h às 18h, exceto feriados.

Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renovaváveis

CADASTRO TÉCNICO FEDERAL

CERTIFICADO DE REGULARIDADE - CR

	Logictro n v	Data da consulta:	CR emitido em:	CR válido até:
1889954 07/08/2018 07/08/2018 07/11/2018	1889954	07/08/2018	07/08/2018	07/11/2018

Dados básicos:

CPF: 022.522.899-88

Nome: ANA LÚCIA TWARDOWSKY RAMALHO DO VALE

Endereço:

logradouro: WINSTON CHURCHILL

N.°: 26540 Complemento: CAIXA POSTAL

Bairro: PINHEIRINHO Município: CURITIBA

CEP: 81130-970 UF: PR

Cadastro Técnico Federal de Atividades e Instrumentos de Defesa Ambiental – CTF/AIDA			
Código CBO	Ocupação	Área de Atividade	
2145-30	Engenheiro Químico (Utilidades e Meio	Decenvelver processes a sistemes	
2143-30	Ambiente)	Desenvolver processos e sistemas	
2145-30	Engenheiro Químico (Utilidades e Meio	Eleberra de començão de conse	
2145-30	Ambiente)	Elaborar documentação técnica	

Conforme dados disponíveis na presente data, CERTIFICA-SE que a pessoa física está em conformidade com as obrigações cadastrais do CTF/AIDA.

A inscrição no Cadastro Técnico Federal de Atividades e Instrumentos de Defesa Ambiental – CTF/AIDA constitui declaração, pela pessoa física, do cumprimento de exigências específicas de qualificação ou de limites de atuação que porventura sejam determinados pelo respectivo Conselho de Fiscalização Profissional.

O Certificado de Regularidade emitido pelo CTF/AIDA não desobriga a pessoa inscrita de obter licenças, autorizações, permissões, concessões, alvarás e demais documentos exigíveis por instituições federais, estaduais, distritais ou municipais para o exercício de suas atividades, especialmente os documentos de responsabilidade técnica, qualquer o tipo e conforme regulamentação do respectivo Conselho de Fiscalização Profissional, quando exigíveis.

O Certificado de Regularidade no CTF/AIDA não produz qualquer efeito quanto à qualificação e à habilitação técnica da pessoa física inscrita.

HSICA HISCHIA.	
Chava da autanticação	HOLGBAHIOOCKODGK

IBAMA - CTF/AIDA 07/08/2018 - 08:41:50

Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renovaváveis

CADASTRO TÉCNICO FEDERAL

CERTIFICADO DE REGULARIDADE - CR

2997256 25/09/2018 25/09/2018 25/12/2018	Registro n.º	Data da consulta:	CR emitido em:	CR válido até:
	2997256	25/09/2018	25/09/2018	25/12/2018

Dados básicos:

CNPJ: 05.688.216/0001-05

Razão Social: ASSESSORIA TÉCNICA AMBIENTAL LTDA.

Nome fantasia: CIA AMBIENTAL

Data de abertura: 03/06/2003

Endereço:

logradouro: R. MAL. JOSÉ BERNARDINO BORMANN

N.°: 821 Complemento:

Bairro: BATEL Município: CURITIBA

CEP: 80730-350 UF: PR

Cadastro Técnico Federal de Atividades e Instrumentos de Defesa Ambiental – CTF/AIDA Código Atividade 0003-00 Consultoria técnica

Conforme dados disponíveis na presente data, CERTIFICA-SE que a pessoa jurídica está em conformidade com as obrigações cadastrais do CTF/AIDA.

A inscrição no Cadastro Técnico Federal de Atividades e Instrumentos de Defesa Ambiental – CTF/AIDA constitui declaração, pela pessoa jurídica, de observância dos padrões técnicos normativos estabelecidos pela Associação Brasileira de Normas Técnicas – ABNT, pelo Instituto Nacional de Metrologia, Qualidade e Tecnologia – INMETRO e pelo Conselho Nacional de Meio Ambiente - CONAMA.

O Certificado de Regularidade emitido pelo CTF/AIDA não desobriga a pessoa inscrita de obter licenças, autorizações, permissões, concessões, alvarás e demais documentos exigíveis por instituições federais, estaduais, distritais ou municipais para o exercício de suas atividades, especialmente os documentos de responsabilidade técnica, qualquer o tipo e conforme regulamentação do respectivo Conselho de Fiscalização Profissional, quando exigíveis.

O Certificado de Regularidade no CTF/AIDA não produz qualquer efeito quanto à qualificação e à habilitação técnica da pessoa jurídica inscrita.

J	
Chave de autenticação	C9M4QB7KH43MMVSJ

IBAMA - CTF/AIDA 25/09/2018 - 11:57:35

Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renovaváveis

CADASTRO TÉCNICO FEDERAL

CERTIFICADO DE REGULARIDADE - CR

Registro n.º	Data da consulta:	CR emitido em:	CR válido até:
4892607	06/08/2018	06/08/2018	06/11/2018

Dados básicos:

CPF: 064.781.509-50

Nome: CLARISSA OLIVEIRA DIAS

Endereço:

logradouro: ALAMEDA AUGUSTO STELLFELD

N.º: 1050 Complemento: AP 71BBairro: CENTRO Município: CURITIBA

CEP: 80430-140 UF: PR

Cadastro Técnico Federal de Atividades e Instrumentos de Defesa Ambiental – CTF/AIDA		
Código CBO	Ocupação	Área de Atividade
2140-05	Engenheiro Ambiental	Prestar consultoria, assistência e assessoria

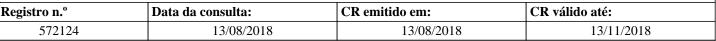
Conforme dados disponíveis na presente data, CERTIFICA-SE que a pessoa física está em conformidade com as obrigações cadastrais do CTF/AIDA.

A inscrição no Cadastro Técnico Federal de Atividades e Instrumentos de Defesa Ambiental – CTF/AIDA constitui declaração, pela pessoa física, do cumprimento de exigências específicas de qualificação ou de limites de atuação que porventura sejam determinados pelo respectivo Conselho de Fiscalização Profissional.

O Certificado de Regularidade emitido pelo CTF/AIDA não desobriga a pessoa inscrita de obter licenças, autorizações, permissões, concessões, alvarás e demais documentos exigíveis por instituições federais, estaduais, distritais ou municipais para o exercício de suas atividades, especialmente os documentos de responsabilidade técnica, qualquer o tipo e conforme regulamentação do respectivo Conselho de Fiscalização Profissional, quando exigíveis.

O Certificado de Regularidade no CTF/AIDA não produz qualquer efeito quanto à qualificação e à habilitação técnica da pessoa física inscrita.

Chave de autenticação	BVEYIP3ZCVY1HCJZ


IBAMA - CTF/AIDA 06/08/2018 - 18:30:15

Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renovaváveis

CADASTRO TÉCNICO FEDERAL

Dados básicos:

CPF: 018.246.819-41

Nome: DENILSON ROBERTO JUNGLES DE CARVALHO

Endereço:

logradouro: RUA DOUTOR JOÃO DE OLIVEIRA PASSOS, 25

N.º: 25 Complemento: CASABairro: BOM RETIRO Município: CURITIBA

CEP: 80520-320 UF: PR

Cadastro Técnico Federal de Atividades e Instrumentos de Defesa Ambiental – CTF/AIDA		
Código CBO	Ocupação	Área de Atividade
2211-05	Biólogo	Realizar consultoria e assessoria na área biológica e ambiental

Conforme dados disponíveis na presente data, CERTIFICA-SE que a pessoa física está em conformidade com as obrigações cadastrais do CTF/AIDA.

A inscrição no Cadastro Técnico Federal de Atividades e Instrumentos de Defesa Ambiental – CTF/AIDA constitui declaração, pela pessoa física, do cumprimento de exigências específicas de qualificação ou de limites de atuação que porventura sejam determinados pelo respectivo Conselho de Fiscalização Profissional.

O Certificado de Regularidade emitido pelo CTF/AIDA não desobriga a pessoa inscrita de obter licenças, autorizações, permissões, concessões, alvarás e demais documentos exigíveis por instituições federais, estaduais, distritais ou municipais para o exercício de suas atividades, especialmente os documentos de responsabilidade técnica, qualquer o tipo e conforme regulamentação do respectivo Conselho de Fiscalização Profissional, quando exigíveis.

O Certificado de Regularidade no CTF/AIDA não produz qualquer efeito quanto à qualificação e à habilitação técnica da pessoa física inscrita.

Chave de autenticação	H3O44ME3C5X58M5F

IBAMA - CTF/AIDA 13/08/2018 - 10:21:19

Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renovaváveis

CADASTRO TÉCNICO FEDERAL

CERTIFICADO DE REGULARIDADE - CR

Registro n.º	Data da consulta:	CR emitido em:	CR válido até:
6098129	25/07/2018	25/07/2018	25/10/2018

Dados básicos:

CPF: 010.111.449-48

DIANDRA CHRISTINE VICENTE DE LIMA Nome:

Endereço:

logradouro: RUA VINTE E CINCO DE AGOSTO

N.°: 476 Complemento: AP 61 Bairro: **CENTRO PINHAIS** Município: CEP: 83323-010 UF:

Cadastro Técnico Federal de Atividades e Instrumentos de Defesa Ambiental - CTF/AIDA Código CBO Ocupação Área de Atividade 2140-05 Engenheiro Ambiental Elaborar projetos ambientais 2140-05 Engenheiro Ambiental Gerenciar implantação do sistema de gestão ambiental-sga 2140-05 Engenheiro Ambiental Controlar emissões de poluentes 2140-05 Engenheiro Ambiental Gerir resíduos 2140-05 Engenheiro Ambiental Implantar projetos ambientais 2140-05 Engenheiro Ambiental Implementar procedimentos de remediação 2140-05 Engenheiro Ambiental Prestar consultoria, assistência e assessoria

Conforme dados disponíveis na presente data, CERTIFICA-SE que a pessoa física está em conformidade com as obrigações cadastrais do CTF/AIDA.

A inscrição no Cadastro Técnico Federal de Atividades e Instrumentos de Defesa Ambiental - CTF/AIDA constitui declaração, pela pessoa física, do cumprimento de exigências específicas de qualificação ou de limites de atuação que porventura sejam determinados pelo respectivo Conselho de Fiscalização Profissional.

O Certificado de Regularidade emitido pelo CTF/AIDA não desobriga a pessoa inscrita de obter licenças, autorizações, permissões, concessões, alvarás e demais documentos exigíveis por instituições federais, estaduais, distritais ou municipais para o exercício de suas atividades, especialmente os documentos de responsabilidade técnica, qualquer o tipo e conforme regulamentação do respectivo Conselho de Fiscalização Profissional, quando exigíveis.

O Certificado de Regularidade no CTF/AIDA não produz qualquer efeito quanto à qualificação e à habilitação técnica da pessoa física inscrita.

Chave de autenticação	FQDXPM15AVZRHQJQ

Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renovaváveis

CADASTRO TÉCNICO FEDERAL

CERTIFICADO DE REGULARIDADE - CR

Registro n.º	Data da consulta:	CR emitido em:	CR válido até:
5011173	06/08/2018	06/08/2018	06/11/2018

Dados básicos:

CPF: 036.343.789-48 Nome: FABIO MANASSES

Endereço:

logradouro: RUA ALZIRA DE ARAÚJO SOUZA

N.°: 91 Complemento:

Bairro: CONJUNTO ÁQUILA - ATUBA Município: PINHAIS

CEP: 83326-140 UF: PR

C	adastro Técnico Federal de Atividades e Ins	strumentos de Defesa Ambiental – CTF/AIDA
Código CBO	Ocupação	Área de Atividade
2134-05	Geólogo	Pesquisar natureza geológica, geofísica e oceanográfica

Conforme dados disponíveis na presente data, CERTIFICA-SE que a pessoa física está em conformidade com as obrigações cadastrais do CTF/AIDA.

A inscrição no Cadastro Técnico Federal de Atividades e Instrumentos de Defesa Ambiental – CTF/AIDA constitui declaração, pela pessoa física, do cumprimento de exigências específicas de qualificação ou de limites de atuação que porventura sejam determinados pelo respectivo Conselho de Fiscalização Profissional.

O Certificado de Regularidade emitido pelo CTF/AIDA não desobriga a pessoa inscrita de obter licenças, autorizações, permissões, concessões, alvarás e demais documentos exigíveis por instituições federais, estaduais, distritais ou municipais para o exercício de suas atividades, especialmente os documentos de responsabilidade técnica, qualquer o tipo e conforme regulamentação do respectivo Conselho de Fiscalização Profissional, quando exigíveis.

O Certificado de Regularidade no CTF/AIDA não produz qualquer efeito quanto à qualificação e à habilitação técnica da pessoa física inscrita.

Chave de autenticação	R7E9XMJG2XU3XC3P

IBAMA - CTF/AIDA 06/08/2018 - 17:30:13

Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renovaváveis

CADASTRO TÉCNICO FEDERAL

CERTIFICADO DE REGULARIDADE - CR

4201525 25/00/2019 25/00/2019 25/12/2019	Registro n.º	Data da consulta:	CR emitido em:	CR válido até:
4301333 23/09/2018 23/09/2018 23/12/2018	4301535	25/09/2018	25/09/2018	1 /3/1///// (18

Dados básicos:

CPF: 957.967.621-68

Nome: FERNANDO DO PRADO FLORÊNCIO

Endereço:

logradouro: RUA ADIR DALABONA

N.º: 20 Complemento: CASA 1Bairro: ORLEANS Município: CURITIBA

CEP: 82310-354 UF: PR

Cadastro Técnico Federal de Atividades e Instrumentos de Defesa Ambiental – CTF/AIDA			
Código CBO	Ocupação	Área de Atividade	
2211-05	Biólogo	Inventariar biodiversidade	
2211-05 Biólogo Realizar consultoria e assessoria na área biológica e ambi		Realizar consultoria e assessoria na área biológica e ambiental	
2211-05	Biólogo	Manejar recursos naturais	

Conforme dados disponíveis na presente data, CERTIFICA-SE que a pessoa física está em conformidade com as obrigações cadastrais do CTF/AIDA.

A inscrição no Cadastro Técnico Federal de Atividades e Instrumentos de Defesa Ambiental – CTF/AIDA constitui declaração, pela pessoa física, do cumprimento de exigências específicas de qualificação ou de limites de atuação que porventura sejam determinados pelo respectivo Conselho de Fiscalização Profissional.

O Certificado de Regularidade emitido pelo CTF/AIDA não desobriga a pessoa inscrita de obter licenças, autorizações, permissões, concessões, alvarás e demais documentos exigíveis por instituições federais, estaduais, distritais ou municipais para o exercício de suas atividades, especialmente os documentos de responsabilidade técnica, qualquer o tipo e conforme regulamentação do respectivo Conselho de Fiscalização Profissional, quando exigíveis.

O Certificado de Regularidade no CTF/AIDA não produz qualquer efeito quanto à qualificação e à habilitação técnica da pessoa física inscrita.

Chave de autenticação	5QIKHFZPQYGVCM3R

IBAMA - CTF/AIDA 25/09/2018 - 16:46:06

Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renovaváveis

CADASTRO TÉCNICO FEDERAL

CERTIFICADO DE REGULARIDADE - CR

	Registro n.º	Data da consulta:	CR emitido em:	CR válido até:
1728257 13/09/2018 13/09/2018 13/12/2018	1728257	13/09/2018	13/09/2018	13/12/2018

Dados básicos:

CPF: 035.168.999-05

Nome: FERNANDO ALBERTO PROCHMANN

Endereço:

logradouro: RUA CORONEL ANTÔNIO RICARDO DOS SANTOS

N.º: 1045 Complemento: CASA 02Bairro: HAUER Município: CURITIBA

CEP: 81630-250 UF: PR

C	adastro Técnico Federal de Atividades e Ins	strumentos de Defesa Ambiental – CTF/AIDA
Código CBO	Ocupação	Área de Atividade
2145-05	Engenheiro Químico	Elaborar documentação técnica

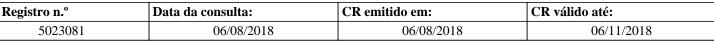
Conforme dados disponíveis na presente data, CERTIFICA-SE que a pessoa física está em conformidade com as obrigações cadastrais do CTF/AIDA.

A inscrição no Cadastro Técnico Federal de Atividades e Instrumentos de Defesa Ambiental – CTF/AIDA constitui declaração, pela pessoa física, do cumprimento de exigências específicas de qualificação ou de limites de atuação que porventura sejam determinados pelo respectivo Conselho de Fiscalização Profissional.

O Certificado de Regularidade emitido pelo CTF/AIDA não desobriga a pessoa inscrita de obter licenças, autorizações, permissões, concessões, alvarás e demais documentos exigíveis por instituições federais, estaduais, distritais ou municipais para o exercício de suas atividades, especialmente os documentos de responsabilidade técnica, qualquer o tipo e conforme regulamentação do respectivo Conselho de Fiscalização Profissional, quando exigíveis.

O Certificado de Regularidade no CTF/AIDA não produz qualquer efeito quanto à qualificação e à habilitação técnica da pessoa física inscrita.

Chave de autenticação	9HECXIYH74E1SY2P


IBAMA - CTF/AIDA 13/09/2018 - 10:25:19

Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renovaváveis

CADASTRO TÉCNICO FEDERAL

Dados básicos:

CPF: 062.391.079-99

Nome: FLÁVIO EDUARDO AMARAL HERZER

Endereço:

logradouro: R. JUVENAL CARVALHO

N.°: 80 Complemento: AP 23 B3 Bairro: FAZENDINHA Município: CURITIBA

CEP: 81320-186 UF: PR

C	adastro Técnico Federal de Atividades e Ins	strumentos de Defesa Ambiental – CTF/AIDA
Código CBO	Ocupação	Área de Atividade
2140-05	Engenheiro Ambiental	Prestar consultoria, assistência e assessoria

Conforme dados disponíveis na presente data, CERTIFICA-SE que a pessoa física está em conformidade com as obrigações cadastrais do CTF/AIDA.

A inscrição no Cadastro Técnico Federal de Atividades e Instrumentos de Defesa Ambiental – CTF/AIDA constitui declaração, pela pessoa física, do cumprimento de exigências específicas de qualificação ou de limites de atuação que porventura sejam determinados pelo respectivo Conselho de Fiscalização Profissional.

O Certificado de Regularidade emitido pelo CTF/AIDA não desobriga a pessoa inscrita de obter licenças, autorizações, permissões, concessões, alvarás e demais documentos exigíveis por instituições federais, estaduais, distritais ou municipais para o exercício de suas atividades, especialmente os documentos de responsabilidade técnica, qualquer o tipo e conforme regulamentação do respectivo Conselho de Fiscalização Profissional, quando exigíveis.

O Certificado de Regularidade no CTF/AIDA não produz qualquer efeito quanto à qualificação e à habilitação técnica da pessoa física inscrita.

L		
	Chave de autenticação	4UYDHRN88XEZUW1E

IBAMA - CTF/AIDA 06/08/2018 - 23:10:41

Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renovaváveis

CADASTRO TÉCNICO FEDERAL

CERTIFICADO DE REGULARIDADE - CR

6755564 06/08/2018 06/08/2018 06/11/2018	Registro n.º	Data da consulta:	CR emitido em:	CR válido até:
	6755564	06/08/2018	06/08/2018	06/11/2018

Dados básicos:

CPF: 073.035.479-24

Nome: JACKSON GOLDBACH

Endereço:

logradouro: AV. VICENTE MACHADO

N.°: 1111 Complemento: APTO 64Bairro: BATEL Município: CURITIBA

CEP: 80420-011 UF: PR

Cadastro Técnico Federal de Atividades Potencialmente Poluidoras e Utilizadoras de Recursos Ambientais – CTF/APP

- [C Unizauoras de Recursos Ambientais – CIT/ATT	
	Código	Descrição
23-15 outras atividades sujeitas a licenciamento não especificadas anteriormente		outras atividades sujeitas a licenciamento não especificadas anteriormente

Conforme dados disponíveis na presente data, CERTIFICA-SE que a pessoa física está em conformidade com as obrigações cadastrais e de prestação de informações ambientais sobre as atividades desenvolvidas sob controle e fiscalização do Ibama, por meio do CTF/APP.

O Certificado de Regularidade emitido pelo CTF/APP não desobriga a pessoa inscrita de obter licenças, autorizações, permissões, concessões, alvarás e demais documentos exigíveis por instituições federais, estaduais, distritais ou municipais para o exercício de suas atividades

O Certificado de Regularidade emitido pelo CTF/APP não habilita o transporte e produtos e subprodutos florestais e faunísticos.

Chave de autenticação	WV63P13K13O9C77C

IBAMA - CTF/AIDA 06/08/2018 - 18:02:20

Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renovaváveis

CADASTRO TÉCNICO FEDERAL

CERTIFICADO DE REGULARIDADE - CR

Registro n.º	Data da consulta:	CR emitido em:	CR válido até:
6173981	02/08/2018	02/08/2018	02/11/2018

Dados básicos:

CPF: 010.319.789-33

Nome: LUCAS MANSUR SCHIMALESKI

Endereço:

logradouro: RUA CORONEL FRANCISCO DE PAULA MOURA BRITO

N.°: 420 Complemento:

Bairro: BACACHERI Município: CURITIBA

CEP: 82520-570 UF: PR

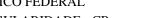
Cadastro Técnico Federal de Atividades e Instrumentos de Defesa Ambiental – CTF/AII		strumentos de Defesa Ambiental – CTF/AIDA
Código CBO	Ocupação	Área de Atividade
2513-05	Geógrafo	Realizar pesquisas geográficas

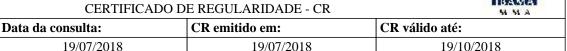
Conforme dados disponíveis na presente data, CERTIFICA-SE que a pessoa física está em conformidade com as obrigações cadastrais do CTF/AIDA.

A inscrição no Cadastro Técnico Federal de Atividades e Instrumentos de Defesa Ambiental – CTF/AIDA constitui declaração, pela pessoa física, do cumprimento de exigências específicas de qualificação ou de limites de atuação que porventura sejam determinados pelo respectivo Conselho de Fiscalização Profissional.

O Certificado de Regularidade emitido pelo CTF/AIDA não desobriga a pessoa inscrita de obter licenças, autorizações, permissões, concessões, alvarás e demais documentos exigíveis por instituições federais, estaduais, distritais ou municipais para o exercício de suas atividades, especialmente os documentos de responsabilidade técnica, qualquer o tipo e conforme regulamentação do respectivo Conselho de Fiscalização Profissional, quando exigíveis.

O Certificado de Regularidade no CTF/AIDA não produz qualquer efeito quanto à qualificação e à habilitação técnica da pessoa física inscrita.


Tisled Hiserica.	
Chave de autenticação	Y1U833XFUXXOT35S


IBAMA - CTF/AIDA 02/08/2018 - 11:52:18

Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renovaváveis

CADASTRO TÉCNICO FEDERAL

Dados básicos:

Registro n.º

CPF: 030.052.039-56

5083633

Nome: ORESTES JARENTCHUK JUNIOR

Endereço:

logradouro: RUA INOCÊNCIO MILANI

N.°: 226 Complemento:

Bairro: SÃO BRAZ Município: CURITIBA

CEP: 82300-620 UF: PR

Cadastro Técnico Federal de Atividades e Instrumentos de Defesa Ambiental – CTF/AIDA			
Código CBO	Ocupação	Área de Atividade	
2513-05	Geógrafo	Realizar pesquisas geográficas	
2513-05	Geógrafo	Regionalizar território	
2513-05	Geógrafo	Fornecer subsídios ao ordenamento territorial	
2513-05	Geógrafo	Avaliar os processos de produção do espaço	
2513-05	Geógrafo	Tratar informações geográficas em base georreferenciada	

Conforme dados disponíveis na presente data, CERTIFICA-SE que a pessoa física está em conformidade com as obrigações cadastrais do CTF/AIDA.

A inscrição no Cadastro Técnico Federal de Atividades e Instrumentos de Defesa Ambiental – CTF/AIDA constitui declaração, pela pessoa física, do cumprimento de exigências específicas de qualificação ou de limites de atuação que porventura sejam determinados pelo respectivo Conselho de Fiscalização Profissional.

O Certificado de Regularidade emitido pelo CTF/AIDA não desobriga a pessoa inscrita de obter licenças, autorizações, permissões, concessões, alvarás e demais documentos exigíveis por instituições federais, estaduais, distritais ou municipais para o exercício de suas atividades, especialmente os documentos de responsabilidade técnica, qualquer o tipo e conforme regulamentação do respectivo Conselho de Fiscalização Profissional, quando exigíveis.

O Certificado de Regularidade no CTF/AIDA não produz qualquer efeito quanto à qualificação e à habilitação técnica da pessoa física inscrita.

Chave de autenticação	ZRGGP6IWAC914Y5V

IBAMA - CTF/AIDA 19/07/2018 - 19:09:41

Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renovaváveis

CADASTRO TÉCNICO FEDERAL

CERTIFICADO DE REGULARIDADE - CR

5337139 17/09/2018	17/09/2018	17/12/2018

Dados básicos:

CPF: 048.211.379-09

Nome: PATRÍCIA MARIA STASIAK

Endereço:

logradouro: RUA IRATI, 561

N.º: 561 Complemento: CASA
 Bairro: SANTA QUITÉRIA Município: CURITIBA
 CEP: 80310-150 UF: PR

Cadastro Técnico Federal de Atividades e Instrumentos de Defesa Ambiental - CTF/AIDA Código CBO Ocupação Área de Atividade Planejar atividades agrossilvipecuárias e do uso de recursos 2221-20 Engenheiro Florestal naturais renováveis e ambientais Coordenar atividades agrossilvipecuárias e o uso de recursos 2221-20 Engenheiro Florestal naturais renováveis e ambientais 2221-20 Prestar assistência e consultoria técnicas e extensão rural Engenheiro Florestal Executar atividades agrossilvipecuárias e do uso de recursos 2221-20 Engenheiro Florestal naturais renováveis e ambientais 2221-20 Engenheiro Florestal Elaborar documentação técnica e científica

Conforme dados disponíveis na presente data, CERTIFICA-SE que a pessoa física está em conformidade com as obrigações cadastrais do CTF/AIDA.

A inscrição no Cadastro Técnico Federal de Atividades e Instrumentos de Defesa Ambiental – CTF/AIDA constitui declaração, pela pessoa física, do cumprimento de exigências específicas de qualificação ou de limites de atuação que porventura sejam determinados pelo respectivo Conselho de Fiscalização Profissional.

O Certificado de Regularidade emitido pelo CTF/AIDA não desobriga a pessoa inscrita de obter licenças, autorizações, permissões, concessões, alvarás e demais documentos exigíveis por instituições federais, estaduais, distritais ou municipais para o exercício de suas atividades, especialmente os documentos de responsabilidade técnica, qualquer o tipo e conforme regulamentação do respectivo Conselho de Fiscalização Profissional, quando exigíveis.

O Certificado de Regularidade no CTF/AIDA não produz qualquer efeito quanto à qualificação e à habilitação técnica da pessoa física inscrita.

Tislea Hiseria.	
Chave de autenticação	FYJCU3KEXG32XINY

IBAMA - CTF/AIDA 17/09/2018 - 14:22:22

Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renovaváveis

CERTIFICADO DE REGULARIDADE - CR

Registro n.º	Data da consulta:	CR emitido em:	CR válido até:
100593	02/09/2018	02/09/2018	02/12/2018

Dados básicos:

CPF: 514.620.289-34

Nome: PEDRO LUIZ FUENTES DIAS

Endereço:

logradouro: RUA EDUARDO SPRADA

N.º: 1767 Complemento: CASA 02 Bairro: **BATEL** Município: **CURITIBA**

81210-370 CEP: UF: PR

> RYNXEL2QSMTTSUMN Chave de autenticação

IBAMA - CTF/AIDA 02/09/2018 - 22:25:30

Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renovaváveis

CADASTRO TÉCNICO FEDERAL

CERTIFICADO DE REGULARIDADE - CR

Registro n.º	Data da consulta:	CR emitido em:	CR válido até:
5812499	06/08/2018	06/08/2018	06/11/2018

Dados básicos:

CPF: 061.777.659-80

Nome: THIAGO AUGUSTO MEYER

Endereço:

logradouro: JULIO ZANINELLI, 104

N.°: 104 Complemento:

Bairro: BOM RETIRO Município: CURITIBA

CEP: 80520-160 UF: PR

Cadastro Técnico Federal de Atividades e Instrumentos de Defesa Ambiental – CTF/AIDA			
Código CBO	Ocupação	Área de Atividade	
2221-20	Engenheiro Florestal	Prestar assistência e consultoria técnicas e extensão rural	
2221-20	Engenheiro Florestal	Executar atividades agrossilvipecuárias e do uso de recursos naturais renováveis e ambientais	

Conforme dados disponíveis na presente data, CERTIFICA-SE que a pessoa física está em conformidade com as obrigações cadastrais do CTF/AIDA.

A inscrição no Cadastro Técnico Federal de Atividades e Instrumentos de Defesa Ambiental – CTF/AIDA constitui declaração, pela pessoa física, do cumprimento de exigências específicas de qualificação ou de limites de atuação que porventura sejam determinados pelo respectivo Conselho de Fiscalização Profissional.

O Certificado de Regularidade emitido pelo CTF/AIDA não desobriga a pessoa inscrita de obter licenças, autorizações, permissões, concessões, alvarás e demais documentos exigíveis por instituições federais, estaduais, distritais ou municipais para o exercício de suas atividades, especialmente os documentos de responsabilidade técnica, qualquer o tipo e conforme regulamentação do respectivo Conselho de Fiscalização Profissional, quando exigíveis.

O Certificado de Regularidade no CTF/AIDA não produz qualquer efeito quanto à qualificação e à habilitação técnica da pessoa física inscrita

lisica liiscitta.	
Chave de autenticação	FFDEOYGR7EOP69XU

IBAMA - CTF/AIDA 06/08/2018 - 17:25:48

Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renovaváveis

CADASTRO TÉCNICO FEDERAL

CERTIFICADO DE REGULARIDADE - CR

Registro n.º	Data da consulta:	CR emitido em:	CR válido até:
6112292	26/07/2018	26/07/2018	26/10/2018

Dados básicos:

CPF: 082.288.729-09 Nome: THIAGO MORIGGI

Endereço:

logradouro: RUA JORGE BATISTA CROCETTI

N.º: 434 Complemento: CASA 09Bairro: CAPÃO DA IMBUIA Município: CURITIBA

CEP: 82800-280 UF: PR

Cadastro Técnico Federal de Atividades e Instrumentos de Defesa Ambiental – CTF/AIDA		
Código CBO	Ocupação	Área de Atividade
2140-05	Engenheiro Ambiental	Elaborar projetos ambientais

Conforme dados disponíveis na presente data, CERTIFICA-SE que a pessoa física está em conformidade com as obrigações cadastrais do CTF/AIDA.

A inscrição no Cadastro Técnico Federal de Atividades e Instrumentos de Defesa Ambiental – CTF/AIDA constitui declaração, pela pessoa física, do cumprimento de exigências específicas de qualificação ou de limites de atuação que porventura sejam determinados pelo respectivo Conselho de Fiscalização Profissional.

O Certificado de Regularidade emitido pelo CTF/AIDA não desobriga a pessoa inscrita de obter licenças, autorizações, permissões, concessões, alvarás e demais documentos exigíveis por instituições federais, estaduais, distritais ou municipais para o exercício de suas atividades, especialmente os documentos de responsabilidade técnica, qualquer o tipo e conforme regulamentação do respectivo Conselho de Fiscalização Profissional, quando exigíveis.

O Certificado de Regularidade no CTF/AIDA não produz qualquer efeito quanto à qualificação e à habilitação técnica da pessoa física inscrita.

Install Installation		
	Chave de autenticação	4BH9Z5HKGZTAJMU5

IBAMA - CTF/AIDA 26/07/2018 - 11:11:35

Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renovaváveis

CADASTRO TÉCNICO FEDERAL

CERTIFICADO DE REGULARIDADE - CR

5029150 25/09/2018 25/09/2018 25/12/2018	Registro n.º	Data da consulta:	CR emitido em:	CR válido até:
3027130 23/07/2010 23/07/2010	5029150	25/09/2018	25/09/2018	25/12/2018

Dados básicos:

CPF: 068.975.879-07

Nome: TIAGO MACHADO DE SOUZA

Endereço:

logradouro: JOSÉ FERNANDES MALDONADO, 951

N.°: 951 Complemento: BLOCO 3 APTO 14

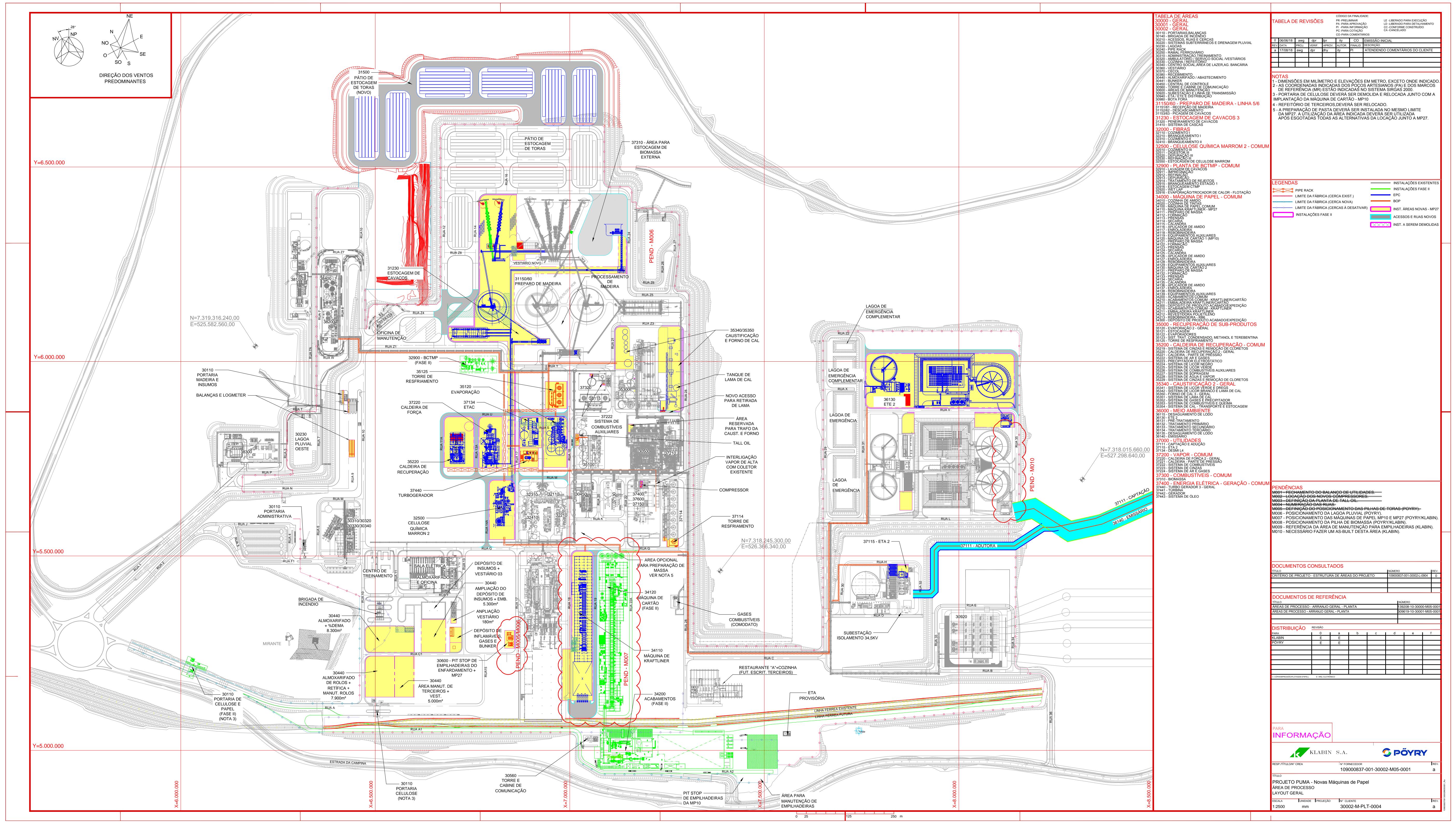
Bairro: BAIRRO ALTO Município: CURITIBA

CEP: 82840-020 UF: PR

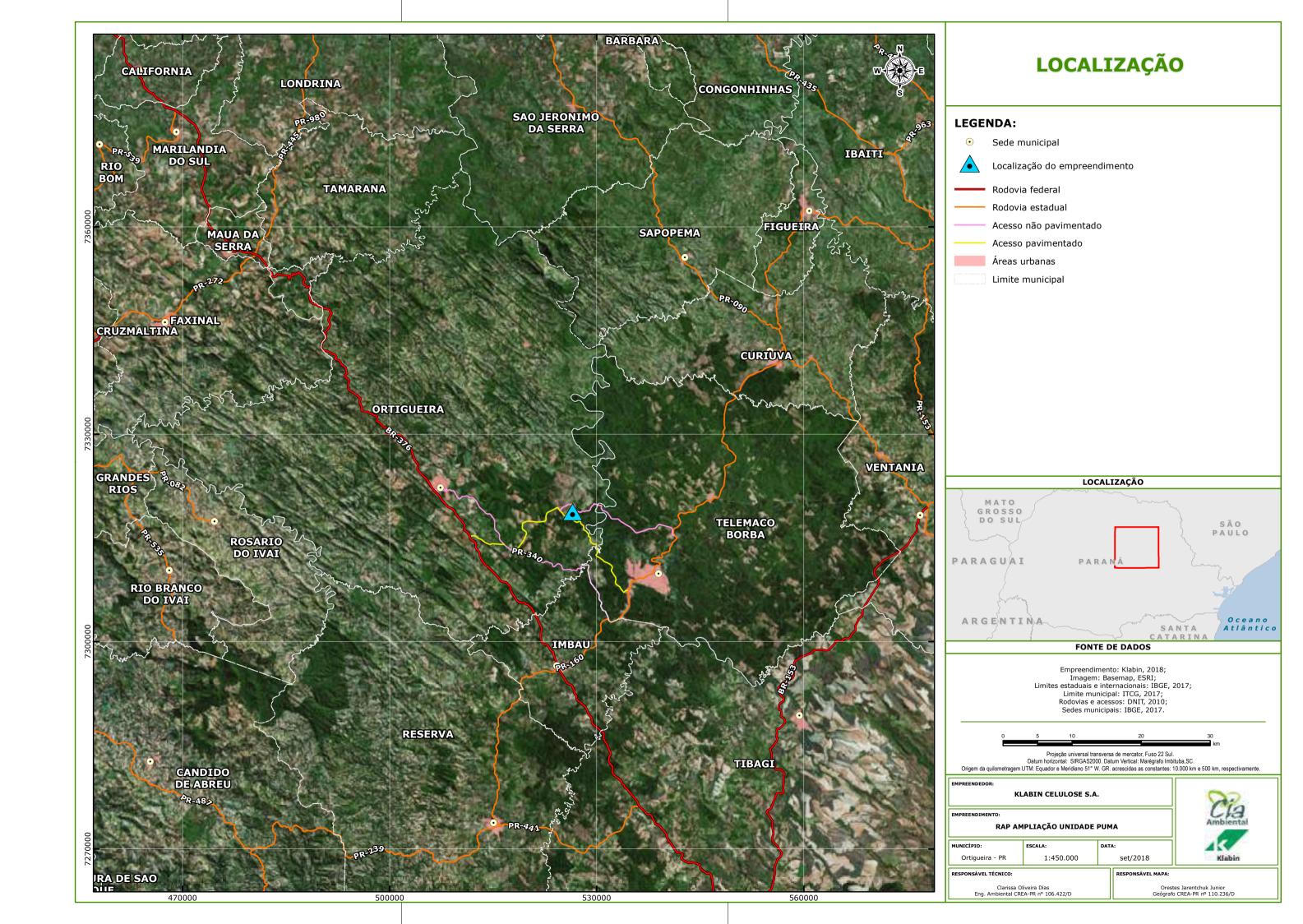
Cadastro Técnico Federal de Atividades e Instrumentos de Defesa Ambiental – CTF/AIDA		
Código CBOOcupaçãoÁrea de Atividade		
2211-05	Biólogo	Estudar seres vivos
2211-05	Biólogo	Inventariar biodiversidade
2211-05	Biólogo	Realizar consultoria e assessoria na área biológica e ambiental
2211-05	Biólogo	Realizar diagnósticos biológicos, moleculares e ambientais

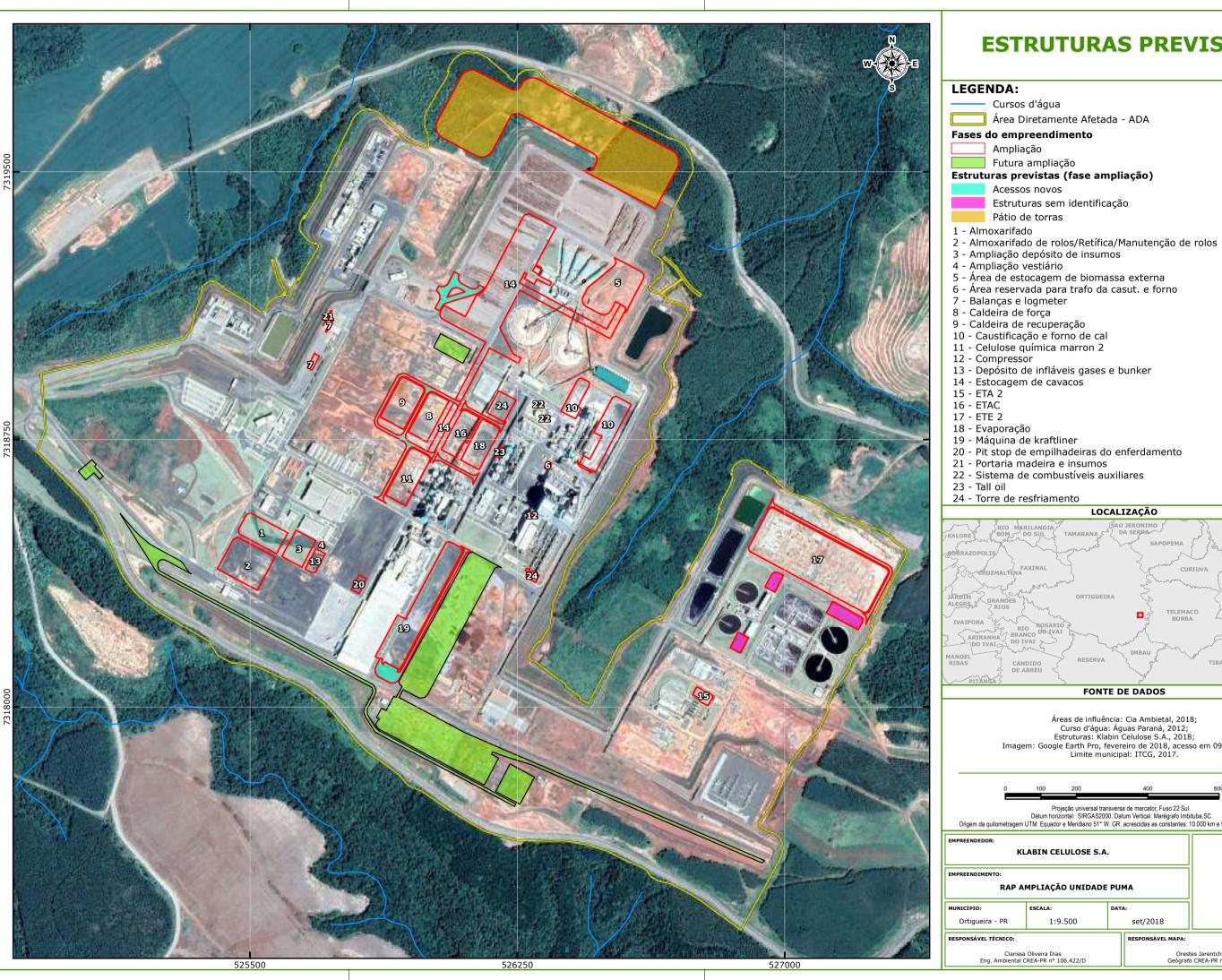
Conforme dados disponíveis na presente data, CERTIFICA-SE que a pessoa física está em conformidade com as obrigações cadastrais do CTF/AIDA.

A inscrição no Cadastro Técnico Federal de Atividades e Instrumentos de Defesa Ambiental – CTF/AIDA constitui declaração, pela pessoa física, do cumprimento de exigências específicas de qualificação ou de limites de atuação que porventura sejam determinados pelo respectivo Conselho de Fiscalização Profissional.

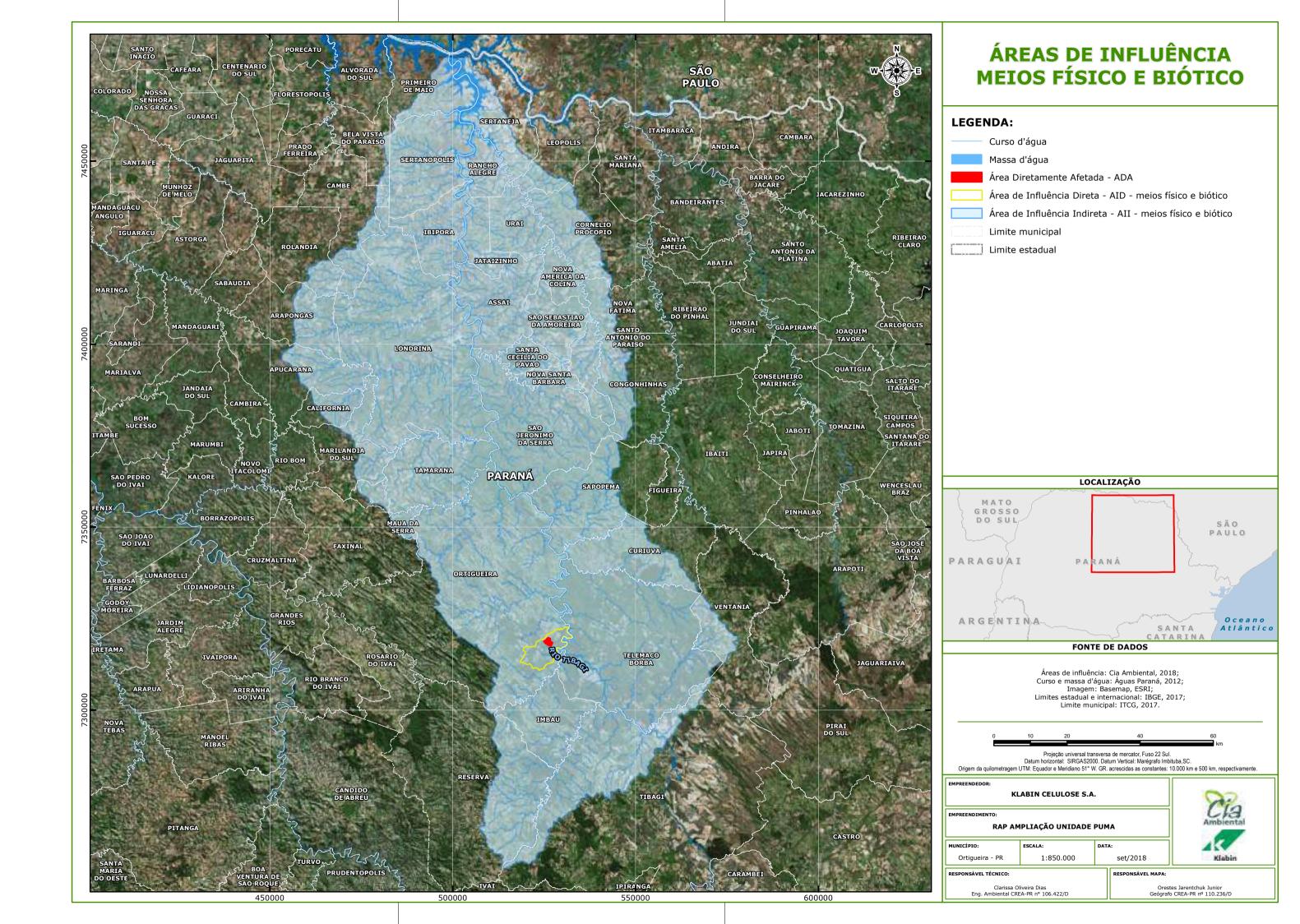

O Certificado de Regularidade emitido pelo CTF/AIDA não desobriga a pessoa inscrita de obter licenças, autorizações, permissões, concessões, alvarás e demais documentos exigíveis por instituições federais, estaduais, distritais ou municipais para o exercício de suas atividades, especialmente os documentos de responsabilidade técnica, qualquer o tipo e conforme regulamentação do respectivo Conselho de Fiscalização Profissional, quando exigíveis.

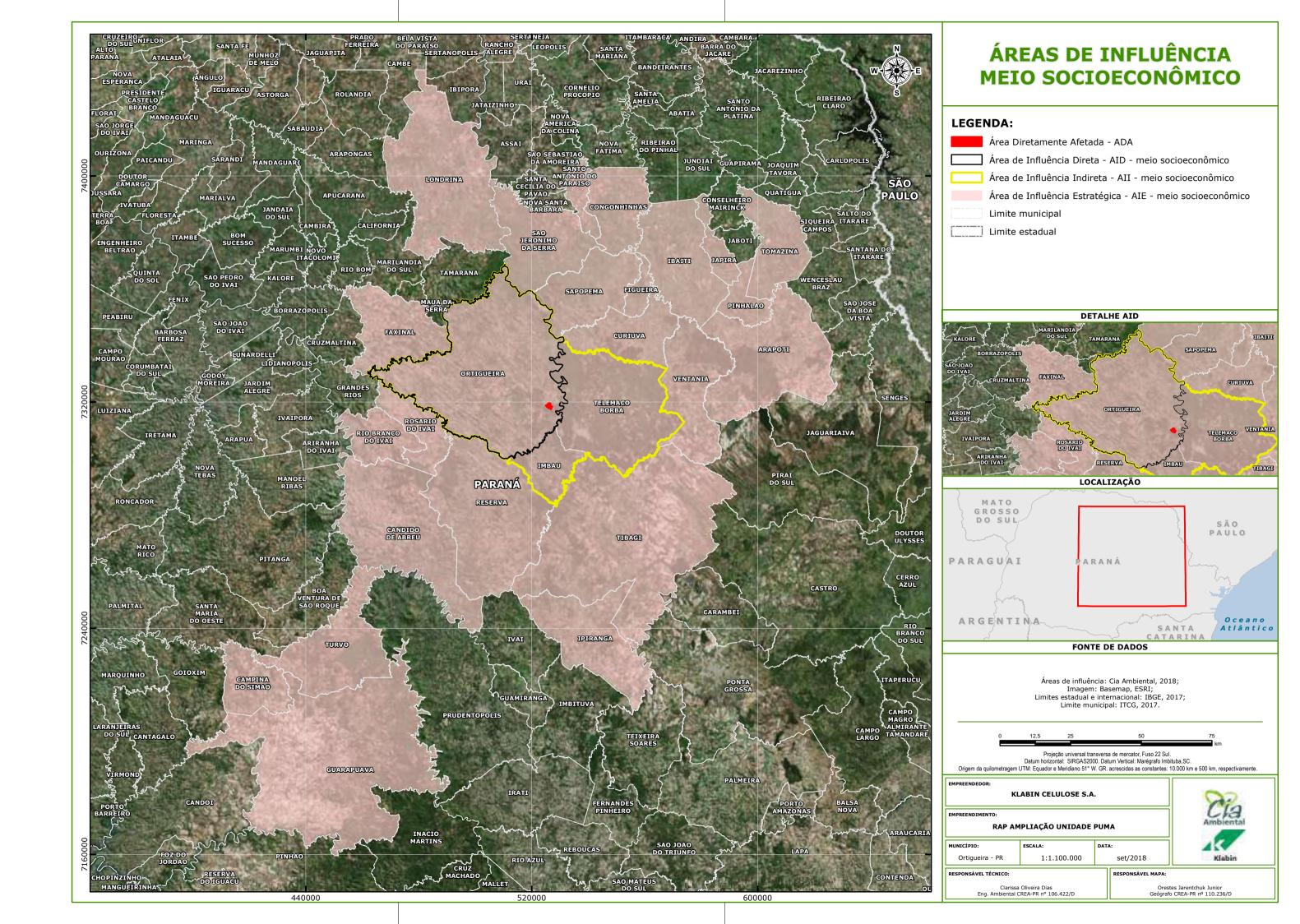
O Certificado de Regularidade no CTF/AIDA não produz qualquer efeito quanto à qualificação e à habilitação técnica da pessoa física inscrita.

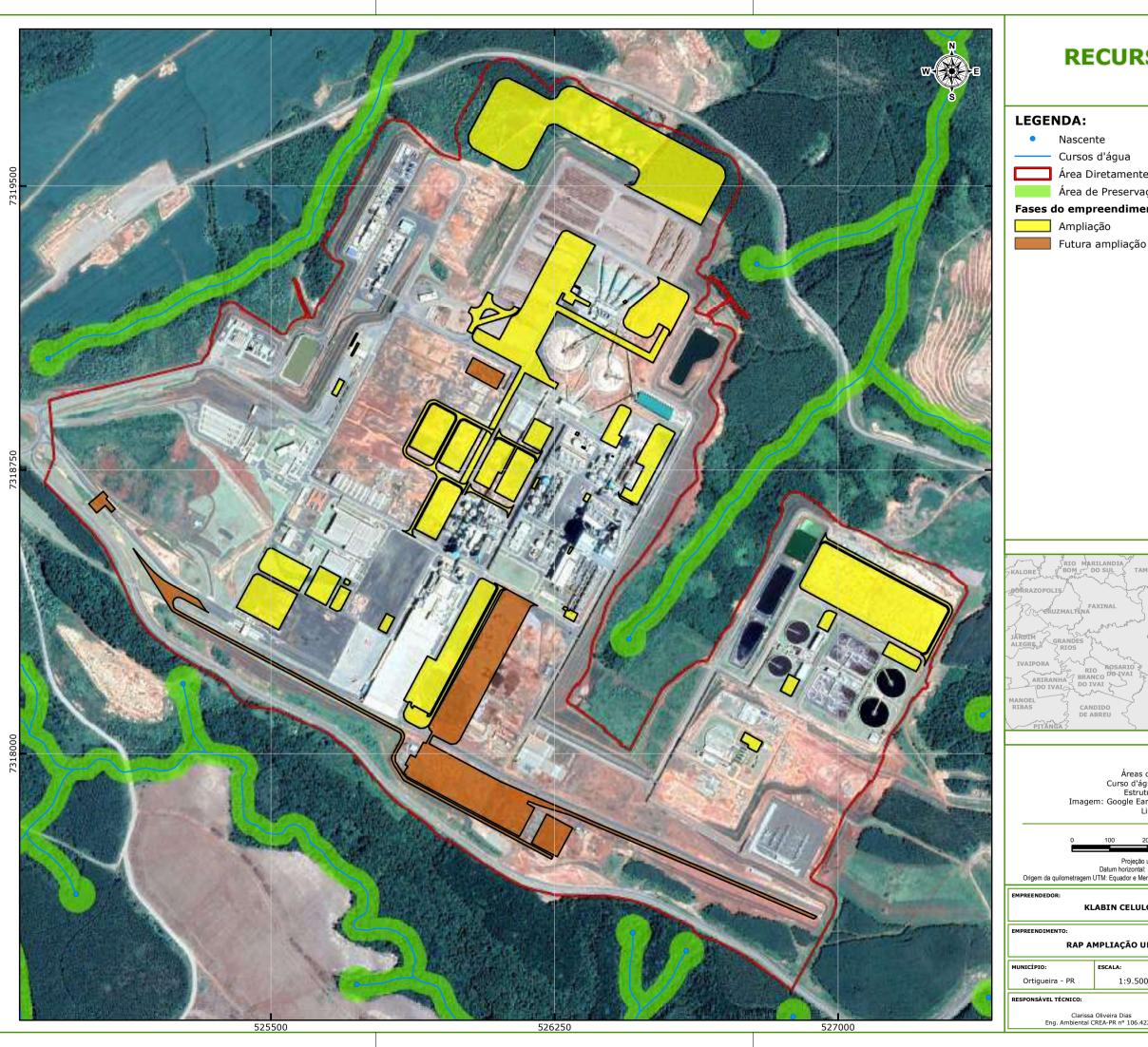

HSICA HISCHIA.	
Chava da autanticação	POC7VLTYF7CCDA3F


IBAMA - CTF/AIDA 25/09/2018 - 16:41:02

ESTRUTURAS PREVISTAS


FONTE DE DADOS


Áreas de influência: Cia Ambietal, 2018; Areas de Influencia: Cla Ambietal, 2018; Curso d'água: Águas Paraná, 2012; Estruturas: Klabin Celulose S.A., 2018; Imagem: Google Earth Pro, fevereiro de 2018, acesso em 09/2018; Limite municipal: ITCG, 2017.



Projeção universal transversa de mercator, Fuso 22 Sul.
Datum horizontal: SIRGAS2000. Datum Vertical: Marégrafo Imbituba,SC.
Origem da quilometragem UTM: Equador e Meridiano 51° W. GR. acrescidas as constantes: 10.000 km e 500 km, respectivamente.

set/2018

RECURSOS HÍDRICOS

Nascente

Cursos d'água

Área Diretamente Afetada - ADA

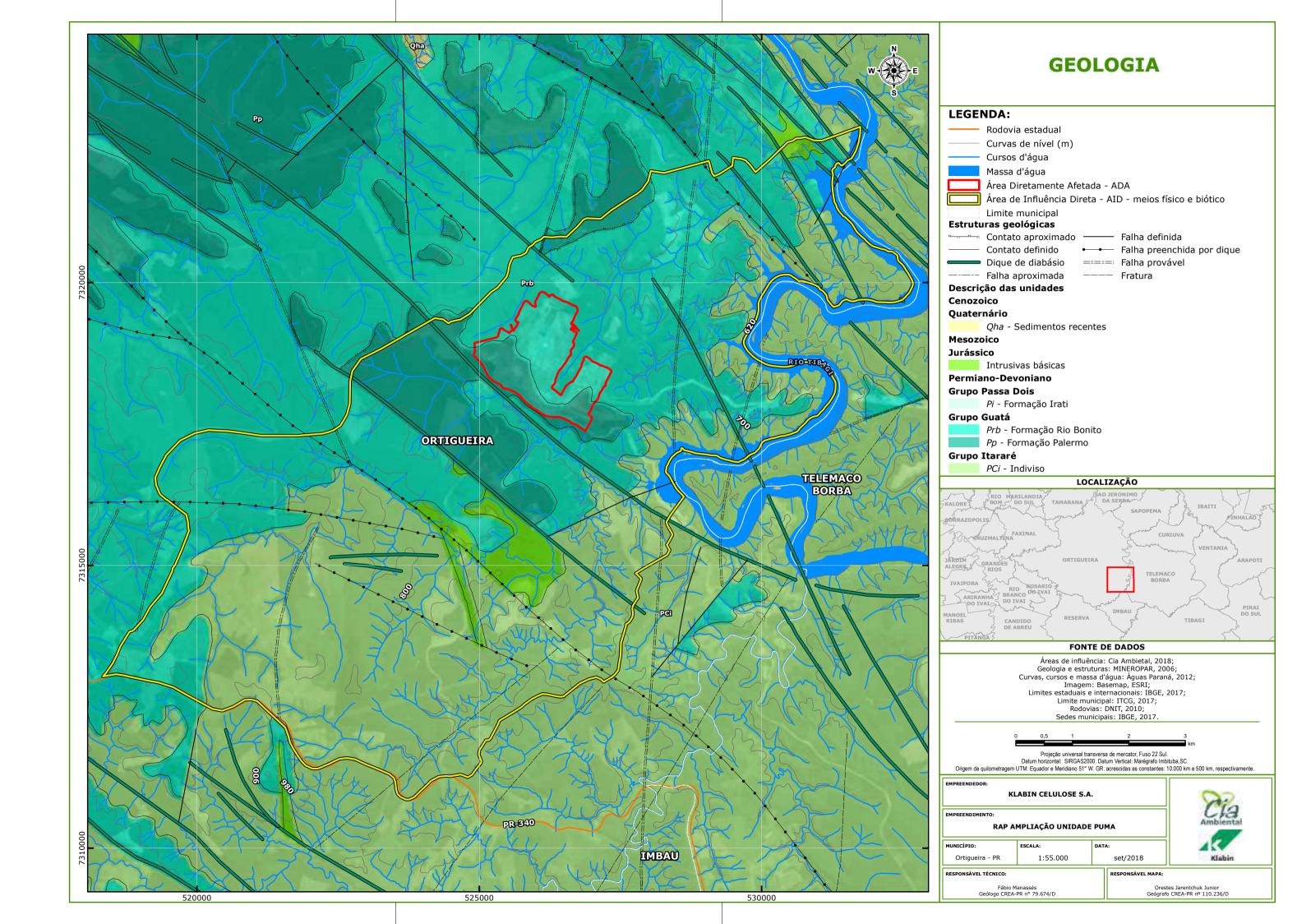
Área de Preservação Permanente - APP

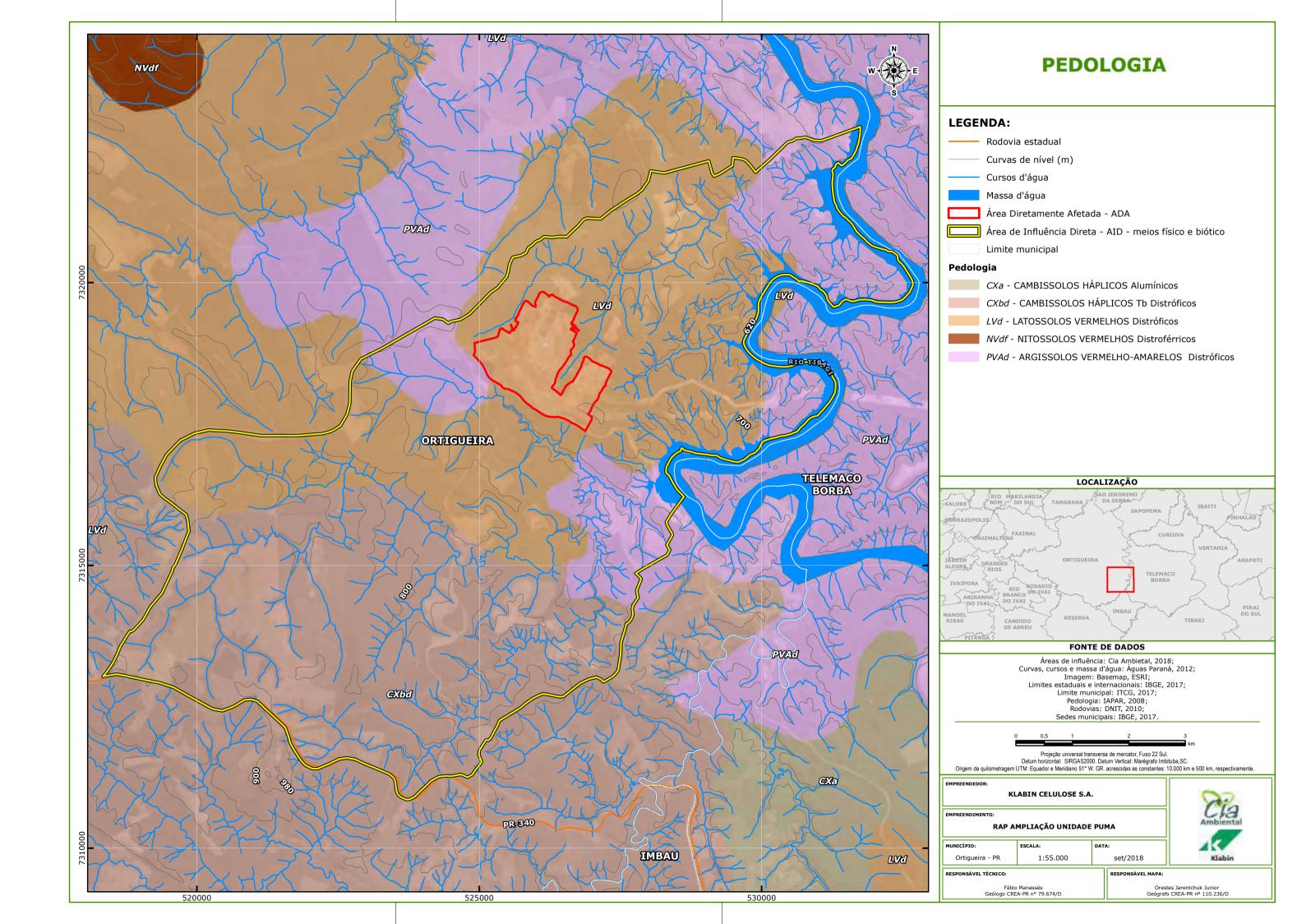
Fases do empreendimento

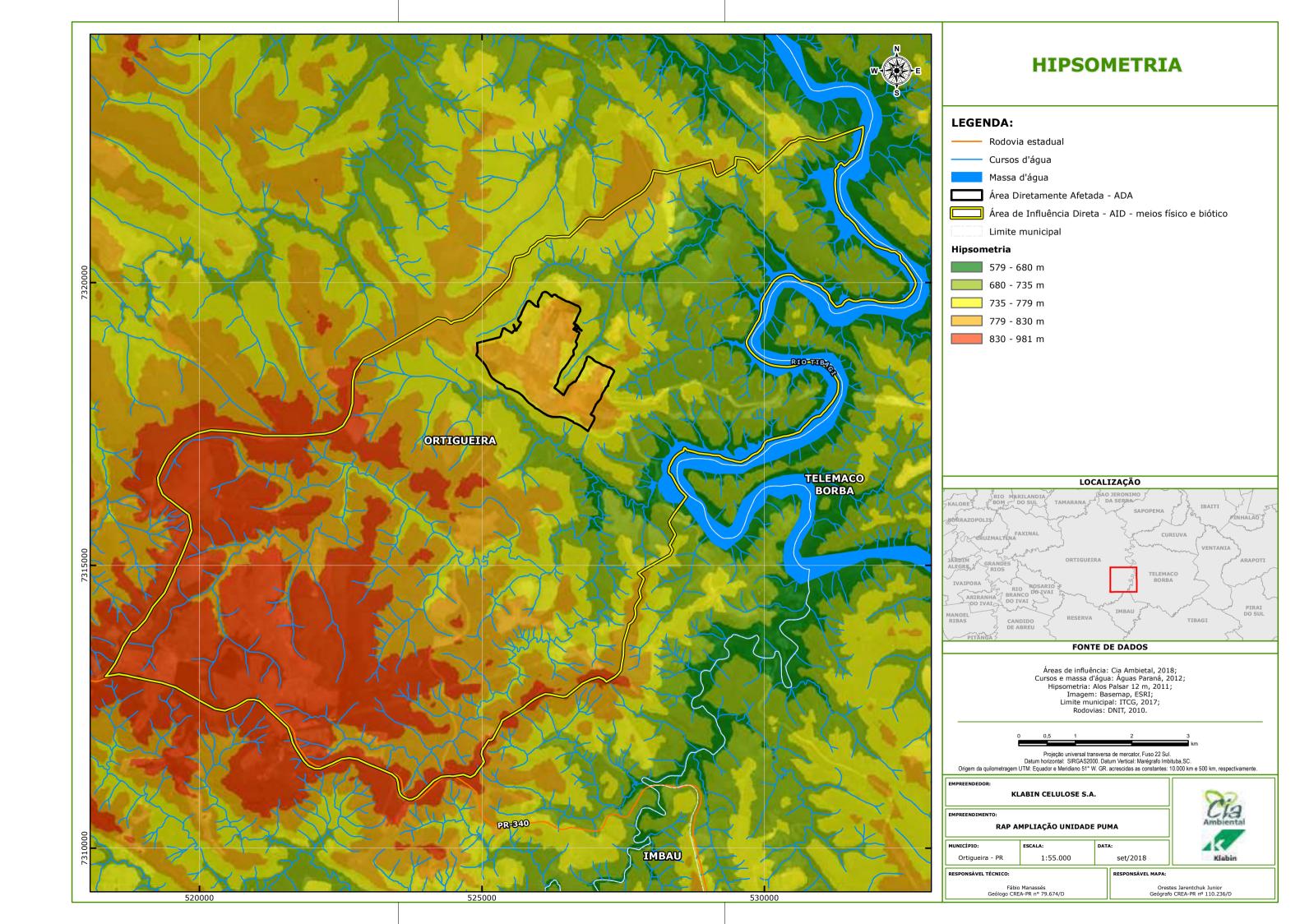
LOCALIZAÇÃO

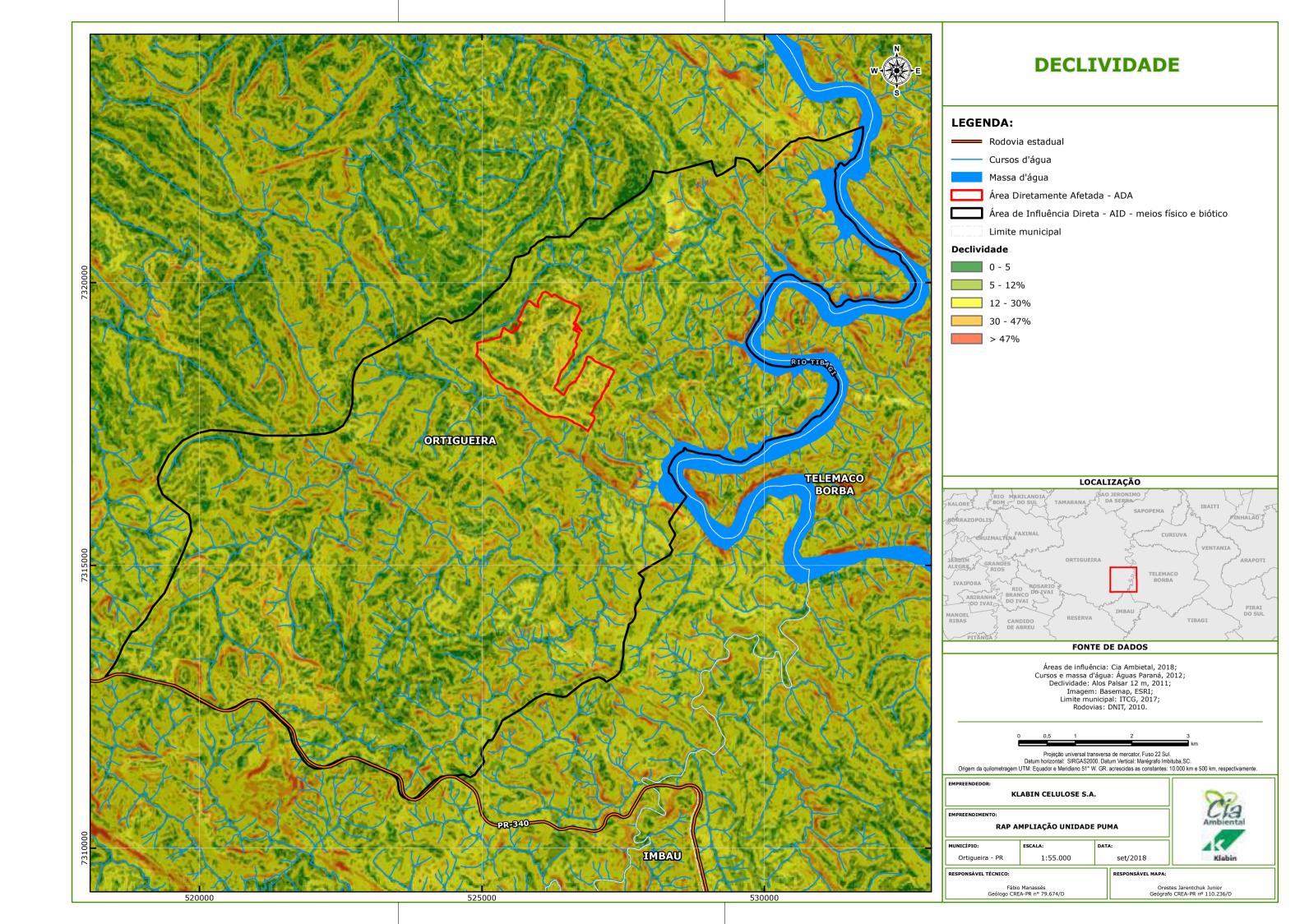
FONTE DE DADOS

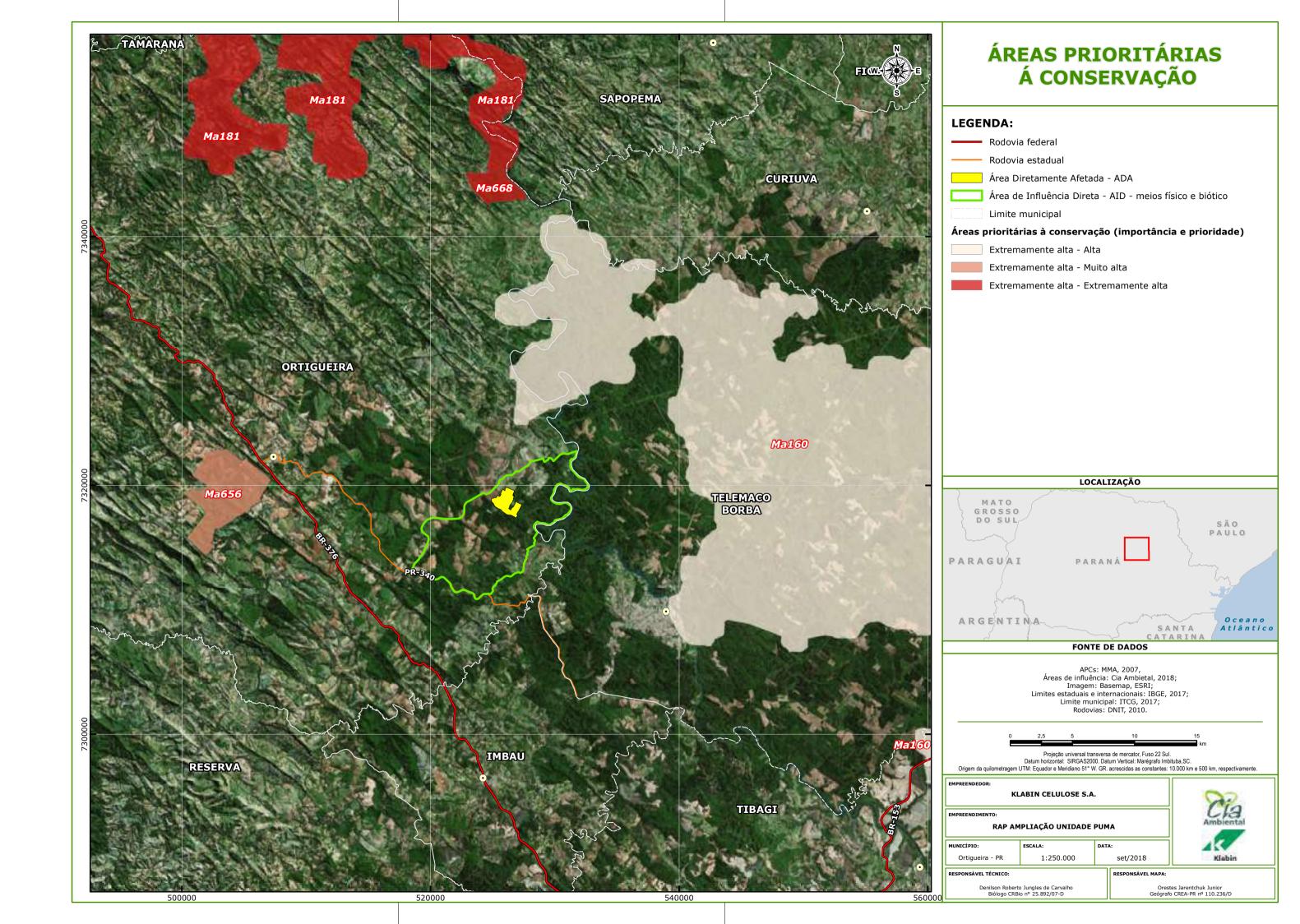
APPs: Cia Ambietal, 2018; Áreas de influência: Cia Ambietal, 2018; Curso d'água e nascentes: Águas Paraná, 2012; Estruturas: Klabin Celulose S.A., 2018; Imagem: Google Earth Pro, fevereiro de 2018, acesso em 09/2018; Limite municipal: ITCG, 2017.

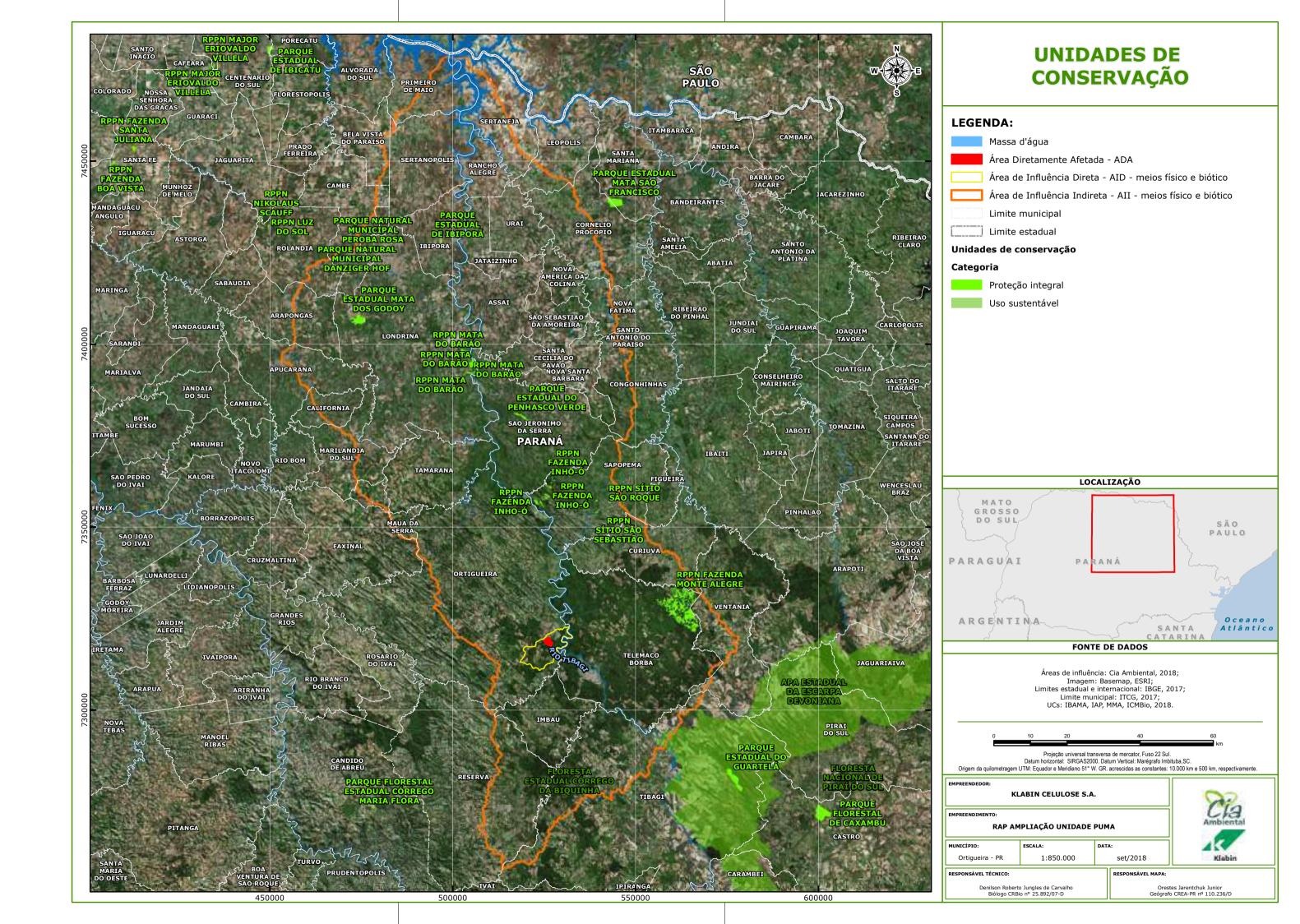

Projeção universal transversa de mercator, Fuso 22 Sul.
Datum horizontal: SIRGAS2000. Datum Vertical: Marégrafo Imbituba,SC.
Origem da quilometragem UTM: Equador e Meridiano 51° W. GR. acrescidas as constantes: 10.000 km e 500 km, respectivamente.

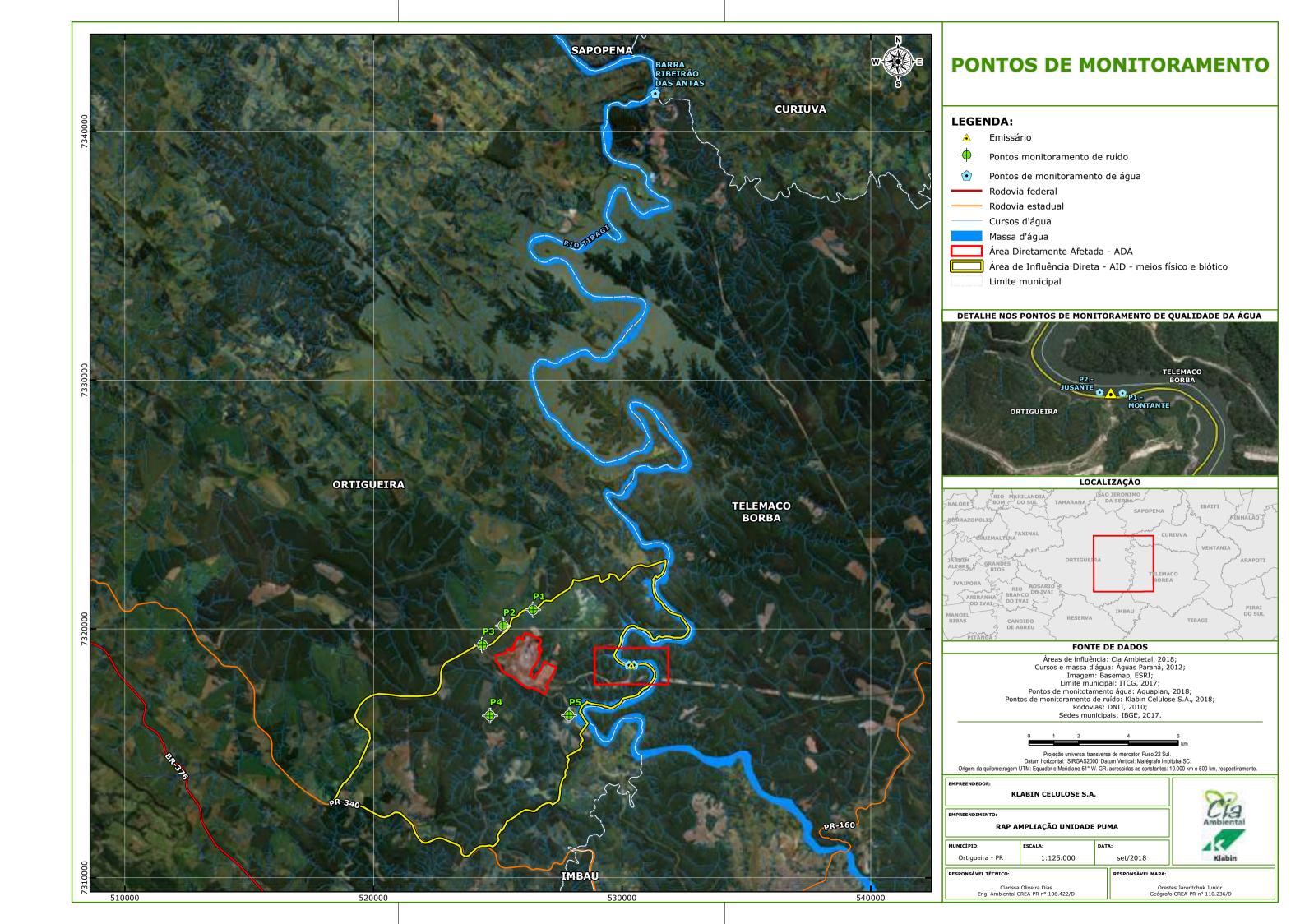

KLABIN CELULOSE S.A.

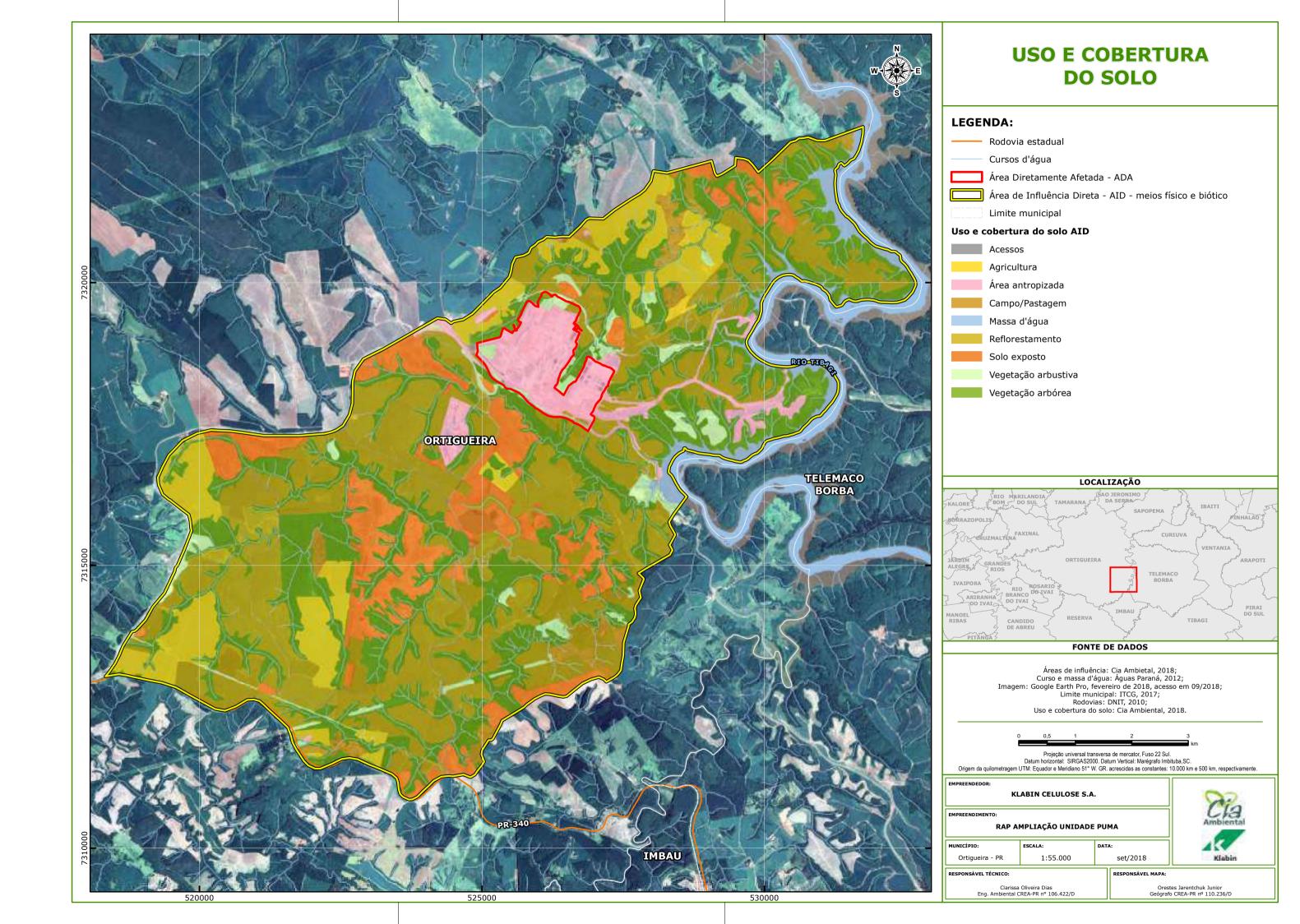

RAP AMPLIAÇÃO UNIDADE PUMA


ESCALA: 1:9.500 set/2018









CERTIDÃO DE ANUÊNCIA DO MUNICIPIO DE ORTIGUEIRA

Declaramos ao INSTITUTO AMBIENTAL DO PARANÁ – IAP/SEMA que o Empreendimento abaixo descrito, está localizado neste Município de Ortigueira e que o Local, Tipo de Empreendimento e Atividade estão em conformidade com a Legislação municipal aplicável ao uso e ocupação do solo, bem como atendem as demais exigências legais e administrativas perante o nosso Município.

EMPREENDEDOR	Klabin S/A
CNPJ.	89637490/0001-45
NOME DO EMPREENDIMENTO	Complexo Industrial de Celulose, Papel, Co-geração, Linha de Transmissão 230KV e Subestação
ATIVIDADE	Fabricação de Celulose e Papel
ENDEREÇO	Campina dos Pulpos
MUNICIPIO	Ortigueira
CEP	84350-000
TELEFONE	(42) 3271-5782

Ortigueira, 19 de Outubro 2012

Alcides Cândido Maia

Secretário Municipal do Meio Ambiente e Recursos Hídricos

Geraldo Magela do Nascimento

Prefeito Municipal

ESTUDO DE DISPERSÃO ATMOSFÉRICA E AVALIAÇÃO DA QUALIDADE DO AR

UNIDADES MONTE ALEGRE E PUMA

Consultoria Ambiental Especializada e Laboratório de Ensaio Acreditado ABNT NBR ISO/IEC 17025 – CRL 1151

Elaborado para:

Elaborado em: 06/08/2018

REVISÃO	DATA	DESCRIÇÃO DA REVISÃO	PREPARADO POR:	REVISADO POR:	APROVADO POR:
00	28/06/2018	Documento Original	Daniel Zacharias	George Lentz	George Lentz
01	06/07/2018	Versão Enviada para Revisão do Cliente	Daniel Zacharias	Daniel Zacharias	George Lentz
02	06/08/2018	Versão Enviada para Revisão do Cliente	Daniel Zacharias	Daniel Zacharias	George Lentz
03	08/08/2018	Alterações Solicitadas pelo Cliente	Daniel Zacharias	Daniel Zacharias	George Lentz

SUMÁRIO

INDICE	E DE FIGURAS	iv
ÍNDICE	E DE TABELAS	ix
LISTA	DE ABREVIAÇÕES E SÍMBOLOS	xi
1	OBJETIVOS	12
2	INTRODUÇÃO	13
2.1	Modelo Computacional de Dispersão Atmosférica	13
2.2	Localização das Unidades e dos Municípios de Entorno	20
3	AS UNIDADE DA KLABIN	21
4	DESENVOLVIMENTO DO ESTUDO DE DISPERSÃO ATMOSFÉRICA	23
4.1	Domínio do Estudo	24
4.2	Relevo e Uso do Solo	27
4.3	Análise dos Dados Meteorológicos	30
4.3.1	Configuração do AERMOD Meteorological Preprocessor (AERMET)	31
4.3.2	A Importância da Direção e Velocidade dos Ventos	34
4.3.3	Histograma Direcional do Vento	34
4.3.4	Dados Meteorológicos de Superfície (dados do modelo do WRF)	36
4.4	Configurações Regulatórias das Simulações	42
4.5	Cenários Simulados	43
4.6	Efeito Downwash	44
4.7	Taxas de emissão	48
5	RESULTADOS	52
5.1	Resultados nos Receptores Discretos	62
6	CONCLUSÕES	73
7	EQUIPE TÉCNICA	74
REFE	RÊNCIAS BIBLIOGRÁFICAS	75
ANEX	O A: DISTRIBUIÇÃO ESPACIAL DAS CONCENTRAÇÕES DOS POLUENTE	S76
ANEX	O B: CINQUENTA (50) MAIORES CONCENTRAÇÕES DE CURTO PERÍODO)113

ÍNDICE DE FIGURAS

Figura 1: Sistema de análise por dois estágios. A concentração total é dada por uma soma
ponderada dos dois estados extremos possíveis da pluma1
Figura 2: Tratamento do terreno no AERMOD. Determinação do fator de peso usado no
cálculo da concentração total1
Figura 3: Pluma instantânea e sua respectiva média na CLC
Figura 4: Tratamento matemático utilizado pelo AERMOD da pluma real na CLC
Figura 5: Abordagem bi-Gaussiana da aproximação de uma distribuição assimétrica por duas
distribuições Gaussianas, uma para os movimentos ascendentes e outra para os
descendentes1
Figura 6: Localização das unidades analisadas e dos municípios de entorno
Figura 7: Imagem de satélite da unidade Monte Alegre de produção de celulose
Figura 8: Imagem de satélite da unidade Puma de produção de celulose
Figura 9: Receptores discretos próximos à Klabin unidade Puma
Figura 10: Receptores discretos próximos à Klabin unidade Monte Alegre
Figura 11: Malhas cartesianas simuladas, centralizadas na fonte
Figura 12: Mapa da localização do empreendimento e domínio do estudo fora dos limites
territoriais da unidade de conservação marcada em verde2
Figura 13: Mapa de uso do solo, com as áreas urbanas marcadas em vermelho2
Figura 14: Curvas de nível (m) da região destaque para o empreendimento ao centro2
Figura 15: Localização do empreendimento e da estação meteorológica, ambos marcados em
vermelho com as principais vias de acesso destacadas em amarelo3
Figura 16: Configurações dos dados horários da estação de superfície (AERMET)3
Figura 17: Configurações do Land Use Creator incluindo as categorias de uso do solo do
GLCC no local do projeto3
Figura 18: Configuração do Land Use Viewer com a classificação de uso do solo3
Figura 19: Configuração dos parâmetros de superfície pela direção do vento
Figura 20: Rosa dos ventos com a classificação de velocidade, direção e limite, em
porcentagem, da ocorrência de ventos de calmaria3
Figura 21: Histograma de classificação da frequência de distribuição do vento
Figura 22: Estatísticas dos dados meteorológicos utilizados

rigura 23.	Serie temporal da temperatura do ar (K) da estação meteorológica utilizada 37
Figura 24:	Gráfico da normal de temperatura do ar (°C) da estação de referência climatológica
	mais próxima37
Figura 25:	Série temporal da umidade relativa do ar (%) da estação meteorológica utilizada39
Figura 26:	Gráfico da normal da umidade relativa do ar (%) da estação de referência
	climatológica mais próxima
Figura 27:	Série temporal da pressão atmosférica (hPa) da estação meteorológica utilizada 40
Figura 28:	Gráfico da normal da pressão atmosférica (hPa) da estação de referência
	climatológica mais próxima
Figura 29:	Série temporal da precipitação horária acumulada (mm/hora) da estação
	meteorológica utilizada41
Figura 30:	Gráfico da normal da precipitação acumulada mensal (chuva em mm/mês) da
	estação de referência climatológica mais próxima41
Figura 31:	Configurações DEFAULT para a simulação de particulados emitidos para a
	atmosfera42
Figura 32:	(a) simulação do efeito downwash em uma maquete, (b) simulação do efeito
	downwash em uma modelagem computacional e (c) deslocamento da pluma sem
	atuação do efeito downwash44
Figura 33:	Diagrama esquemático da localização das edificações próximas (em azul) e fontes
	de emissão (em vermelho) na unidade Monte Alegre46
Figura 34:	Diagrama esquemático da localização das edificações próximas (em azul) e fontes
	de emissão (em vermelho) na unidade Puma
Figura 35:	Distribuição espacial da média de 1h da concentração de CO na imagem 40 km x
	40 km, com a concentração máxima em destaque, localização das unidades sobre o
	mapa viário e de uso so solo para a unidade Monte Alegre no cenário ATUAL 77
Figura 36:	Distribuição espacial da média de 1h da concentração de CO na imagem 40 km x
	40 km, com a concentração máxima em destaque, localização das unidades sobre o
	mapa viário e de uso so solo para a unidade Puma no cenário ATUAL78
Figura 37:	Distribuição espacial da média de 1h da concentração de CO na imagem 40 km x
	40 km, com a concentração máxima em destaque, localização das unidades sobre o
	mapa viário e de uso so solo para as unidades Monte Alegre e Puma, no cenário
	ATUAL79
Figura 38:	Distribuição espacial da média de 8h da concentração de CO na imagem 40 km x
	40 km, com a concentração máxima em destaque, localização das unidades sobre o
	mapa viário e de uso so solo para a unidade Monte Alegre no cenário ATUAL 80

Figura 39: Distribuição espacial da média de 8h da concentração de CO na imagem 40 km x
40 km, com a concentração máxima em destaque, localização das unidades sobre o
mapa viário e de uso so solo para a unidade Puma no cenário ATUAL8
Figura 40: Distribuição espacial da média de 8h da concentração de CO na imagem 40 km x
40 km, com a concentração máxima em destaque, localização das unidades sobre o
mapa viário e de uso so solo para as unidades Monte Alegre e Puma, no cenário
ATUAL82
Figura 41: Distribuição espacial da média de 1h da concentração de NO_X na imagem 40 km x
40 km, com a concentração máxima em destaque, localização das unidades sobre o
mapa viário e de uso so solo para a unidade Monte Alegre no cenário ATUAL 83
Figura 42: Distribuição espacial da média de 1h da concentração de NO_X na imagem 40 km x
40 km, com a concentração máxima em destaque, localização das unidades sobre o
mapa viário e de uso so solo para a unidade Puma no cenário ATUAL84
Figura 43: Distribuição espacial da média de 1h da concentração de NO_X na imagem 40 km x
40 km, com a concentração máxima em destaque, localização das unidades sobre o
mapa viário e de uso so solo para as unidades Monte Alegre e Puma, no cenário
ATUAL85
Figura 44: Distribuição espacial da média de 24h da concentração de PTS na imagem 40 km x
40 km, com a concentração máxima em destaque, localização das unidades sobre o
mapa viário e de uso so solo para a unidade Monte Alegre no cenário ATUAL 86
Figura 45: Distribuição espacial da média de 24h da concentração de PTS na imagem 40 km x
40 km, com a concentração máxima em destaque, localização das unidades sobre o
mapa viário e de uso so solo para a unidade Puma no cenário ATUAL87
Figura 46: Distribuição espacial da média de 24h da concentração de PTS na imagem 40 km x
40 km, com a concentração máxima em destaque, localização das unidades sobre o
mapa viário e de uso so solo para as unidades Monte Alegre e Puma, no cenário
ATUAL88
Figura 47: Distribuição espacial da média de 24h da concentração de SOx na imagem 40 km x
40 km, com a concentração máxima em destaque, localização das unidades sobre o
mapa viário e de uso so solo para a unidade Monte Alegre no cenário ATUAL 89
Figura 48: Distribuição espacial da média de 24h da concentração de SOx na imagem 40 km x
40 km, com a concentração máxima em destaque, localização das unidades sobre o
mapa viário e de uso so solo para a unidade Puma no cenário ATUAL90
Figura 49: Distribuição espacial da média de 24h da concentração de SOx na imagem 40 km x
40 km, com a concentração máxima em destaque, localização das unidades sobre o

	mapa viário e de uso so solo para as unidades Monte Alegre e Puma, no cenário
	ATUAL91
Figura 50:	Distribuição espacial da média de 1h da concentração de TRS na imagem 40 km x
	40 km, com a concentração máxima em destaque, localização das unidades sobre o
	mapa viário e de uso so solo para a unidade Monte Alegre no cenário ATUAL 92
Figura 51:	Distribuição espacial da média de 1h da concentração de TRS na imagem 40 km x
	40 km, com a concentração máxima em destaque, localização das unidades sobre o
	mapa viário e de uso so solo para a unidade Puma no cenário ATUAL
Figura 52:	Distribuição espacial da média de 1h da concentração de TRS na imagem 40 km x
	40 km, com a concentração máxima em destaque, localização das unidades sobre o
	mapa viário e de uso so solo para as unidades Monte Alegre e Puma, no cenário
	ATUAL94
Figura 53:	Distribuição espacial da média de 1h da concentração de CO na imagem 40 km x
	40 km, com a concentração máxima em destaque, localização das unidades sobre o
	mapa viário e de uso so solo para a unidade Monte Alegre no cenário FUTURO95
Figura 54:	Distribuição espacial da média de 1h da concentração de CO na imagem 40 km x
	40 km, com a concentração máxima em destaque, localização das unidades sobre o
	mapa viário e de uso so solo para a unidade Puma no cenário FUTURO96
Figura 55:	Distribuição espacial da média de 1h da concentração de CO na imagem 40 km x
	40 km, com a concentração máxima em destaque, localização das unidades sobre o
	mapa viário e de uso so solo para as unidades Monte Alegre e Puma, no cenário
	FUTURO97
Figura 56:	Distribuição espacial da média de 8h da concentração de CO na imagem 40 km x
	40 km, com a concentração máxima em destaque, localização das unidades sobre o
	mapa viário e de uso so solo para a unidade Monte Alegre no cenário FUTURO98
Figura 57:	Distribuição espacial da média de 8h da concentração de CO na imagem 40 km x
	40 km, com a concentração máxima em destaque, localização das unidades sobre o
	mapa viário e de uso so solo para a unidade Puma no cenário FUTURO99
Figura 58:	Distribuição espacial da média de 8h da concentração de CO na imagem 40 km x
	40 km, com a concentração máxima em destaque, localização das unidades sobre o
	mapa viário e de uso so solo para as unidades Monte Alegre e Puma, no cenário
	FUTURO
Figura 59:	: Distribuição espacial da média de 1h da concentração de NO _x na imagem 40 km x
	40 km, com a concentração máxima em destaque, localização das unidades sobre o
	mapa viário e de uso so solo para a unidade Monte Alegre no cenário FUTURO. 101

rigura 00. Distribuição espaciai da media de 111 da concentração de NOX ha imagem 40 k	шх
40 km, com a concentração máxima em destaque, localização das unidades so	bre o
mapa viário e de uso so solo para a unidade Puma no cenário FUTURO	102
Figura 61: Distribuição espacial da média de 1h da concentração de NO _X na imagem 40 k	m x
40 km, com a concentração máxima em destaque, localização das unidades so	bre o
mapa viário e de uso so solo para as unidades Monte Alegre e Puma, no cenár	io
FUTURO	103
Figura 62: Distribuição espacial da média de 24h da concentração de PTS na imagem 40	km x
40 km, com a concentração máxima em destaque, localização das unidades so	bre o
mapa viário e de uso so solo para a unidade Monte Alegre no cenário FUTURC). 104
Figura 63: Distribuição espacial da média de 24h da concentração de PTS na imagem 40	km x
40 km, com a concentração máxima em destaque, localização das unidades so	bre o
mapa viário e de uso so solo para a unidade Puma no cenário FUTURO	105
Figura 64: Distribuição espacial da média de 24h da concentração de PTS na imagem 40	km x
40 km, com a concentração máxima em destaque, localização das unidades so	bre o
mapa viário e de uso so solo para as unidades Monte Alegre e Puma, no cenár	io
FUTURO	106
Figura 65: Distribuição espacial da média de 24h da concentração de SOx na imagem 40	km x
40 km, com a concentração máxima em destaque, localização das unidades so	bre o
mapa viário e de uso so solo para a unidade Monte Alegre no cenário FUTURC	.107
Figura 66: Distribuição espacial da média de 24h da concentração de SOx na imagem 40	km x
40 km, com a concentração máxima em destaque, localização das unidades so	bre o
mapa viário e de uso so solo para a unidade Puma no cenário FUTURO	108
Figura 67: Distribuição espacial da média de 24h da concentração de SOx na imagem 40	km x
40 km, com a concentração máxima em destaque, localização das unidades so	bre o
mapa viário e de uso so solo para as unidades Monte Alegre e Puma, no cenár	io
FUTURO	109
Figura 68: Distribuição espacial da média de 1h da concentração de TRS na imagem 40 k	m x
40 km, com a concentração máxima em destaque, localização das unidades so	bre o
mapa viário e de uso so solo para a unidade Monte Alegre no cenário FUTURC). 110
Figura 69: Distribuição espacial da média de 1h da concentração de TRS na imagem 40 k	m x
40 km, com a concentração máxima em destaque, localização das unidades so	bre o
mapa viário e de uso so solo para a unidade Puma no cenário FUTURO	111
Figura 70: Distribuição espacial da média de 1h da concentração de TRS na imagem 40 k	m x
40 km, com a concentração máxima em destaque, localização das unidades so	bre o

mapa viário e de uso so solo para	as unidades Monte Alegre e Puma, no cenário
FUTURO	112

ÍNDICE DE TABELAS

Tabela 1: Localização dos receptores discretos	. 24
Tabela 2: Cenários simulados no Estudo de Dispersão Atmosférica	. 43
Tabela 3: Edificações utilizadas para o cálculo do downwash na unidade Monte Alegre	. 46
Tabela 4: Edificações utilizadas para o cálculo do downwash na unidade Puma	. 47
Tabela 5: Dados de entrada das fontes áreas simuladas	. 48
Tabela 6: Dados de entrada das fontes áreas simuladas no cenário ATUAL	. 49
Tabela 7: Dados de entrada das fontes áreas simuladas no cenário FUTURO	. 49
Tabela 8: Taxas de emissão por fontes simuladas (g/s) no cenário ATUAL	. 50
Tabela 9: Taxas de emissão por fontes simuladas (g/s) no cenário FUTURO	. 50
Tabela 10: Valores de emissão por fontes simuladas (mg/Nm³) no cenário ATUAL	. 51
Tabela 11: Taxas de emissão por fontes simuladas (mg/Nm³) no cenário FUTURO	. 51
Tabela 12: Concentrações máximas (μg/m³) em receptores distintos para o CO no cenário	
ATUAL	. 53
Tabela 13: Concentrações máximas ($\mu g/m^3$) em receptores distintos para o NO_X no cenário	
ATUAL	. 54
Tabela 14: Concentrações máximas (μg/m³) em receptores distintos para o PTS no cenário	
ATUAL	. 55
Tabela 15: Concentrações máximas ($\mu g/m^3$) em receptores distintos para o SO_X no cenário	
ATUAL	. 56
Tabela 16: Concentrações máximas (μg/m³) em receptores distintos para o ERT no cenário	
ATUAL	. 57
Tabela 17: Concentrações máximas (μg/m³) em receptores distintos para o CO no cenário	
FUTURO	. 58
Tabela 18: Concentrações máximas (μg/m³) em receptores distintos para o NO _X no cenário	
FUTURO	. 59
Tabela 19: Concentrações máximas (μg/m³) em receptores distintos para o PTS no cenário	
FUTURO	. 60

ATUAL61
Tabela 21: Concentrações máximas (μg/m³) em receptores distintos para o ERT no cenário FUTURO62
Tabela 22: Concentrações máximas (μg/m³) em receptores discretos colocados nos pontos
· · · · · · · · · · · · · · · · · · ·
críticos para o CO no cenário ATUAL para as fontes de Monte Alegre e Puma 63
Tabela 23: Concentrações máximas (μg/m³) em receptores discretos colocados nos pontos
críticos para o NO _X no cenário ATUAL para as fontes de Monte Alegre e Puma 64
Tabela 24: Concentrações máximas (μg/m³) em receptores discretos colocados nos pontos
críticos para o PTS no cenário ATUAL para as fontes de Monte Alegre e Puma 65
Tabela 25: Concentrações máximas (μg/m³) em receptores discretos colocados nos pontos
críticos para o SO _X no cenário ATUAL para as fontes de Monte Alegre e Puma 66
Tabela 26: Concentrações máximas (μg/m³) em receptores discretos colocados nos pontos
críticos para o ERT no cenário ATUAL para as fontes de Monte Alegre e Puma 67
Tabela 27: Concentrações máximas (μg/m³) em receptores discretos colocados nos pontos
críticos para o CO no cenário FUTURO para as fontes de Monte Alegre e Puma 68
Tabela 28: Concentrações máximas (μg/m³) em receptores discretos colocados nos pontos
críticos para o NO_X no cenário FUTURO para as fontes de Monte Alegre e Puma. 69
Tabela 29: Concentrações máximas (μg/m³) em receptores discretos colocados nos pontos
críticos para o PTS no cenário FUTURO para as fontes de Monte Alegre e Puma. 70
Tabela 30: Concentrações máximas (μg/m³) em receptores discretos colocados nos pontos
críticos para o SO _x no cenário FUTURO para as fontes de Monte Alegre e Puma. 71
Tabela 31: Concentrações máximas (μg/m³) em receptores discretos colocados nos pontos
críticos para o ERT no cenário FUTURO para as fontes de Monte Alegre e Puma. 72
Tabela 32: Cinquenta maiores concentrações (μg/m³) de curto período (1h) do CO no cenário
ATUAL para as fontes de Monte Alegre e Puma114
Tabela 33: Cinquenta maiores concentrações (µg/m³) de curto período (8h) do CO no cenário
ATUAL para as fontes de Monte Alegre e Puma115
Tabela 34: Cinquenta maiores concentrações (μg/m³) de curto período (1h) do NO _X no cenário
ATUAL para as fontes de Monte Alegre e Puma116
Tabela 35: Cinquenta maiores concentrações (μg/m³) de curto período (24h) do PTS no
cenário ATUAL para as fontes de Monte Alegre e Puma
Tabela 36: Cinquenta maiores concentrações (μg/m³) de curto período (24h) do SO _X no
cenário ATUAL para as fontes de Monte Alegre e Puma

Tabela 37: Cinquenta maiores concentrações (μg/m³) de curto período (1h) do ERT no cená	ırio
ATUAL para as fontes de Monte Alegre e Puma	119
Tabela 38: Cinquenta maiores concentrações (µg/m³) de curto período (1h) do CO no cenár	io
FUTURO para as fontes de Monte Alegre e Puma	120
Tabela 39: Cinquenta maiores concentrações (µg/m³) de curto período (8h) do CO no cenár	io
FUTURO para as fontes de Monte Alegre e Puma	121
Tabela 40: Cinquenta maiores concentrações (µg/m³) de curto período (1h) do NO _X no cená	ırio
FUTURO para as fontes de Monte Alegre e Puma	122
Tabela 41: Cinquenta maiores concentrações (μg/m³) de curto período (24h) do PTS no	
cenário FUTURO para as fontes de Monte Alegre e Puma	123
Tabela 42: Cinquenta maiores concentrações (μg/m³) de curto período (24h) do SO _X no	
cenário FUTURO para as fontes de Monte Alegre e Puma	124
Tabela 43: Cinquenta maiores concentrações (µg/m³) de curto período (1h) do ERT no cená	irio
FUTURO para as fontes de Monte Alegre e Puma	125

LISTA DE ABREVIAÇÕES E SÍMBOLOS

CO: Monóxido de carbono

CONAMA: Conselho Nacional de Meio Ambiente

ERT: Enxofre reduzido total

NO₂: Dióxido de enxofre

NOx: Óxidos de nitrogênio, expressos em termos de NO2

PTS: Partículas Totais em Suspensão

SO₂: Dióxido de enxofre

SOx: Óxidos de enxofre, expressos em termos de SO₂

1 OBJETIVOS

O objetivo deste Estudo de Dispersão Atmosférica – EDA é determinar alterações à qualidade do ar provocadas pele emissão de poluentes atmosféricos provenientes das unidades da Klabin, localizadas nos municípios de Ortigueira e Telêmaco Borba – PR.

A KLABIN S.A. pretende implantar novos processos na Unidade Puma, localizada no município de Ortigueira, bem como aumentar a capacidade produtiva da Unidade Monte Alegre, localizada no município de Telêmaco Borba. Na unidade Puma será implantada uma nova caldeira de recuperação, uma nova caldeira de força e um novo forno de cal. Na unidade Monte Alegre será implantada uma nova caldeira de recuperação.

Esta EDA atende integralmente ao "Escopo Técnico para Modelagem Atmosférica", elaborado pela contratante, intitulado "Especificação para Tomada de Preços"; "Serviços de Estudo de Dispersão Atmosférica".

Os resultados das simulações foram comparados com os respectivos padrões determinados no Capítulo V da Resolução SEMA¹ 054/2006, que acompanha a Resolução CONAMA² 03/1990.

¹ Secretaria de Estado de Meio Ambiente e Recursos Hídricos do Estado do Paraná.

² CONAMA – Conselho Nacional de Meio Ambiente

2 INTRODUÇÃO

O Estudo de Dispersão Atmosférica (EDA) tem grande importância na avaliação da qualidade do ar, simulando as emissões do empreendimento e permitindo identificar a dimensão da área afetada.

O estudo permite entender as condições atmosféricas em cada cenário tratado, para ajudar no estabelecimento de ações preventivas e/ou mitigatórias quando necessário, além de cumprir as exigências da legislação demonstrando maior comprometimento com relação aos aspectos ambientais.

2.1 Modelo Computacional de Dispersão Atmosférica

A modelagem matemática é uma importante ferramenta para avaliar a concentração de poluentes na atmosfera emitidos por fontes estacionárias. Esse modelo permite que sejam analisadas as contribuições de determinadas fontes no resultado final da qualidade do ar.

O modelo utilizado nesse estudo é uma das ferramentas e/ou dos critérios recomendados pelos órgãos de controle ambiental em nível nacional e internacional.

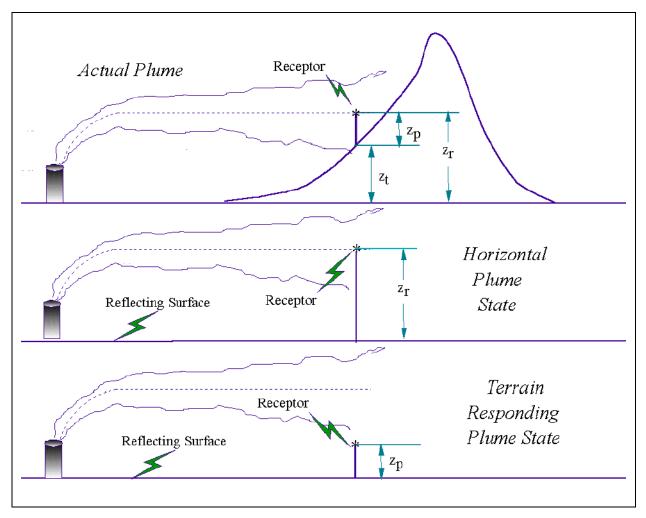
Em 1991, a American Meteorological Society (AMS) e a U.S. Environmental Protection Agency (EPA) iniciaram uma colaboração formal com o objetivo de introduzir os conceitos mais atuais de camada limite planetária (CLP) nos modelos regulatórios de dispersão atmosférica. Foi formado um grupo de trabalho (AMS/EPA Regulatory Improvement Committee, AERMIC) com pesquisadores das duas instituições para desenvolver um modelo que cumprisse esse objetivo.

A plataforma regulatória da EPA para modelagem de campo próximo, durante os 25 anos anteriores permaneceram, com poucas exceções, fundamentalmente inalteradas, sendo o ISC3 foi o principal modelo utilizado, por conta disso, o objetivo do AERMIC foi desenvolver um modelo novo que substituísse completamente o ISC3.

Em 21 de Abril de 2000, a EPA propôs a adoção do AERMOD como substituto do ISC3 no apêndice A do Guideline on Air Quality Models. A versão atual do AERMOD foi revisada e incorporou os algoritmos PRIME para estimativa de downwash.

O AERMOD (v16216r) é um modelo de pluma gaussiana que considera as concentrações obtidas para todas as distâncias como resultados de médias temporais das simulações horárias. Esse tipo de modelo apresenta bons resultados para estudos cujo objetivo é obter uma distribuição espacial da poluição ao invés de resultados pontuais no espaço e no tempo.

Na camada limite estável (CLE) a distribuição da concentração é assumida como Gaussiana tanto na horizontal quanto na vertical. Na camada limite convectiva (CLC) a distribuição horizontal é assumida como Gaussiana, enquanto que na vertical a distribuição é descrita com uma função de densidade de probabilidade bi-Gaussiana.

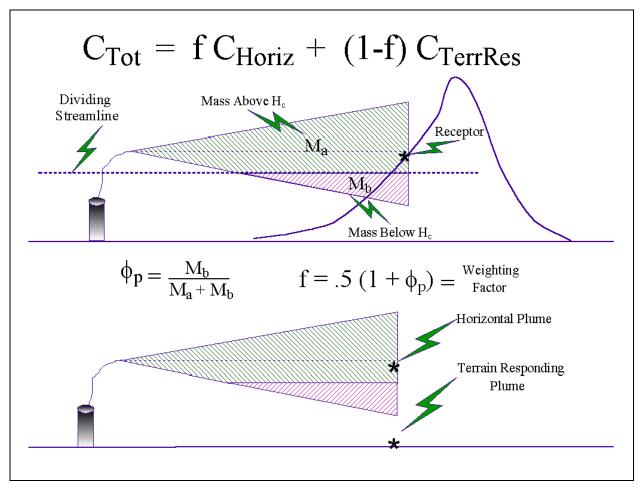

Em geral, o modelo AERMOD é a combinação de dois casos limites: Uma pluma horizontal que impacta no terreno e uma pluma que acompanha o terreno. Para todas as situações, a concentração total por receptor é a soma ponderada dessas duas situações (Figura 1). Essas duas plumas são separadas por uma linha de corrente crítica de altura Hc (Figura 2).

A equação geral da concentração é aplicada em condições atmosféricas estáveis ou convectivas e é dada por:

$$C_T\{x_r, y_r, z_r\} = f \cdot C_{c,s}\{x_r, y_r, z_r\} + (1 - f)C_{c,s}\{x_r, y_r, z_p\}$$

Onde: $C_T\{x_r,y_r,z_r\}$ é a concentração total, $C_{c,s}\{x_r,y_r,z_r\}$ é a contribuição da pluma horizontal (c e s se referem as condições convectivas e estáveis, respectivamente), $C_{c,s}\{x_r,y_r,z_p\}$ é a contribuição da pluma que acompanha o terreno, f é o peso da pluma horizontal, $\{x_r,y_r,z_r\}$ são as coordenadas do receptor (com z_r definido com relação a altura da base da fonte e z_p é a altura do receptor acima da altura do solo local). É importante notar que cálculo de concentração todas as alturas (z) é referente à elevação da base da fonte.

O fator de peso do estado da pluma é dado por $f=0.5(1+\phi_p)$. Quando a pluma se concentra inteiramente abaixo do Hc ($\phi_p=1$), a concentração é determinada somente pela pluma horizontal. Quando está inteiramente acima do Hc ($\phi_p=0$), o peso da contribuição de cada um dos dois estados é o mesmo. Em simulações de terreno plano, a contribuição de cada uma das duas plumas será a mesma (Figura 2).


Figura 1: Sistema de análise por dois estágios. A concentração total é dada por uma soma ponderada dos dois estados extremos possíveis da pluma.

Fonte: https://www3.epa.gov/ttn/scram/models/aermod/aermod userguide.pdf (acesso: 11/04/2018)

O AERMOD simula cinco diferentes tipos de pluma dependendo da estabilidade atmosférica e da localização da pluma na camada limite: Direta, Indireta, Penetrada, Injetada e estável.

Em condições convectivas, a distribuição horizontal é Gaussiana, e a distribuição vertical é a combinação de três tipos de pluma: Direta (a pluma está dentro da camada de mistura, mas não interage com o topo da camada), Indireta (a pluma está dentro da camada de mistura, começa a subir e tende a se espalhar perto do topo da camada de mistura) e a Penetrada (a pluma escapa da camada de mistura, penetra em uma camada estável mais elevada e fica flutuando nela). O AERMOD também pode simular, em

situações especiais, uma pluma injetada diretamente nas camadas estáveis da atmosfera por uma fonte pontual cuja altura de emissão seja maior do que a altura da camada de mistura naquele horário. Fontes injetoras são simuladas como plumas em condições estáveis, contudo a influência da turbulência e dos ventos dentro da camada de mistura é considerada no cálculo da heterogeneidade como a passagem da pluma através da camada de mistura até atingir os receptores.

Figura 2: Tratamento do terreno no AERMOD. Determinação do fator de peso usado no cálculo da concentração total.

Fonte: https://www3.epa.gov/ttn/scram/models/aermod/aermod_userguide.pdf (acesso: 11/04/2018)

No AERMOD, a formulação da dispersão para a camada limite convectiva (CLC) representa um dos mais significantes avanços em comparação com os modelos regulatórios existentes. Ele assume que setores da pluma são emitidos em sequência e

que se movem de acordo com o vento, percorrendo uma sequência de elementos convectivos ascendentes e descendentes (Figura 3).

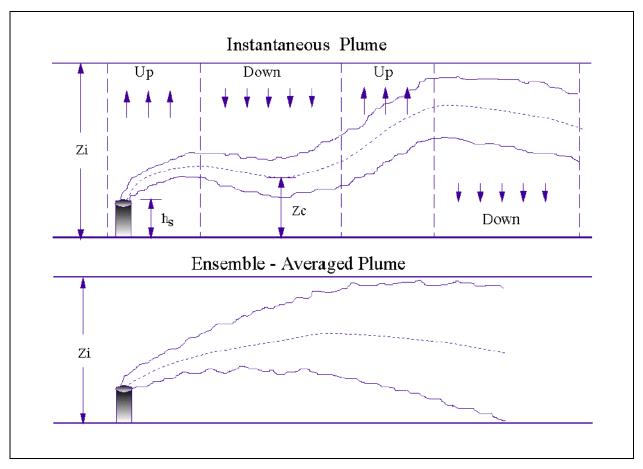


Figura 3: Pluma instantânea e sua respectiva média na CLC.

Fonte: https://www3.epa.gov/ttn/scram/models/aermod/aermod_userguide.pdf(acesso 11/04/2018)

Na CLC a função densidade de probabilidade da velocidade vertical (w) possui um coeficiente de assimetria positivo e resulta em uma distribuição não-Gaussiana da concentração vertical da pluma. A assimetria positiva é consistente com uma ocorrência maior de movimentos descendentes da pluma do que de movimentos ascendentes.

No tratamento matemático utilizado pelo AERMOD, a pluma direta é a que primeiro toca no solo e possui reflexões subsequentes entre o nível do solo e o topo da camada de mistura. Uma fonte indireta é incluída sobre a camada de mistura para calcular a posição inicial da quase-reflexão do material da pluma que não penetrou na camada estável em altitude. Essa fonte é chamada de indireta, pois não é uma imagem da fonte verdadeira

(como ocorre em modelos como o ISC), a pluma não é refletida perfeitamente no topo da camada de mistura, por isso, a fonte indireta trata a porção da massa da pluma que primeiro toca no topo da camada de mistura e suas reflexões subsequentes. A ascensão da pluma é adicionada ao atraso da dispersão descendente do material do topo da CBL. A fonte (ou pluma) penetrada é incluída na conta do material que inicialmente penetrou na camada estável em altitude, mas foi subsequentemente re-entranhada e dispersada pela CBL (Figura 4).

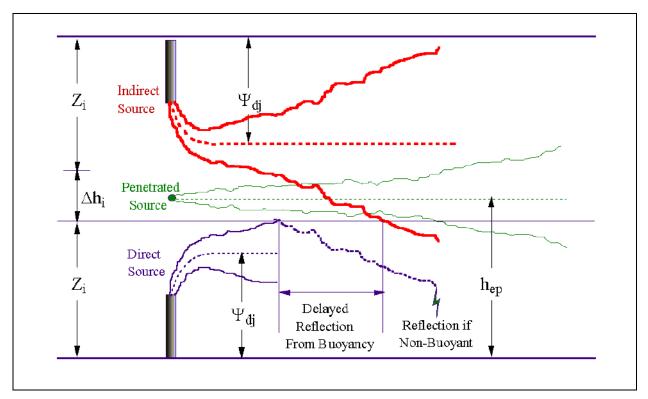
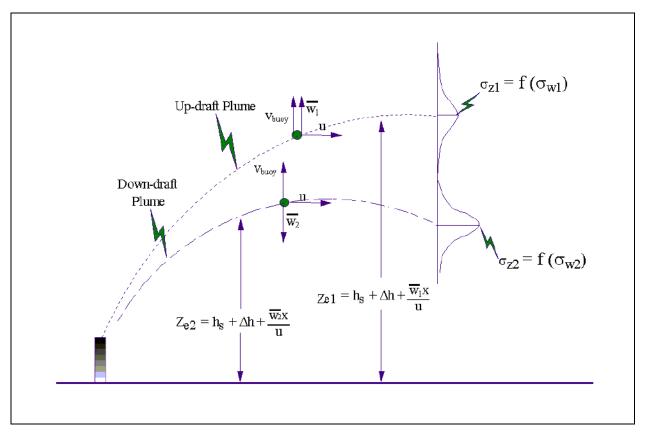


Figura 4: Tratamento matemático utilizado pelo AERMOD da pluma real na CLC.


Fonte: https://www3.epa.gov/ttn/scram/models/aermod/aermod_userguide.pdf (acesso: 11/04/2018)

A movimentação ascendente e descendente da pluma ocorre devido à turbulência atmosférica e o coeficiente de assimetria positivo projeta uma trajetória final descendente para a pluma, definindo o local da concentração máxima. As concentrações ao nível do solo começam a aparecer quando as velocidades descendentes são intensas o suficiente para que algumas seções da pluma toquem na superfície.

A (Figura 5) ilustra a aproximação da distribuição assimétrica na CLC por uma abordagem bi-Gaussiana. A figura mostra duas médias da trajetória da pluma, uma

devido aos movimentos ascendentes da atmosfera (\overline{w}_1) e a outra devido aos movimentos descendentes (\overline{w}_2) .

Figura 5: Abordagem bi-Gaussiana da aproximação de uma distribuição assimétrica por duas distribuições Gaussianas, uma para os movimentos ascendentes e outra para os descendentes.

Fonte: https://www3.epa.gov/ttn/scram/models/aermod/aermod_userguide.pdf (acesso: 11/04/2018)

Os dados meteorológicos utilizados pelo AERMOD para simular as condições atmosféricas em que ocorre a dispersão dos poluentes em uma determinada área, se são divididos, basicamente, entre dados de superfície e dados de altitude. Os dados de superfície são responsáveis pela representação das condições termodinâmicas e turbulentas da atmosfera, e os dados de altitude representam as condições de transporte dos poluentes nos diversos níveis atmosféricos.

2.2 Localização das Unidades e dos Municípios de Entorno

As unidades estão instaladas nos municípios de Telêmaco Borba (unidade Monte Alegre) e Ortigueira (unidade Puma). A distância linear entre estas unidades é de 14 km (Figura 6).



Figura 6: Localização das unidades analisadas e dos municípios de entorno.

3 AS UNIDADE DA KLABIN

A primeira unidade da analisada é a fábrica de Monte Alegre (Figura 7), localizada na Fazenda Monte Alegre, CEP 84275-000, no município de Telêmaco Borba, inaugurada em 1946, sendo essa a maior produtora de papéis de fibra virgem para embalagens da América Latina e uma das dez maiores produtoras de papel cartão de fibra virgem do mundo, com capacidade de produção de mais de 1 milhão de toneladas de papéis por ano. Essa unidade possui uma área florestal de 275,6 mil hectares: 135,2 mil hectares de florestas plantadas de pínus e eucalipto e 110,3 mil hectares de mata nativa preservada.

Figura 7: Imagem de satélite da unidade Monte Alegre de produção de celulose.

A segunda unidade da analisada é a fábrica da unidade de Puma (Figura 8), localizada na Fazenda Apucarana Grande, Distrito de Natingui - CEP 84350-000, no município de Ortigueira, inaugurada em 28/06/2016. Essa unidade produz, simultaneamente, celulose de fibra curta (eucalipto), celulose de fibra longa (pinus) e celulose fluff, com capacidade de produção de 1,5 milhão de toneladas/ano, sendo autossuficiente em geração de energia, com capacidade para produzir 270 MW.

Figura 8: Imagem de satélite da unidade Puma de produção de celulose.

4 DESENVOLVIMENTO DO ESTUDO DE DISPERSÃO ATMOSFÉRICA

Os processos geradores de emissões atmosféricas, nesse estudo de dispersão, são majoritariamente, os processos de produção de celulose e de geração de vapor.

O modelo matemático utilizado nesse EDA é o AERMOD, sendo uma ferramenta importante para avaliar a concentração de poluentes na atmosfera emitidos por fontes estacionárias. Esse modelo permite que sejam analisadas as contribuições de determinadas fontes no resultado final da qualidade do ar.

A plataforma regulatória da EPA utilizada nesse estudo baseia-se em um modelo de pluma gaussiana que considera as concentrações obtidas para todas as distâncias como resultados de médias temporais das simulações horárias. Esse tipo de modelo apresenta bons resultados para estudos cujo objetivo é obter uma distribuição espacial da poluição ao invés de resultados pontuais no espaço e no tempo.

O AERMOD, assim como a maior parte dos modelos operacionais para os estudos de dispersão de poluentes na camada limite atmosférica baseia-se na aproximação Gaussiana, pois, por serem modelos de campo próximo, utilizam a hipótese de que a dispersão ocorre em uma área de turbulência homogênea na horizontal com variação na turbulência vertical decorrente da influência do relevo e do uso do solo. Os modelos Gaussianos utilizam esquemas simplificados de turbulência para campo próximo, parametrizados em função da estabilidade atmosférica.

Uma simulação computacional bem ajustada permite analisar e quantificar a contribuição individual de cada uma das fontes emissoras existentes na área simulada e o impacto resultante na qualidade do ar. As simulações permitem maior capacidade de gestão das unidades industriais, possibilitando um prognóstico mais preciso das alterações na qualidade do ar.

4.1 Domínio do Estudo

Inicialmente foram determinados 13 receptores discretos (Tabela 1) pela região de entorno dos empreendimentos nas localizações críticas encontradas, apresentadas na Figura 9 e na Figura 10.

Tabela 1: Localização dos receptores discretos

RECEPTOR	DESCRIÇÃO	UTM E (m)	UTM N (m)	COTA (m)
RECP_01	Colégio Estadual Wolff Klabin – Telêmaco Borba	538930	7309310	894
RECP_02	Hospital Dr. Feitosa – Telêmaco Borba	538930	7309770	961
RECP_03	Praça Horácio Klabin – Telêmaco Borba	538270	7309180	979
RECP_04	Harmonia Clube – Telêmaco Borba	540000	7312000	939
RECP_05	Ginásio de Esportes – Telêmaco Borba	537790	7309530	871
RECP_06	Terminal Rodoviário- Telêmaco Borba	537890	7309240	987
RECP_07	Centro do Município de Imbaú	524348	7296249	763
RECP_08	Centro do Município de Ortigueira	507468	7322638	959
RECP_09	TI Mococa	525227	7344095	805
RECP_10	Campina dos Pupos	526426	7320843	957
RECP_11	Lajeado Bonito	523313	7326283	868
RECP_12	TI Queimada	503655	7319591	940
RECP_13	Colônia Augusta Vitória	515509	7316643	898

Figura 9: Receptores discretos próximos à Klabin unidade Puma.

Fonte: Google Earth.

Figura 10: Receptores discretos próximos à Klabin unidade Monte Alegre.

Além dos receptores discretos, a qualidade do ar é avaliada nesse estudo de dispersão atmosférica a partir das concentrações calculadas em uma rede de receptores cartesianos de alta resolução, distribuídas em quatro malhas cartesianas quadradas e regulares, centradas em cada unidade, sendo as duas grades maiores com 50 km de lado e resolução uniforme de 1000 m e as duas grades menores com 7 km de lado e resolução espacial de 200 m, sendo sobrepostas para apresentar resolução espacial inferior à 200 m nas áreas de máximo interesse (Figura 11).

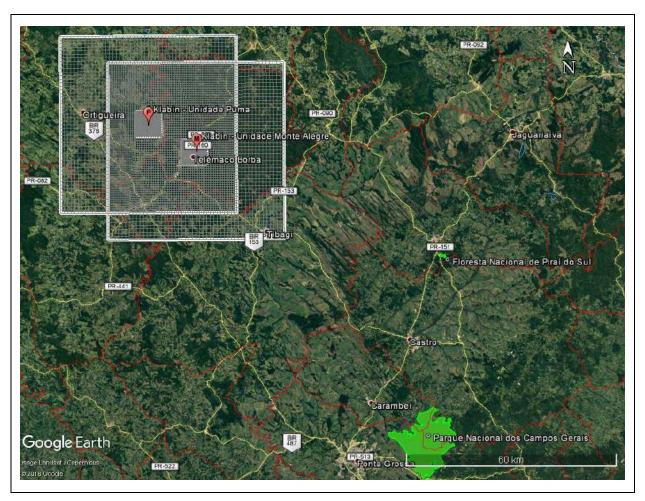


Figura 11: Malhas cartesianas simuladas, centralizadas na fonte.

4.2 Relevo e Uso do Solo

Em consulta ao Cadastro Nacional de Unidades de Conservação - CNUC, por meio da página http://www.mma.gov.br/areas-protegidas/cadastro-nacional-de-ucs, não foram encontradas unidades de conservação federal (UC) de proteção integral na região do estudo (grade cinza), as duas Unidades de Conservação (Floresta Nacional de Piraí do Sul e Parque Nacional dos Campos Gerais) encontradas localizam-se à mais de 75 km de distância dos empreendimentos analisados (Figura 12).

Figura 12: Mapa da localização do empreendimento e domínio do estudo fora dos limites territoriais da unidade de conservação marcada em verde.

Fonte: CNUC, 2015.

O mapa de uso do solo apresentado na Figura 13, mostra que a região estudada possui pequenas áreas de uso do solo urbano, marcadas em vermelho, sendo evidente o predomínio rural. A opção "Rural" de simulação é mais conservativa do que a opção "Urbana", já que a última não permite a ocorrência de condições atmosféricas mais estáveis.

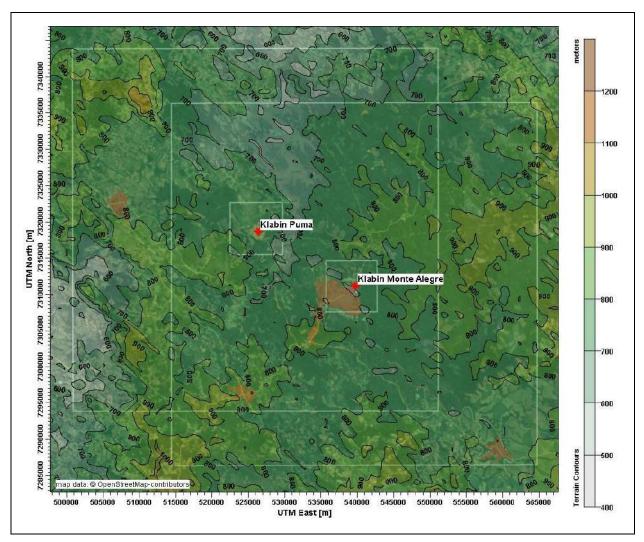
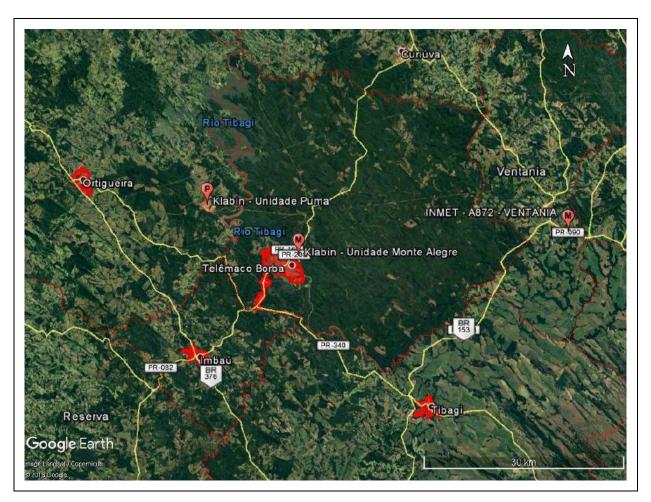



Figura 13: Mapa de uso do solo, com as áreas urbanas marcadas em vermelho.

O relevo e uso do solo, para o cálculo dos parâmetros de turbulência, foram obtidos através da sobreposição de imagens do Google Earth com os dados de relevo da Shuttle Radar Topography Mission, realizada pela NGI e pela NASA. A SRTM ocorreu em 11 de fevereiro de 2000, realizando uma amostragem global com precisão de 3" (segundos de grau), ou seja, um ponto de grade a cada 90 metros, aproximadamente (Figura 14).

Figura 14: Curvas de nível (m) da região destaque para o empreendimento ao centro.


Fonte dos dados originais: Shuttle Radar Topography Mission (2000).

4.3 Análise dos Dados Meteorológicos

Os dados meteorológicos utilizados nesse estudo de dispersão são provenientes da estação meteorológica de Ventania - A872, Código OMM: 86920 do Instituto Nacional de Meteorologia (INMET), localizada no município de Ventania, distante cerca de 35 km do empreendimento (Figura 15). Esta é a estação meteorológica mais próxima da área cujos sensores disponibilizam os dados necessários ao EDA. Esses dados foram processados através do pré-processador AERMET, para serem utilizados no modelo de dispersão AERMOD.

O período de levantamento dos dados meteorológicos e da simulação com o modelo AERMOD foi de 01/01/2013 a 31/12/2017.

Figura 15: Localização do empreendimento e da estação meteorológica, ambos marcados em vermelho com as principais vias de acesso destacadas em amarelo.

Fonte: Google Earth e INMET.

4.3.1 Configuração do AERMOD Meteorological Preprocessor (AERMET)

Os dados meteorológicos foram utilizados como dados de entrada do pré-processador meteorológico AERMET. A série temporal foi extraída a partir dos dados da estação e das observações de nuvens do aeródromo mais próximo. Esses dados foram colocados em formato SAMSON e utilizados nas configurações do AERMET (Figura 16).

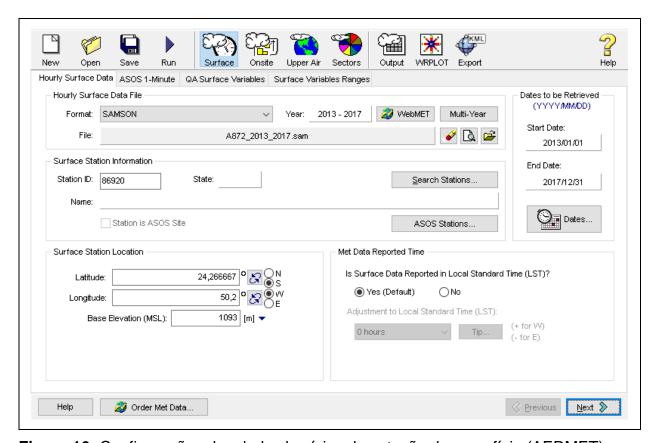
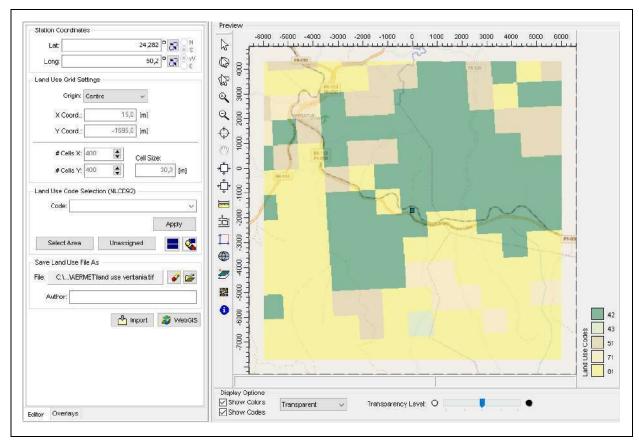



Figura 16: Configurações dos dados horários da estação de superfície (AERMET).

Nesse estudo não foram incluídos dados horários de estação local (*Onsite*), sendo, portanto, todos os dados inseridos no AERMET a partir das abas Estação de Superfície (*Surface*) e Radiossondagem (*Upper Air Estimator*).

Os dados de cobertura e uso do solo foram obtidos a partir do programa de sensoriamento remoto Global Land Cover Characterization (GLCC), que consiste em um grande conjunto de dados de caracterização de superfície baseado primeiramente na classificação pelo AVHRR (Advanced Very High Resolution Radiometer) e pelo índice NDVI (Normalized Difference Vegetation Index) em composição de 10 dias (Figura 17).

Figura 17: Configurações do Land Use Creator incluindo as categorias de uso do solo do GLCC no local do projeto.

A partir do GEOTIFF criado pelo Land Use Creator para o entorno do ponto central do projeto, foi possível importar os dados de superfície pelo Land Use Viewer para o AERMET, definindo assim os parâmetros de rugosidade, albedo e razão de Bowen, em alta resolução, utilizando o alcance máximo de 5 km (Figura 18), para cada um dos doze setores (Figura 19).

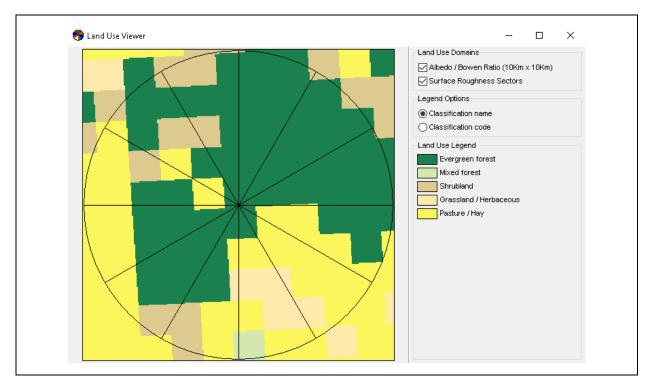


Figura 18: Configuração do Land Use Viewer com a classificação de uso do solo.

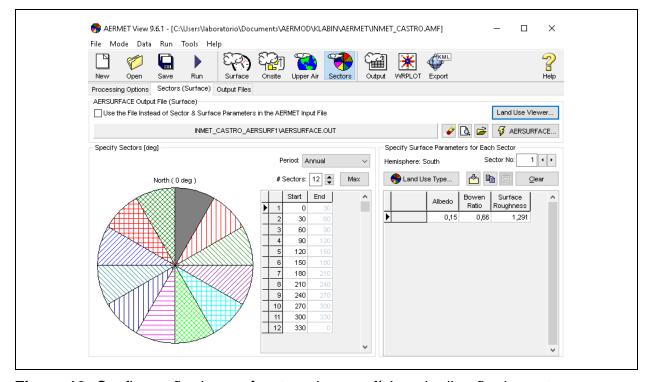
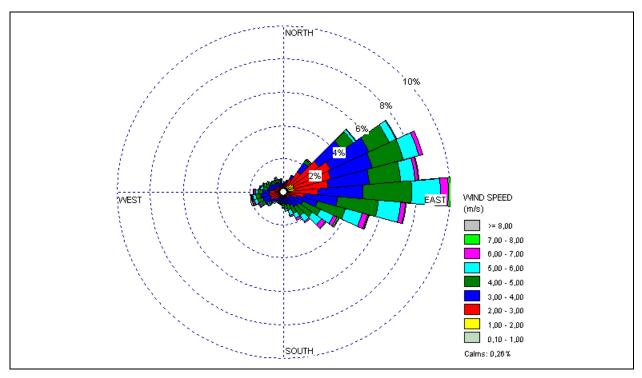


Figura 19: Configuração dos parâmetros de superfície pela direção do vento.

4.3.2 A Importância da Direção e Velocidade dos Ventos


A velocidade do vento é um dado meteorológico muito importante no cálculo das concentrações de poluentes através do modelo AERMOD, porque se encontra no denominador da equação. Desta forma, ao se alterar a velocidade do vento de 1 m/s para 2 m/s, por exemplo, a concentração dos poluentes estaria sendo reduzida pela metade. Outras variáveis da camada limite atmosférica também são utilizadas para calcular a dispersão dos poluentes atmosféricos, mas a influência dessas variáveis no resultado final é proporcionalmente menor e por isso não serão analisadas nesse item.

A direção do vento determina, a cada hora, quais receptores numéricos serão mais ou menos impactados pela pluma de emissão de cada chaminé. Quanto maior o período amostral do poluente analisado, maior será a importância da predominância da direção do vento no cálculo desta concentração, uma vez que nestes casos número de horas utilizado no cálculo desta concentração será maior.

4.3.3 Histograma Direcional do Vento

A Figura 20 e a Figura 21 apresentam os histogramas direcionais do vento dos dados de superfície da estação meteorológica e da radiossonda, que obtiveram o mesmo resultado.

A Figura 20 mostra a predominância dos ventos na direção NNE. Esta predominância está coerente com outras bases de dados da região e estão de acordo com os sistemas sinóticos que influenciam a circulação das massas de ar na região, especificamente, os sistemas de frentes frias. Há uma predominância secundária nas demais direções do vento, que se refere apenas aos ventos mais fracos. O índice de calmarias (ventos inferiores a 1,0 m/s) é praticamente nulo, efeito das condições locais e consequência indesejada da simulação de dados meteorológicos por modelos.

Figura 20: Rosa dos ventos com a classificação de velocidade, direção e limite, em porcentagem, da ocorrência de ventos de calmaria.

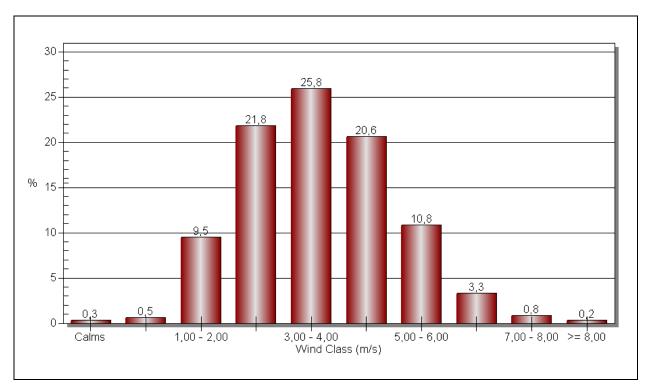


Figura 21: Histograma de classificação da frequência de distribuição do vento.

4.3.4 Dados Meteorológicos de Superfície

A Figura 22 mostra os resultados do processamento de dados pelo AERMET, verificase a disponibilidade de 93,61% dos dados meteorológicos, o que demonstra serem suficientes para atenderem ao critério de representatividade estatística mínima, ou seja, 2/3, ou, 66,7%.

Figura 22: Estatísticas dos dados meteorológicos utilizados.

As horas ausentes foram 2801 no total e as horas com registro de calmarias foram 112, totalizando 0,26% dos dados.

A série temporal de temperatura do ar (Figura 23) apresentou variabilidade interanual muito pequena durante o período simulado, com características sazonais adequadas à localidade. Esta verificação ocorreu contra os dados da estação climatológica mais próxima, a estação de Castro, A819, que dista cerca de 80km do empreendimento, cujos dados são apresentados na (Figura 24), para fins de referência.

O primeiro semestre de dados 2016 para temperatura do ar (Figura 23) apresentaram uma oscilação pouco usual para o período, com algum nível de perda de dados. Essa variação ficou restrita aos dados de temperatura, não sendo observada nas demais variáveis meteorológicas.

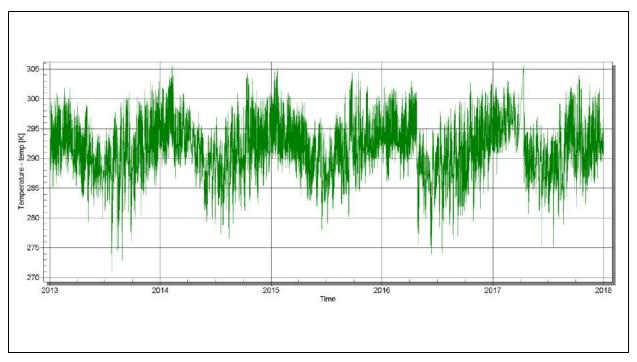
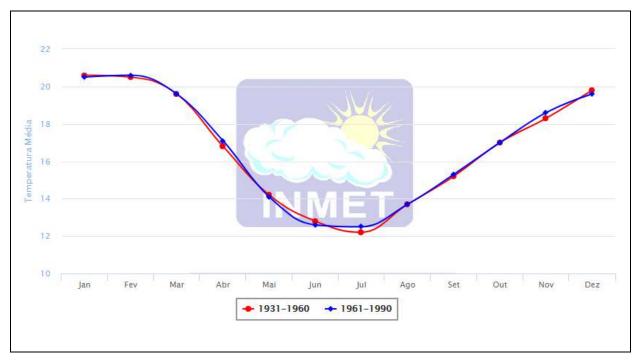



Figura 23: Série temporal da temperatura do ar (K) da estação meteorológica utilizada.

Figura 24: Gráfico da normal de temperatura do ar (°C) da estação de referência climatológica mais próxima.

Fonte: Instituto Nacional Meteorologia (INMET).

A umidade relativa do ar apresentou muita variação sazonal e interanual ao longo de toda a série de dados utilizados (Figura 25), embora esse fato não seja muito usual, ao se comparar os dados da estação meteorológica (Figura 25) com os dados da climatologia local (Figura 26), verifica-se que a região possui mesmo muita variação na umidade relativa, tanto nas características interanuais (variações de 1931 à 1990) quanto nas variações sazonais (máxima umidades relativas no outono e mínimas entre o final do inverno e início da primavera, com oscilação nos meses de verão).

O primeiro semestre de dados de 2014 e de 2017 para pressão atmosférica (Figura 27) apresentaram uma oscilação pouco usual para o período, com algum nível de perda de dados. Essa variação ficou restrita à pequenas partes dos dados de pressão atmosférica, não sendo observada nas demais variáveis meteorológicas.

A pressão atmosférica do ar apresentou variação sazonal de acordo com o ciclo anual ao longo de toda a série de dados utilizados (Figura 27), acompanhando a climatologia local (Figura 28), com maiores valores de pressão atmosférica encontrados no inverno e menores valores de pressão atmosférica nos meses mais quentes (verão).

O regime de precipitação (chuvas) ficou dentro do esperado para o período, com pouca perda de dados e sem eventos de precipitação extrema (acima de 10 mm/hora). O regime de chuva apresentou variação sazonal de acordo com o ciclo anual ao longo de toda a série de dados utilizados (Figura 29), acompanhando a climatologia local (Figura 30), com meses mais secos concentrado no auge da primavera e no final do verão.

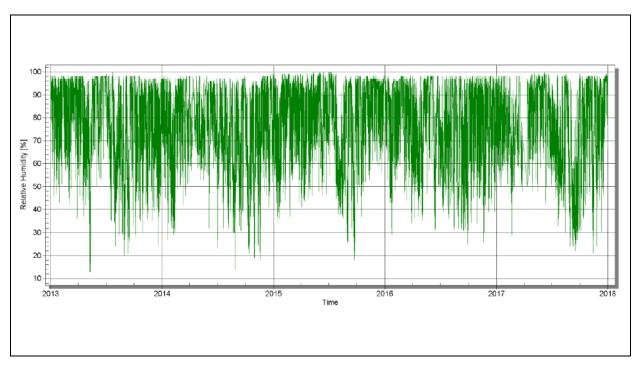
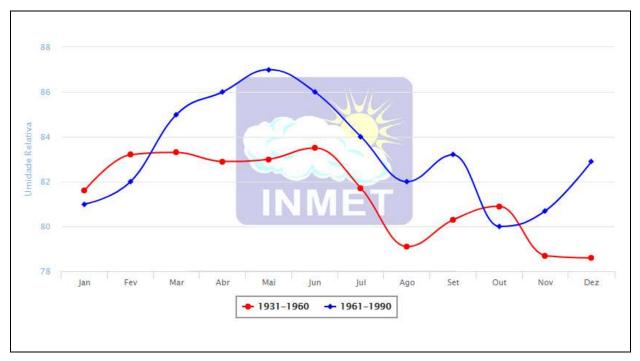
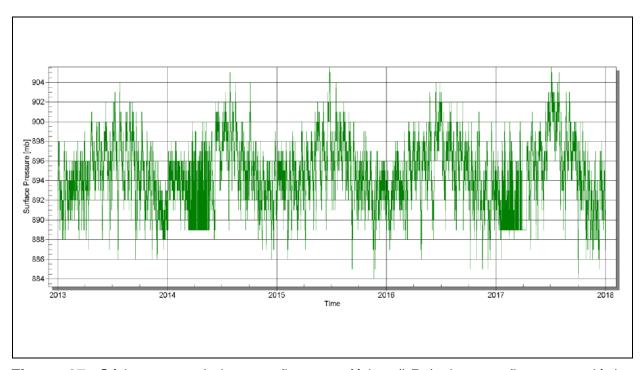
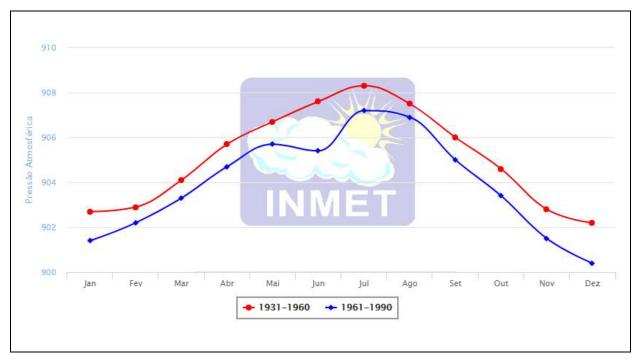
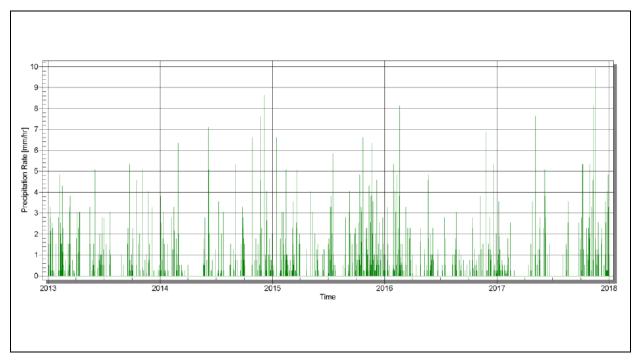



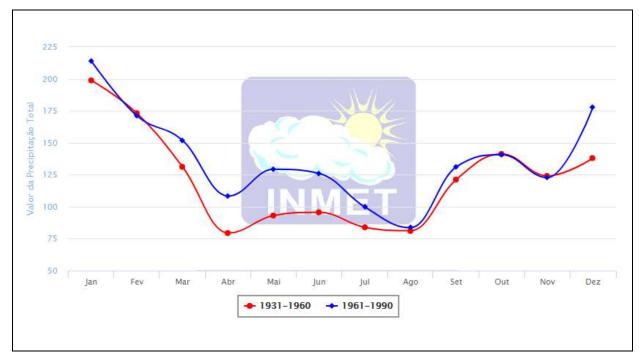
Figura 25: Série temporal da umidade relativa do ar (%) da estação meteorológica utilizada.

Figura 26: Gráfico da normal da umidade relativa do ar (%) da estação de referência climatológica mais próxima.

Fonte: Instituto Nacional Meteorologia (INMET).

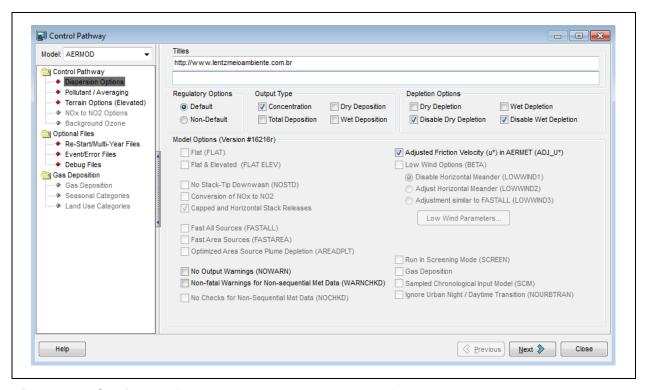




Figura 27: Série temporal da pressão atmosférica (hPa) da estação meteorológica utilizada.


Figura 28: Gráfico da normal da pressão atmosférica (hPa) da estação de referência climatológica mais próxima.

Fonte: Instituto Nacional Meteorologia (INMET).

Figura 29: Série temporal da precipitação horária acumulada (mm/hora) da estação meteorológica utilizada.


Figura 30: Gráfico da normal da precipitação acumulada mensal (chuva em mm/mês) da estação de referência climatológica mais próxima.

4.4 Configurações Regulatórias das Simulações

O modelo foi simulado utilizando apenas as configurações determinadas como regulatórias, desabilitando as opções *non-default* e desabilitando a deposição seca e a deposição úmida (Figura 31).

O setup utilizado como apresentado na Figura 31 maximiza as concentrações resultantes do modelo, evitando assim questionamentos sobre resultados subestimados (abordagem conservadora), sendo, portanto, a configuração geralmente considerada ideal pelos órgãos ambientais.

Figura 31: Configurações DEFAULT para a simulação de particulados emitidos para a atmosfera.

4.5 Cenários Simulados

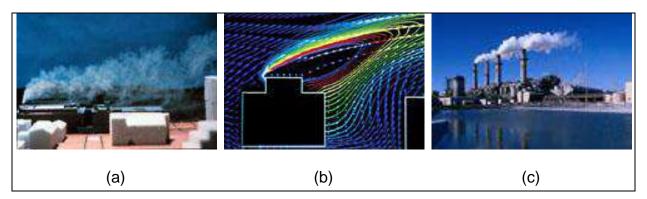
Neste EDA, as taxas de emissão utilizadas foram fornecidas pelo contratante, sendo que os poluentes analisados foram: Monóxido de Carbono (CO), Enxofre Total Reduzido (ERT), Óxidos de Nitrogênio (NO_X expressos como NO₂), Partículas Totais em Suspensão (PTS) e Óxidos de Enxofre (SO_X expressos como SO₂).

Nesse estudo foram simulados quatro cenários tratando das condições possíveis de execução dos projetos propostos para as unidades de Monte Alegre e Puma (Tabela 2).

Tabela 2: Cenários simulados no Estudo de Dispersão Atmosférica

CENÁRIO	DESCRIÇÃO
ATUAL	MONTE ALEGRE: Emissão das fontes atuais em condições usuais de operação
ATOAL	PUMA: Emissão das fontes atuais em condições usuais de operação
FUTURO	MONTE ALEGRE: Queima de Gases Não Condensáveis (GNC) no Incinerador de Gases 2 (existente), com aumento na altura das chaminés do Forno de Cal 1 e do Incinerador 2.
101010	PUMA: Emissão das fontes atuais em condições usuais de operação e das fontes novas na condição futura de operação

No cenário futuro, a unidade da Klabin em Monte Alegre propõe como medida de melhoria da qualidade do ar, o aumento das alturas das chaminés do forno de Cal 1 e do Incinerador 2, (existentes). Essa medida ajuda na diluição das emissões atmosféricas e, consequentemente, na redução das concentrações ao nível do solo.


A proposição do cenário futuro decorre das simulações numéricas de diversas alturas de chaminés até serem identificadas as alterações de projeto que apresentaram maior eficiência ambiental dentro das condições de viabilidade operacional da unidade.

4.6 Efeito Downwash

Prédios ou outras barreiras próximas a fontes de emissão podem causar concentrações elevadas de poluentes devido à formação de um vórtice a sotavento do obstáculo e a formação de um escoamento turbulento. Este efeito é conhecido como downwash. Esses vórtices transportam parte da pluma para a superfície elevando as concentrações em suas áreas de influência. O AERMOD incorpora os algoritmos do Plume Rise Model Enhancements (PRIME) para estimar o crescimento acelerado e a restrição da ascensão da pluma devido aos vórtices formados a sotavento dos prédios.

A Figura 32 apresenta uma maquete representativa do efeito de downwash junto a edificações causada por uma chaminé baixa (a), a respectiva simulação computacional desse efeito (b) e um exemplo de uma fonte com altura de chaminé adequada (c).

Figura 32: (a) simulação do efeito downwash em uma maquete, (b) simulação do efeito downwash em uma modelagem computacional e (c) deslocamento da pluma sem atuação do efeito downwash.

O PRIME divide a massa da pluma entre a região do vórtice e a região escoamento da pluma. A dispersão no vórtice é baseada na geometria do prédio e assume-se que na vertical a mistura seja uniforme. Na fronteira da região do vórtice parte da massa é emitida para a região turbulenta. Essa massa é combinada com a massa da pluma que não foi capturada pelo vórtice e, consequentemente, dispersada com uma taxa de propagação baseada na localização da fonte, altura de lançamento e geometria do prédio. Um modelo de função de densidade de probabilidade e um modelo de difusão em vórtices são usados para analisar o escoamento turbulento próximo e distante, respectivamente.

A ascensão da pluma, para fontes influenciadas por prédios, é estimada por um modelo que inclui a deflexão da linha de corrente próximo ao prédio, cisalhamento vertical da velocidade do vento, aumento da diluição a partir do escoamento turbulento e perda de velocidade. Em geral esses efeitos induzidos por prédios atuam de forma a restringir a ascensão que a pluma teria na ausência do prédio.

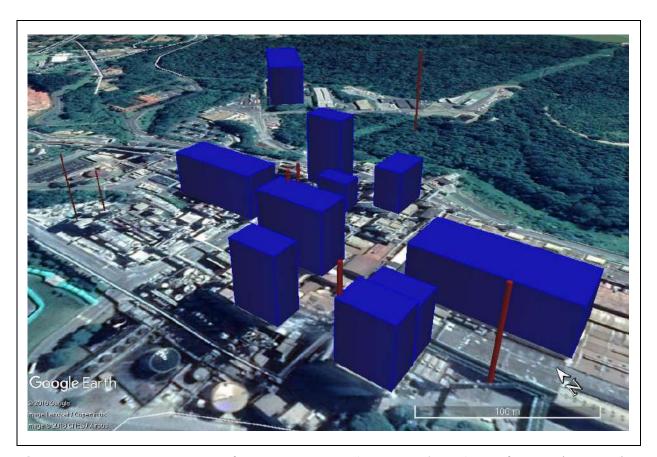
A concentração total é dada por uma soma ponderada das concentrações obtidas pelo AERMOD (sem considerar a influência dos prédios) e pelo PRIME (considerando a influência dos prédios):

$$C_{Total} = \gamma C_{Prime} + (1 - \gamma) C_{AERMOD}$$

O fator de peso Y é obtido de forma que a contribuição do PRIME decaia exponencialmente conforme a pluma se afasta do prédio (lateral e verticalmente), seguindo o vento. O fator de peso é calculado conforme:

$$\gamma = \exp\left(\frac{-\left(x - \sigma_{xg}\right)^{2}}{2\sigma_{xg}^{2}}\right) \exp\left(\frac{-\left(y - \sigma_{yg}\right)^{2}}{2\sigma_{yg}^{2}}\right) \exp\left(\frac{-\left(z - \sigma_{zg}\right)^{2}}{2\sigma_{zg}^{2}}\right)$$

Onde x é a dimensão de afastamento da pluma acompanhando a direção do vento, y é a dimensão perpendicular ao vento e z é a altura do receptor com relação ao solo.


O efeito de downwash foi considerado neste estudo devido à existência de edificações de dimensões significativas e suficientemente próximas às fontes simuladas que apresentam potencial influência na formação de vórtices turbulentos a sotavento. Os dados das edificações próximas para processamento do downwash foram fornecidos pelo contratante.

Na Figura 33 temos o diagrama esquemático com as localizações das edificações (em azul) e das fontes de emissão (em vermelho) para unidade de Monte Alegre (Tabela 3) e para unidade Puma (Figura 34) nas coordenadas das edificações consideradas (Tabela 4).

Tabela 3: Edificações utilizadas para o cálculo do downwash na unidade Monte Alegre.

EDIFICAÇÃO	COTA (m)	ALTURA (m)	UTM E (m)	UTM N (m)	LATERAL X (m)	LATERAL Y (m)
KAMYR	718	72,3	539800	7311195	22,7	39,6
CDR_1	722	55	539635	7311073	22,4	38,3
CDR_2	725	55	539693	7311096	29,0	62,2
CF_6	718	42	539678	7310994	23,3	37,1
CF_8	717	47,9	539651	7310987	25,2	39,4
CTMP	722	42,5	539701	7311203	34,7	94,0
MAQUINA	724	39,6	539753	7310934	46,7	114,8
TORRE_1	724	28,5	539775	7311159	18,6	32,2
TORRE_2	721	40,7	539809	7311124	41,2	27,0
NOVA_CDR_3	720	55	539917	7311474	47,8	135,6

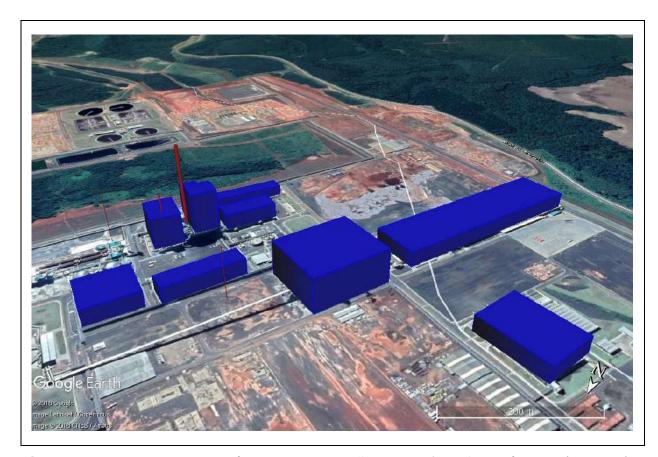


Figura 33: Diagrama esquemático da localização das edificações próximas (em azul) e fontes de emissão (em vermelho) na unidade Monte Alegre.

Fonte: Google Earth.

Tabela 4: Edificações utilizadas para o cálculo do downwash na unidade Puma.

EDIFICAÇÃO	COTA (m)	ALTURA (m)	UTM E (m)	UTM N (m)	LATERAL X (m)	LATERAL Y (m)
PUMA_01	800	30	525638	7318568	124,5	91,7
PUMA_02	779	30	525744	7318143	95,2	399,5
PUMA_03	792	65	525940	7318557	126,8	144,1
PUMA_04	806	30	526156	7318652	39,0	142,9
PUMA_05	808	30	526237	7318798	84,1	89,6
PUMA_06	797	60	526318	7318631	74,2	53,4
PUMA_07	792	80	526297	7318556	46,7	49,3
PUMA_08	775	60	526359	7318537	37,3	33,3
PUMA_09	791	30	526229	7318468	43,5	101,2
PUMA_10	775	20	526280	7318381	31,1	148,9

Figura 34: Diagrama esquemático da localização das edificações próximas (em azul) e fontes de emissão (em vermelho) na unidade Puma.

Fonte: Google Earth.

4.7 Taxas de emissão

O estudo de dispersão considerou todas as fontes propostas nos cenários ATUAL e FUTURO e as analisou agrupadas por unidade (Source Groups) Monte Alegre, Puma e todas as fontes em conjunto, de acordo com os detalhes fornecidos pelo contratante (Tabela 5).

As características das fontes, constituídas por localização da fonte, altura, diâmetro, temperatura e velocidade de emissão simuladas no cenário ATUAL (Tabela 6) e FUTURO (Tabela 7). As taxas de emissão no cenário ATUAL (Tabela 8) e FUTURO (Tabela 9) são fornecidas por unidade de massa (g/s) e em condição padrão de chaminé, base seca, com 8% de teor de O₂ (Tabela 10 e Tabela 11).

Tabela 5: Dados de entrada das fontes áreas simuladas.

FONTE	UNIDADE	REFERÊNCIA		
MA_01	Monte Alegre	Caldeira de Recuperação 2 (existente)		
MA_02	Monte Alegre	Caldeira de Recuperação 3 (NOVA)		
MA_03	Monte Alegre	Forno de cal 1 (existente)		
MA_04	Monte Alegre	Forno de cal 2 (existente)		
MA_05	Monte Alegre	Caldeira de Força 6 (existente)		
MA_06	Monte Alegre	Caldeira de Força 8 (existente)		
MA_07	Monte Alegre	Incinerador 2 (existente)		
PU_01	Puma	Caldeira de Recuperação 1 (existentes)		
PU_02	Puma	Caldeira de Força 1 (existentes)		
PU_03	Puma	Fornos de cal 1 (existentes)		
PU_04	Puma	Fornos de cal 2 (existentes)		
PU_05	Puma	Caldeira de Recuperação 2 (NOVA)		
PU_06	Puma	Caldeira de Força 2 (NOVA)		
PU_07	Puma	Fornos de cal 3 (NOVA)		

Tabela 6: Dados de entrada das fontes áreas simuladas no cenário ATUAL.

FONTE		Coordenadas		Altura	Temperatura	Velocidade	Diâmetro		
FONTE	UTMX (m)	UTMY (m)	COTA (m)	(m)	(°C)	(m/s)	(m)		
MA_01	539707	7311153	724	64,0	444	10,40	3,00		
MA_02			Inexist	ente no cen	ário atual				
MA_03	539608	7311307	715	<u>40,0</u>	450	10,90	1,20		
MA_04	539583	7311304	713	64,0	456	7,40	1,20		
MA_05	539701	7310956	719	70,0	413	9,60	3,20		
MA_06	539647	7311027	719	70,0	423	9,90	3,00		
MA_07	539721	7311158	724	<u>63,8</u>	353	1,80	2,60		
PU_01	526371	7318571	777	160,0	432	6,90	6,40		
PU_02	526371	7318571	777	160,0	432	3,20	6,40		
PU_03	526348	7318646	786	100,0	527	5,40	2,04		
PU_04	526348	7318646	786	100,0	527	5,40	2,04		
PU_05	Inexistente no cenário atual								
PU_06		Inexistente no cenário atual							
PU_07			Inexist	ente no cen	ário atual				

Tabela 7: Dados de entrada das fontes áreas simuladas no cenário FUTURO.

FONTE		Coordenadas		Altura	Temperatura	Velocidade	Diâmetro
FONTE	UTMX (m)	UTMY (m)	COTA (m)	(m)	(°C)	(m/s)	(m)
MA_01	539707	7311153	724	64,0	444	10,40	3,00
MA_02	539992	7311262	694	135,0	443	11,50	3,00
MA_03	539608	7311307	715	<u>70,0</u>	450	10,90	1,20
MA_04	539583	7311304	713	64,0	456	7,40	1,20
MA_05	539701	7310956	719	70,0	413	9,60	3,20
MA_06	539647	7311027	719	70,0	423	9,90	3,00
MA_07	539721	7311158	724	<u>90,0</u>	353	1,80	2,60
PU_01	526371	7318571	777	160,0	432	6,90	6,40
PU_02	526371	7318571	777	160,0	432	3,20	6,40
PU_03	526348	7318646	786	100,0	527	5,40	2,04
PU_04	526348	7318646	786	100,0	527	5,40	2,04
PU_05	526142	7318721	808	110,0	421	4,10	5,30
PU_06	526142	7318721	808	110,0	421	2,80	5,30
PU_07	526452	7318686	761	100,0	523	7,00	1,80

Tabela 8: Taxas de emissão por fontes simuladas (g/s) no cenário ATUAL.

	Taxas de Emissão (g/s)								
	СО	MP	NOx	SOx	ERT				
MA_01	16,60	3,40	10,60	1,40	0,20				
MA_02		Inex	kistente no cenário a	atual					
MA_03	4,00	0,60	1,80	0,00	0,10				
MA_04	1,10	0,40	1,10	0,10	0,10				
MA_05	9,70	4,20	11,80	15,50	0,00				
MA_06	2,60	3,20	8,50	3,70	0,00				
MA_07	1,20	0,70	3,12	2,70	0,04				
PU_01	97,20	3,30	33,10	2,40	0,70				
PU_02	15,00	3,80	14,60	1,40	0,30				
PU_03	0,40	0,20	3,20	0,50	0,20				
PU_04	0,60	0,20	5,90	0,20	0,20				
PU_05		Inex	kistente no cenário a	atual					
PU_06		Inex	kistente no cenário a	atual					
PU_07		Inex	kistente no cenário a	atual					

Tabela 9: Taxas de emissão por fontes simuladas (g/s) no cenário FUTURO.

	Taxas de Emissão (g/s)								
	СО	MP	NOX	sox	ERT				
MA_01	16,60	3,40	10,60	1,40	0,20				
MA_02	162,20	8,10	38,10	8,10	1,20				
MA_03	4,00	0,60	1,80	0,00	0,10				
MA_04	1,10	0,40	1,10	0,10	0,10				
MA_05	9,70	4,20	11,80	15,50	0,00				
MA_06	2,60	3,20	8,50	3,70	0,00				
MA_07	1,20	0,70	3,12	2,70	0,04				
PU_01	97,20	3,30	33,10	2,40	0,70				
PU_02	15,00	3,80	14,60	1,40	0,30				
PU_03	0,40	0,20	3,20	0,50	0,20				
PU_04	0,60	0,20	5,90	0,20	0,20				
PU_05	181,30	9,10	42,60	9,10	1,40				
PU_06	31,20	6,20	31,20	9,40	0,00				
PU_07	21,30	1,80	8,30	1,80	0,50				

Tabela 10: Valores de emissão por fontes simuladas (mg/Nm³) no cenário ATUAL.

	Taxas de Emissão (mg/Nm³)								
	со	MP	NOX	sox	ERT				
MA_01	227	47	145	19,4	3,3				
MA_02		Inex	xistente no cenário a	atual					
MA_03	328	49	150	3,4	7,67				
MA_04	130	46	137	7,8	6,5				
MA_05	126	54	154	202	-				
MA_06	37	45	121	52,5	-				
MA_07	125	70	325	280	6,5				
PU_01	438	15	149	11	3				
PU_02	146	37	142	14	3				
PU_03	25	13	180	28	9				
PU_04	36	13	332	12	9				
PU_05		Inex	kistente no cenário a	atual					
PU_06		Inexistente no cenário atual							
PU_07		Inex	xistente no cenário a	atual					

Tabela 11: Taxas de emissão por fontes simuladas (mg/Nm³) no cenário FUTURO.

	Taxas de Emissão (mg/Nm³)								
	СО	MP	NOX	sox	ERT				
MA_01	227	47	145	19,4	3,3				
MA_02	2000	100	470	100	15				
MA_03	328	49	150	3,4	7,67				
MA_04	130	46	137	7,8	6,5				
MA_05	126	54	154	202	-				
MA_06	37	45	121	52,5	-				
MA_07	125	70	325	280	6,5				
PU_01	438	15	149	11	3				
PU_02	146	37	142	14	3				
PU_03	25	13	180	28	9				
PU_04	36	13	332	12	9				
PU_05	2000	100	470	100	15				
PU_06	500	100	500	150	-				
PU_07	1200	100	470	100	30				

5 RESULTADOS

Os resultados das simulações são analisados para efeito de determinação da conformidade ambiental das concentrações de entorno, resultantes das emissões atmosféricas das unidades simuladas.

Os resultados das simulações foram comparados com os respectivos padrões determinados no Capítulo V da Resolução SEMA³ 054/2006, que acompanha a Resolução CONAMA⁴ 03/1990

Os resultados das simulações são separados por valores em receptores distintos (independentes) são apresentados a partir da Tabela 12 até a Tabela 21. Os resultados para os receptores identificados como críticos (receptores discretos colocados em escolas, hospitais, estações de qualidade do ar, etc.) são apresentados a partir da Tabela 22 até a Tabela 31.

O Enxofre Reduzido Total é um gás que não possui padrão de qualidade do ar definido pela Resolução CONAMA 03/90, por isso, foi utilizado o LPO (Limite de Percepção de Odor) fornecido pela ficha de cadastro de produtos químicos da CETESB⁵.

No anexo A, são apresentadas as isolinhas de concentração das simulações realizadas, para determinar a localização das concentrações máximas simuladas. No anexo B, são apresentadas as tabelas com as 50 concentrações máximas de curto período.

³ Secretaria de Estado de Meio Ambiente e Recursos Hídricos do Paraná.

⁴ CONAMA – Conselho nacional de meio Ambiente

⁵ Ficha de Informação de Produto Químico da CETESB, obtida no site: http://sistemasinter.cetesb.sp.gov.br/produtos/ficha_completa1.asp?consulta=SULFETO%20DE%20HIDROG%CANI O

Tabela 12: Concentrações máximas ($\mu g/m^3$) em receptores distintos para o CO no cenário ATUAL.

			Co	ncentração I	V láxima	Padrão CC	drão CONAMA 03/90	
Período	Unidade	Máxima	UТMX	UTMY	Concentração	Padrão Primário	Padrão Secundário	
		1ª Máx	539250	7311850	317,604			
		2ª Máx	539250	7312050	311,064			
	Monte Alegre	3ª Máx	539450	7311650	303,885			
		4ª Máx	539050	7312050	268,949			
		5ª Máx	539000	7312000	260,659			
		1ª Máx	511000	7337000	64,477			
		2ª Máx	512000	7336000	53,695			
01 h	Puma	3ª Máx	511000	7335000	53,056	40 000 (μg/m³)	40 000 (μg/m³)	
		4ª Máx	526350	7318750	47,018	(1.9/)	(11.6.4)	
		5ª Máx	526150	7318550	46,527			
		1ª Máx	539250	7311850	317,604	•		
	Monte Alegre	2ª Máx	539250	7312050	311,064			
	е	3ª Máx	539450	7311650	303,885			
	Puma	4ª Máx	539050	7312050	268,949			
		5ª Máx	539000	7312000	260,659			
		1ª Máx	539500	7311500	135,346			
		2ª Máx	539650	7311050	128,765			
	Monte Alegre	3ª Máx	539450	7311650	128,737			
	Allogio	4ª Máx	539850	7311050	120,872			
		5ª Máx	539450	7311450	112,261			
		1ª Máx	525550	7318350	29,683			
		2ª Máx	525500	7318500	29,117			
08 h	Puma	3ª Máx	525350	7318350	28,616	10 000 (μg/m³)	10 000 (μg/m³)	
		4ª Máx	525550	7318150	28,291	(μg/111)	(μ9/111)	
		5ª Máx	525750	7318150	28,135			
		1ª Máx	539500	7311500	135,352			
	Monte	2ª Máx	539650	7311050	128,771			
	Alegre e	3ª Máx	539450	7311650	128,742			
	Puma	4ª Máx	539850	7311050	121,820			
		5ª Máx	539450	7311450	112,267			

Tabela 13: Concentrações máximas ($\mu g/m^3$) em receptores distintos para o NOx no cenário ATUAL.

			Co	ncentração I	Máxima	Padrão CC	NAMA 03/90
Período	Unidade	Máxima	UTMX	UTMY	Concentração	Padrão Primário	Padrão Secundário
		1ª Máx	539250	7312050	253,666		
		2ª Máx	539650	7312050	251,752		
	Monte Alegre	3ª Máx	539650	7311850	245,578		
		4ª Máx	539650	7312250	243,732		
		5ª Máx	539250	7311850	242,461		
		1ª Máx	526350	7318750	47,282		
		2ª Máx	526150	7318750	43,799		
01 h	Puma	3ª Máx	526150	7319550	42,523	320 (μg/m³)	190 (μg/m³)
		4ª Máx	526350	7319350	41,697	(1-9/)	(1-9,)
		5ª Máx	526150	7319350	41,618		
		1ª Máx	539250	7312050	253,666		
	Monte Alegre	2ª Máx	539650	7312050	251,752		
	e	3ª Máx	539650	7311850	245,578		
	Puma	4ª Máx	539650	7312250	243,733		
		5ª Máx	539250	7311850	242,461		
		1ª Máx	539250	7311250	14,972		
		2ª Máx	539450	7311250	14,533		
	Monte Alegre	3ª Máx	539050	7311250	12,367		
	, og. o	4ª Máx	539250	7311050	11,852		
		5ª Máx	539250	7310850	11,157		
		1ª Máx	525550	7318350	5,136		
		2ª Máx	525750	7318350	4,908		
Anual	Puma	3ª Máx	525500	7318500	4,766	100 (μg/m³)	100 (μg/m³)
		4ª Máx	525550	7318550	4,761	(μg/)	(μ9/)
		5ª Máx	525350	7318350	4,706		
		1ª Máx	539250	7311250	15,017		
	Monte Alegre	2ª Máx	539450	7311250	14,578		
	e Alegre	3ª Máx	539050	7311250	12,411		
	Puma	4ª Máx	539250	7311050	11,896		
		5ª Máx	539250	7310850	11,200		

Tabela 14: Concentrações máximas ($\mu g/m^3$) em receptores distintos para o PTS no cenário ATUAL.

			Co	ncentração I	V láxima	Padrão CONAMA 03/90	
Período	Unidade	Máxima	UТMX	UTMY	Concentração	Padrão Primário	Padrão Secundário
		1ª Máx	539500	7311500	23,576		
		2ª Máx	539850	7311050	21,433		
	Monte Alegre	3ª Máx	539450	7311650	21,021		
	J	4ª Máx	539450	7311450	20,106		
		5ª Máx	539650	7311050	19,711		
		1ª Máx	525750	7318150	1,958		
		2ª Máx	525550	7318150	1,923		
24 h	Puma	3ª Máx	525550	7318350	1,775	240 (μg/m³)	150 (μg/m³)
		4ª Máx	525750	7317950	1,767	(1-3-)	
		5ª Máx	525550	7317950	1,736	-	
	Monte Alegre	1ª Máx	539500	7311500	23,577		
		2ª Máx	539850	7311050	21,572		
	е	3ª Máx	539450	7311650	21,022		
	Puma	4ª Máx	539450	7311450	20,107		
		5ª Máx	539650	7311050	19,712		
		1ª Máx	539250	7311250	4,542		
	Monte Alegre	2ª Máx	539450	7311250	4,253		
		3ª Máx	539050	7311250	3,830		
	J	4ª Máx	539250	7311050	3,763		
		5ª Máx	539250	7310850	3,619		
		1ª Máx	525550	7318350	0,589	•	
		2ª Máx	525350	7318350	0,564		
Anual	Puma	3ª Máx	525550	7318150	0,546	80 (μg/m³)	60 (μg/m³)
		4ª Máx	525350	7318150	0,528	(1.9,)	(109/)
		5ª Máx	525500	7318500	0,515		
		1ª Máx	539250	7311250	4,548	•	
	Monte Alegre	2ª Máx	539450	7311250	4,258		
	e	3ª Máx	539050	7311250	3,836		
	e Puma	4ª Máx	539250	7311050	3,768		
		5ª Máx	539250	7310850	3,625		

Tabela 15: Concentrações máximas ($\mu g/m^3$) em receptores distintos para o SOx no cenário ATUAL.

			Co	ncentração I	Máxima	Padrão CONAMA 03/90	
Período	Unidade	Máxima -	UТMX	UTMY	Concentração	Padrão Primário	Padrão Secundário
		1ª Máx	539450	7311450	43,912		
		2ª Máx	539500	7311500	42,535		
	Monte Alegre	3ª Máx	539650	7311250	40,816		
	J	4ª Máx	539450	7311650	34,310		
		5ª Máx	539650	7311450	32,691		
		1ª Máx	525750	7318150	1,269		
		2ª Máx	525750	7318350	1,232		
24 h	Puma	3ª Máx	525550	7318150	1,217	365 (μg/m³)	100 (μg/m³)
		4ª Máx	525550	7318750	1,204	(1-3-)	
		5ª Máx	525750	7318950	1,186	_	
	Monte Alegre	1ª Máx	539450	7311450	43,913		
		2ª Máx	539500	7311500	42,535		
	е	3ª Máx	539650	7311250	40,816		
	Puma	4ª Máx	539450	7311650	34,311		
		5ª Máx	539650	7311450	32,692		
		1ª Máx	539250	7310850	7,179		
	Monte Alegre	2ª Máx	539450	7311250	6,671		
		3ª Máx	539250	7311050	6,123		
	- 3	4ª Máx	539050	7310850	6,069		
		5ª Máx	539250	7311250	5,979		
		1ª Máx	525550	7318350	0,411		
		2ª Máx	525750	7318350	0,391		
Anual	Puma	3ª Máx	525500	7318500	0,380	80 (μg/m³)	40 (μg/m³)
		4ª Máx	525550	7318550	0,378	(1.9)	(1-9)
		5ª Máx	525350	7318350	0,376		
		1ª Máx	539250	7310850	7,182		
	Monte Alegre	2ª Máx	539450	7311250	6,675		
	e	3ª Máx	539250	7311050	6,127		
	e Puma	4ª Máx	539050	7310850	6,072		
		5ª Máx	539250	7311250	5,983		

Tabela 16: Concentrações máximas (μg/m³) em receptores distintos para o ERT no cenário ATUAL.

Período	Unidade	Máxima -	Co	oncentração I	Limite de Percepção de Odor	
	odado	maxima	UTMX	UTMY	Concentração	Ficha CETESB
		1ª Máx	539850	7311050	7,106	
		2ª Máx	539250	7311850	6,741	
	Monte Alegre	3ª Máx	539450	7311650	6,336	
	, «egie	4ª Máx	539250	7312050	6,173	
		5ª Máx	539850	7311250	5,586	
		1ª Máx	526150	7319550	1,869	0.55
		2ª Máx	526150	7318750	1,852	6,55 (μg/m³)
01 h	Puma	3ª Máx	526350	7319350	1,833	
		4ª Máx	526150	7319350	1,829	0,0047
		5ª Máx	525350	7319350	1,752	(ppm)
		1ª Máx	539850	7311050	7,106	-
	Monte Alegre	2ª Máx	539250	7311850	6,741	
	е	3ª Máx	539450	7311650	6,336	
	Puma	4ª Máx	539250	7312050	6,173	
		5ª Máx	539850	7311250	5,590	

Tabela 17: Concentrações máximas ($\mu g/m^3$) em receptores distintos para o CO no cenário FUTURO.

			Co	ncentração I	Vláxima (Padrão CC	NAMA 03/90
Período	Unidade	Máxima	UТМX	UTMY	Concentração	Padrão Primário	Padrão Secundário
		1ª Máx	542000	7318000	258,081		
		2ª Máx	545500	7309500	248,689		
	Monte Alegre	3ª Máx	543000	7318000	238,504		
	J	4ª Máx	539250	7312050	237,110		
		5ª Máx	539250	7311850	230,510		
		1ª Máx	525950	7318550	519,412		
		2ª Máx	527150	7319150	418,651		40 000 (μg/m³)
01 h	Puma	3ª Máx	525750	7318550	369,679	40 000 (μg/m³)	
		4ª Máx	527550	7318950	364,161	(μg/111)	
		5ª Máx	527350	7319150	349,791		
		1ª Máx	525950	7318550	519,424		
	Monte Alegre	2ª Máx	527150	7319150	418,722		
	е	3ª Máx	525750	7318550	369,696		
	Puma	4ª Máx	527550	7318950	364,226		
		5ª Máx	527350	7319150	349,858		
		1ª Máx	539650	7311050	109,773		
		2ª Máx	539450	7311650	101,273		
	Monte Alegre	3ª Máx	539450	7311050	95,265		
	J	4ª Máx	539050	7311250	92,459		
		5ª Máx	539500	7311500	91,782		
		1ª Máx	525950	7318550	276,377		
		2ª Máx	525550	7318550	205,625		
08 h	Puma	3ª Máx	525500	7318500	204,422	10 000 (μg/m³)	10 000 (μg/m³)
		4ª Máx	525750	7318550	198,097	(1-9/)	(1-9)
		5ª Máx	525550	7318350	191,916		
		1ª Máx	525950	7318550	276,392		
	Monte Alegre	2ª Máx	525550	7318550	205,656		
	e	3ª Máx	525500	7318500	204,445		
	Puma	4ª Máx	525750	7318550	198,111		
		5ª Máx	525550	7318350	191,936		

Tabela 18: Concentrações máximas ($\mu g/m^3$) em receptores distintos para o NOx no cenário FUTURO.

		.ala 882	Co	ncentração I	Máxima	Padrão CONAMA 03/90	
Período	Unidade	Máxima	UТMX	UTMY	Concentração	Padrão Primário	Padrão Secundário
		1ª Máx	539650	7312050	223,052		
		2ª Máx	539650	7312250	219,874		
	Monte Alegre	3ª Máx	539650	7311850	213,480		
	J	4ª Máx	539250	7312050	206,322		
		5ª Máx	539850	7311850	205,985		
		1ª Máx	525950	7318550	188,532		
		2ª Máx	527150	7319150	161,737		
01 h	Puma	3ª Máx	527550	7318950	152,329	320 (μg/m³)	190 (μg/m³)
		4ª Máx	526350	7318750	145,939	(1-3-)	
		5ª Máx	527350	7319150	143,807	_	
	Monte Alegre	1ª Máx	539650	7312050	223,052		
		2ª Máx	539650	7312250	219,874		
	е	3ª Máx	539650	7311850	213,480		
	Puma	4ª Máx	539250	7312050	206,323		
		5ª Máx	539850	7311850	206,000		
		1ª Máx	539250	7311250	14,014		
	Monte Alegre	2ª Máx	539250	7311050	13,479		
		3ª Máx	539250	7310850	13,274		
	- 3	4ª Máx	539050	7311250	13,248		
		5ª Máx	539050	7310850	12,681		
		1ª Máx	525550	7318550	21,429		
		2ª Máx	525500	7318500	21,428		
Anual	Puma	3ª Máx	525350	7318550	19,311	100 (μg/m³)	100 (μg/m³)
		4ª Máx	525550	7318350	19,203	(1.9)	(1-9)
		5ª Máx	525750	7318550	18,801		
		1ª Máx	525500	7318500	21,735		
	Monte Alegre	2ª Máx	525550	7318550	21,735		
	e	3ª Máx	525350	7318550	19,615		
	e Puma	4ª Máx	525550	7318350	19,517		
		5ª Máx	525750	7318550	19,108		

Tabela 19: Concentrações máximas ($\mu g/m^3$) em receptores distintos para o PTS no cenário FUTURO.

			Co	ncentração I	V láxima	Padrão CONAMA 03/90	
Período	Unidade	Máxima	UТMX	UTMY	Concentração	Padrão Primário	Padrão Secundário
		1ª Máx	539500	7311500	18,863		
		2ª Máx	539450	7311650	18,155		
	Monte Alegre	3ª Máx	539250	7311850	17,905		
	J	4ª Máx	539450	7311450	17,844		
		5ª Máx	539050	7311650	16,981		
		1ª Máx	525950	7318550	14,132		
		2ª Máx	525550	7318350	11,646		
24 h	Puma	3ª Máx	525500	7318500	11,552	240 (μg/m³)	150 (μg/m³)
		4ª Máx	525750	7318350	11,433	(μg/m²) -	
		5ª Máx	525550	7318550	11,348		
		1ª Máx	539500	7311500	18,867		
	Monte Alegre	2ª Máx	539450	7311650	18,158		
	е	3ª Máx	539250	7311850	17,908		
	Puma	4ª Máx	539450	7311450	17,848		
		5ª Máx	539050	7311650	16,982		
		1ª Máx	539250	7311250	4,209		
	Monte Alegre	2ª Máx	539250	7311050	4,049		
		3ª Máx	539250	7310850	4,040		
	7 o g. o	4ª Máx	539050	7311250	3,959		
		5ª Máx	539050	7310850	3,810		
		1ª Máx	525500	7318500	3,975		
		2ª Máx	525550	7318550	3,944		
Anual	Puma	3ª Máx	525350	7318550	3,565	80 (μg/m³)	60 (μg/m³)
		4ª Máx	525550	7318350	3,513	(μg/111)	(μg/111)
		5ª Máx	525350	7318350	3,396		
		1ª Máx	539250	7311250	4,232		
	Monte	2ª Máx	539250	7311050	4,071		
	Alegre e	3ª Máx	525500	7318500	4,063		
	Puma	4ª Máx	539250	7310850	4,062		
	, and	5ª Máx	525550	7318550	4,032		

Tabela 20: Concentrações máximas ($\mu g/m^3$) em receptores distintos para o SOx no cenário ATUAL.

		•• .	Co	ncentração I	Máxima -	Padrão CC	NAMA 03/90
Período	Unidade	Máxima	UTMX	UTMY	Concentração	Padrão Primário	Padrão Secundário
		1ª Máx	539450	7311450	36,362		
		2ª Máx	539500	7311500	34,965		
	Monte Alegre	3ª Máx	539650	7311250	32,454		
		4ª Máx	539450	7311650	30,986		
		5ª Máx	539250	7311850	29,093		
		1ª Máx	525950	7318550	17,150		
		2ª Máx	525550	7318350	13,478		
24 h	Puma	3ª Máx	525500	7318500	13,447	365 (μg/m³)	100 (μg/m³)
		4ª Máx	525750	7318350	13,435	(1.9/)	(µулт)
		5ª Máx	525550	7318550	12,993	-	
	Monte Alegre	1ª Máx	539450	7311450	36,366		
		2ª Máx	539500	7311500	34,969		
	е	3ª Máx	539650	7311250	32,456		
	Puma	4ª Máx	539450	7311650	30,990		
		5ª Máx	539250	7311850	29,097		
		1ª Máx	539250	7310850	6,985		
		2ª Máx	539050	7310850	6,376		
	Monte Alegre	3ª Máx	539050	7310650	6,074		
	7 llogio	4ª Máx	539000	7311000	6,055		
		5ª Máx	538850	7310650	5,713		
		1ª Máx	525500	7318500	4,560		
		2ª Máx	525550	7318550	4,555		
Anual	Puma	3ª Máx	525350	7318550	4,075	80 (μg/m³)	40 (μg/m³)
		4ª Máx	525950	7318550	3,951	(μg/111)	(μg/111)
		5ª Máx	525750	7318550	3,940		
		1ª Máx	539250	7310850	7,009		
	Monte	2ª Máx	539050	7310850	6,400		
	Alegre	3ª Máx	539050	7310650	6,098		
	e Puma	4ª Máx	539000	7311000	6,079		
	i diliu	5ª Máx	538850	7310650	5,738		

Tabela 21: Concentrações máximas (μg/m³) em receptores distintos para o ERT no cenário FUTURO.

Período	Unidade	Máxima	Co	oncentração I	Máxima	Limite de Percepção de Odor
	• mada	maxima	UTMX	UTMY	Concentração	Ficha CETESB
		1ª Máx	539250	7311850	4,476	
		2ª Máx	539250	7312050	4,266	
	Monte Alegre	3ª Máx	539000	7312000	4,072	
	Alogio	4ª Máx	539050	7312050	3,772	
		5ª Máx	539850	7311250	3,734	
		1ª Máx	526350	7318750	4,358	0.55
		2ª Máx	525950	7318550	4,065	6,55 (μg/m³)
01 h	Puma	3ª Máx	527550	7318950	3,489	
		4ª Máx	527350	7319150	3,465	0,0047
		5ª Máx	527150	7319150	3,275	(ppm)
		1ª Máx	539250	7311850	4,476	
	Monte Alegre	2ª Máx	526350	7318750	4,374	
	e	3ª Máx	539250	7312050	4,266	
	Puma	4ª Máx	539000	7312000	4,072	
		5ª Máx	525950	7318550	4,065	

5.1 Resultados nos Receptores Discretos

Os resultados das simulações são analisados para efeito de determinação da conformidade ambiental das concentrações de entorno, resultantes das emissões atmosféricas das unidades simuladas (a seguir).

Tabela 22: Concentrações máximas ($\mu g/m^3$) em receptores discretos colocados nos pontos críticos para o CO no cenário ATUAL para as fontes de Monte Alegre e Puma.

		Co	ncentração Má	ixima	Padrão CONAMA 03/90		
Período	-	UTMX	UTMY	Concentração	Padrão Primário	Padrão Secundário	
	RECP_01	538930	7309310	18,65365			
	RECP_02	538930	7309770	25,52796			
	RECP_03	538270	7309180	16,03712			
	RECP_04	540000	7312000	189,432			
	RECP_05	537790	7309530	15,50005	40 000 (μg/m³)		
	RECP_06	537890	7309240	14,28976			
01 h	RECP_07	524348	7296249	13,06231		40 000 (μg/m³)	
	RECP_08	507468	7322638	15,48719		(µg/111-)	
	RECP_09	525227	7344095	11,45313			
	RECP_10	526426	7320843	41,28034			
	RECP_11	523313	7326283	21,58583			
	RECP_12	503655	7319591	16,41546			
	RECP_13	515509	7316643	17,0586			
	RECP_01	538930	7309310	8,87792			
	RECP_02	538930	7309770	12,83116			
	RECP_03	538270	7309180	10,66772			
	RECP_04	540000	7312000	57,76321			
	RECP_05	537790	7309530	10,10817			
	RECP_06	537890	7309240	9,04938			
08 h	RECP_07	524348	7296249	1,88509	10 000 (μg/m³)	10 000 (μg/m³)	
	RECP_08	507468	7322638	5,1961	(1-9)	(1.9)	
	RECP_09	525227	7344095	2,20879			
	RECP_10	526426	7320843	10,85351			
	RECP_11	523313	7326283	6,11245			
	RECP_12	503655	7319591	3,77533			
	RECP_13	515509	7316643	3,89634			

Tabela 23: Concentrações máximas ($\mu g/m^3$) em receptores discretos colocados nos pontos críticos para o NO_X no cenário ATUAL para as fontes de Monte Alegre e Puma.

		Co	ncentração Má	ixima	Padrão CO	NAMA 03/90
Período	-	UTMX	UTMY	Concentração	Padrão Primário	Padrão Secundário
	RECP_01	538930	7309310	20,14445		
	RECP_02	538930	7309770	26,58595		
	RECP_03	538270	7309180	16,9671		
	RECP_04	540000	7312000	215,3328		
	RECP_05	537790	7309530	16,22066		
	RECP_06	537890	7309240	15,2229		
01 h	RECP_07	524348	7296249	13,85917	320 (μg/m³)	190 (μg/m³)
	RECP_08	507468	7322638	11,00569	(1-9)	(1.9)
	RECP_09	525227	7344095	6,79964		
	RECP_10	526426	7320843	24,95178		
	RECP_11	523313	7326283	12,56087		
	RECP_12	503655	7319591	14,14212		
	RECP_13	515509	7316643	10,83598		
	RECP_01	538930	7309310	0,75633		
	RECP_02	538930	7309770	1,57343		
	RECP_03	538270	7309180	1,02294		
	RECP_04	540000	7312000	1,8846		
	RECP_05	537790	7309530	1,55661		
	RECP_06	537890	7309240	1,2257		
Anual	RECP_07	524348	7296249	0,07727	100 (μg/m³)	100 (μg/m³)
	RECP_08	507468	7322638	0,34996	(μ9/)	(μg/)
	RECP_09	525227	7344095	0,06472		
	RECP_10	526426	7320843	0,45211		
	RECP_11	523313	7326283	0,21363		
	RECP_12	503655	7319591	0,32604		
	RECP_13	515509	7316643	0,42717		

Tabela 24: Concentrações máximas (μg/m³) em receptores discretos colocados nos pontos críticos para o PTS no cenário ATUAL para as fontes de Monte Alegre e Puma.

_	Período	Co	ncentração Má	áxima	Padrão CONAMA 03/90		
Cenário	24 h	UTMX	UTMY	Concentração	Padrão Primário	Padrão Secundário	
	RECP_01	538930	7309310	1,95655			
	RECP_02	538930	7309770	3,83388			
	RECP_03	538270	7309180	2,49251			
	RECP_04	540000	7312000	7,41953			
	RECP_05	537790	7309530	2,48549			
	RECP_06	537890	7309240	2,26365			
24 h	RECP_07	524348	7296249	0,24112	240 (μg/m³)	150 (μg/m³)	
	RECP_08	507468	7322638	0,37429	(μg/ιιι)	(1,9,)	
	RECP_09	525227	7344095	0,21131			
	RECP_10	526426	7320843	0,57964			
	RECP_11	523313	7326283	0,40031			
	RECP_12	503655	7319591	0,36527			
	RECP_13	515509	7316643	0,49437			
	RECP_01	538930	7309310	0,24451			
	RECP_02	538930	7309770	0,51952			
	RECP_03	538270	7309180	0,33567			
	RECP_04	540000	7312000	0,59696			
	RECP_05	537790	7309530	0,51753			
	RECP_06	537890	7309240	0,40514			
Anual	RECP_07	524348	7296249	0,02198	80 (μg/m³)	60 (μg/m³)	
	RECP_08	507468	7322638	0,0648	(μg/π-)	(1-9,)	
	RECP_09	525227	7344095	0,01542			
	RECP_10	526426	7320843	0,08921			
	RECP_11	523313	7326283	0,0482			
	RECP_12	503655	7319591	0,06487			
	RECP_13	515509	7316643	0,09435			

Tabela 25: Concentrações máximas ($\mu g/m^3$) em receptores discretos colocados nos pontos críticos para o SO_X no cenário ATUAL para as fontes de Monte Alegre e Puma.

	Período	Co	ncentração Má	ixima	Padrão CO	NAMA 03/90
Cenário	24h	UTMX	UTMY	Concentração	Padrão Primário	Padrão Secundário
	RECP_01	538930	7309310	4,01342		
	RECP_02	538930	7309770	7,84718		
	RECP_03	538270	7309180	4,8891		
	RECP_04	540000	7312000	13,16232		
	RECP_05	537790	7309530	4,87859		
	RECP_06	537890	7309240	4,32027		
24 h	RECP_07	524348	7296249	0,46653	365 (μg/m³)	100 (μg/m³)
	RECP_08	507468	7322638	0,53108	(μg/111)	(149/)
	RECP_09	525227	7344095	0,35329		
	RECP_10	526426	7320843	1,02124		
	RECP_11	523313	7326283	0,70699		
	RECP_12	503655	7319591	0,62712		
	RECP_13	515509	7316643	0,84897		
	RECP_01	538930	7309310	0,49099		
	RECP_02	538930	7309770	1,08666		
	RECP_03	538270	7309180	0,66977		
	RECP_04	540000	7312000	1,01457		
	RECP_05	537790	7309530	1,00859		
	RECP_06	537890	7309240	0,79608		
Anual	RECP_07	524348	7296249	0,03815	80 (μg/m³)	40 (μg/m³)
	RECP_08	507468	7322638	0,08028	(μg/m²)	(1.9/)
	RECP_09	525227	7344095	0,02409		
	RECP_10	526426	7320843	0,13066		
	RECP_11	523313	7326283	0,07459		
	RECP_12	503655	7319591	0,08634		
	RECP_13	515509	7316643	0,13523		

Tabela 26: Concentrações máximas ($\mu g/m^3$) em receptores discretos colocados nos pontos críticos para o ERT no cenário ATUAL para as fontes de Monte Alegre e Puma.

Cenário	Período	Concentração Máxima			Limite de Percepção de Odor
	24h	UTMX	UTMY	Concentração	Ficha CETESB
	RECP_01	538930	7309310	0,41876	
	RECP_02	538930	7309770	0,41817	
	RECP_03	538270	7309180	0,45134	
	RECP_04	540000	7312000	2,81408	
	RECP_05	537790	7309530	0,35134	0.55
	RECP_06	537890	7309240	0,34078	6,55 (μg/m³)
1 h	RECP_07	524348	7296249	0,15264	
	RECP_08	507468	7322638	0,26036	0,0047
	RECP_09	525227	7344095	0,18369	(ppm)
	RECP_10	526426	7320843	0,67172	
	RECP_11	523313	7326283	0,3325	
	RECP_12	503655	7319591	0,32483	
	RECP_13	515509	7316643	0,33343	

Tabela 27: Concentrações máximas (μg/m³) em receptores discretos colocados nos pontos críticos para o CO no cenário FUTURO para as fontes de Monte Alegre e Puma.

		Concentração Máxima			Padrão CONAMA 03/90	
Período	•	UTMX	UTMY	Concentração	Padrão Primário	Padrão Secundário
	RECP_01	538930	7309310	59,34549		
	RECP_02	538930	7309770	69,40355		
	RECP_03	538270	7309180	60,36693		
	RECP_04	540000	7312000	178,9768		
	RECP_05	537790	7309530	73,55136		
	RECP_06	537890	7309240	68,41799		
01 h	RECP_07	524348	7296249	41,40183	40 000 (μg/m³)	40 000 (μg/m³)
	RECP_08	507468	7322638	65,64107	(1-9,)	
	RECP_09	525227	7344095	46,16865		
	RECP_10	526426	7320843	171,3721		
	RECP_11	523313	7326283	85,69305		
	RECP_12	503655	7319591	70,55302		
	RECP_13	515509	7316643	75,2468		
	RECP_01	538930	7309310	31,24816		
	RECP_02	538930	7309770	43,54228		
	RECP_03	538270	7309180	34,1009		
	RECP_04	540000	7312000	59,66439	10 000 (μg/m³)	10 000 (μg/m³)
	RECP_05	537790	7309530	34,73448		
	RECP_06	537890	7309240	31,37213		
08 h	RECP_07	524348	7296249	6,80266		
	RECP_08	507468	7322638	21,8454		
	RECP_09	525227	7344095	8,77901		
	RECP_10	526426	7320843	65,49151		
	RECP_11	523313	7326283	27,13201		
	RECP_12	503655	7319591	19,30075		
	RECP_13	515509	7316643	16,04811		

Tabela 28: Concentrações máximas (μg/m³) em receptores discretos colocados nos pontos críticos para o NO_X no cenário FUTURO para as fontes de Monte Alegre e Puma.

Período		Concentração Máxima			Padrão CONAMA 03/90	
		UTMX	UTMY	Concentração	Padrão Primário	Padrão Secundário
	RECP_01	538930	7309310	26,65554		
	RECP_02	538930	7309770	34,28928		
	RECP_03	538270	7309180	25,43107		
	RECP_04	540000	7312000	191,1225		
	RECP_05	537790	7309530	30,0259		
	RECP_06	537890	7309240	27,82586		
01 h	RECP_07	524348	7296249	20,53407	320 (μg/m³)	190 (μg/m³)
	RECP_08	507468	7322638	27,98456	(1-3-)	
	RECP_09	525227	7344095	19,30904		
	RECP_10	526426	7320843	71,85021		
	RECP_11	523313	7326283	35,56461		
	RECP_12	503655	7319591	29,47901		
	RECP_13	515509	7316643	31,60367		
	RECP_01	538930	7309310	1,30049		
	RECP_02	538930	7309770	2,52561		
	RECP_03	538270	7309180	1,75913		
	RECP_04	540000	7312000	2,1689		
	RECP_05	537790	7309530	2,67191		
	RECP_06	537890	7309240	2,11154		
Anual	RECP_07	524348	7296249	0,16653	100 (μg/m³)	100 (μg/m³)
	RECP_08	507468	7322638	0,92966		
	RECP_09	525227	7344095	0,14971		
	RECP_10	526426	7320843	1,20759		
	RECP_11	523313	7326283	0,5175		
	RECP_12	503655	7319591	0,83269		
	RECP_13	515509	7316643	0,94113		

Tabela 29: Concentrações máximas (μg/m³) em receptores discretos colocados nos pontos críticos para o PTS no cenário FUTURO para as fontes de Monte Alegre e Puma.

Cenário	Período	Concentração Máxima			Padrão CONAMA 03/90	
	24 h	UTMX	UTMY	Concentração	Padrão Primário	Padrão Secundário
	RECP_01	538930	7309310	2,75339		
	RECP_02	538930	7309770	5,09188		
	RECP_03	538270	7309180	3,51318		
	RECP_04	540000	7312000	6,80345		
	RECP_05	537790	7309530	3,50873		
	RECP_06	537890	7309240	3,25275		
24 h	RECP_07	524348	7296249	0,38988	240 (μg/m³)	150 (μg/m³)
	RECP_08	507468	7322638	1,03101	(1-5-)	
	RECP_09	525227	7344095	0,42798		
	RECP_10	526426	7320843	2,67265		
	RECP_11	523313	7326283	0,83681		
	RECP_12	503655	7319591	0,77145		
	RECP_13	515509	7316643	0,82096		
	RECP_01	538930	7309310	0,35917		
	RECP_02	538930	7309770	0,72017	80 (μg/m³)	60 (μg/m³)
	RECP_03	538270	7309180	0,49129		
	RECP_04	540000	7312000	0,64592		
	RECP_05	537790	7309530	0,754		
	RECP_06	537890	7309240	0,59271		
Anual	RECP_07	524348	7296249	0,04081		
	RECP_08	507468	7322638	0,18574		
	RECP_09	525227	7344095	0,03318		
	RECP_10	526426	7320843	0,24631		
	RECP_11	523313	7326283	0,11159		
	RECP_12	503655	7319591	0,17066		
	RECP_13	515509	7316643	0,20174		

Tabela 30: Concentrações máximas (μg/m³) em receptores discretos colocados nos pontos críticos para o SO_X no cenário FUTURO para as fontes de Monte Alegre e Puma.

Cenário	Período	Concentração Máxima			Padrão CONAMA 03/90	
	24h	UTMX	UTMY	Concentração	Padrão Primário	Padrão Secundário
	RECP_01	538930	7309310	4,78704		
	RECP_02	538930	7309770	9,02599		
	RECP_03	538270	7309180	5,89635		
	RECP_04	540000	7312000	11,98609		
	RECP_05	537790	7309530	5,89938		
	RECP_06	537890	7309240	5,30202		
24 h	RECP_07	524348	7296249	0,62695	365 (μg/m³)	100 (μg/m³)
	RECP_08	507468	7322638	1,25955	(1-5-)	
	RECP_09	525227	7344095	0,59805		
	RECP_10	526426	7320843	3,35145		
	RECP_11	523313	7326283	0,99732		
	RECP_12	503655	7319591	1,02661		
	RECP_13	515509	7316643	1,19661		
	RECP_01	538930	7309310	0,60313		
	RECP_02	538930	7309770	1,27382	80 (μg/m³)	40 (μg/m³)
	RECP_03	538270	7309180	0,82449		
	RECP_04	540000	7312000	1,01793		
	RECP_05	537790	7309530	1,24541		
	RECP_06	537890	7309240	0,98394		
Anual	RECP_07	524348	7296249	0,05835		
	RECP_08	507468	7322638	0,22124		
	RECP_09	525227	7344095	0,04416		
	RECP_10	526426	7320843	0,31453		
	RECP_11	523313	7326283	0,14711		
	RECP_12	503655	7319591	0,20857		
	RECP_13	515509	7316643	0,25696		

Tabela 31: Concentrações máximas (μg/m³) em receptores discretos colocados nos pontos críticos para o ERT no cenário FUTURO para as fontes de Monte Alegre e Puma.

Cenário	Período 24h	Concentração Máxima			Limite de Percepção de Odor
		UTMX	UTMY	Concentração	Ficha CETESB
	RECP_01	538930	7309310	0,57264	6,55 (μg/m³) 0,0047 (ppm)
	RECP_02	538930	7309770	0,59667	
	RECP_03	538270	7309180	0,64043	
	RECP_04	540000	7312000	1,80449	
	RECP_05	537790	7309530	0,64136	
	RECP_06	537890	7309240	0,63628	
1 h	RECP_07	524348	7296249	0,36301	
	RECP_08	507468	7322638	0,6867	
	RECP_09	525227	7344095	0,4822	
	RECP_10	526426	7320843	1,78717	
	RECP_11	523313	7326283	0,90386	
	RECP_12	503655	7319591	0,73494	
	RECP_13	515509	7316643	0,78817	

6 CONCLUSÕES

Os resultados das simulações apresentaram concentrações dentro dos limites estabelecidos pelo padrão primário da resolução CONAMA 03/90 para todos os poluentes simulados (CO, PTS, SO₂ e NO₂), nos cenários atual e futuro, estando, portanto, em conformidade ambiental.

No caso do ERT, não há padrão definido pela legislação nacional, por conta disso, utilizou-se o H_2S como gás de referência para odor do ERT, que possui limiar de percepção de odor igual a $6,55~\mu g/m^3$ (considerando o ERT como $100\%~H_2S$). O cenário futuro apresentou concentrações inferiores ao estabelecido como limiar de percepção de odor, estando, portanto, em conformidade ambiental.

EQUIPE TÉCNICA

George Lentz César Fruehauf

Bacharel em Matemática Mestrado em Meteorologia Doutorado em Geografia Engenharia Ambiental CREA-SP: 5062008073

IM/UFRJ SJSU/USA FFLCH/USP USM/SP

IAG/USP

REGISTRO IBAMA: 573856

Daniel Constantino Zacharias

Bacharel em Meteorologia Mestrado em Meteorologia Doutorado em Meteorologia

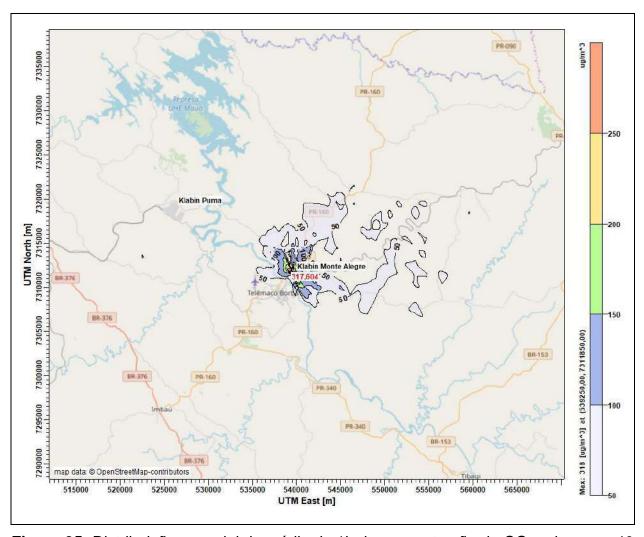
IAG/USP IAG/USP

CREA-SP: 5063075757 REGISTRO IBAMA: 638533

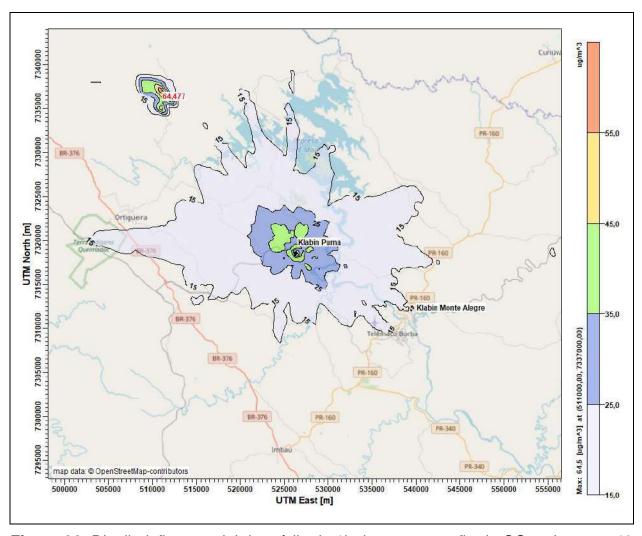
REFERÊNCIAS BIBLIOGRÁFICAS

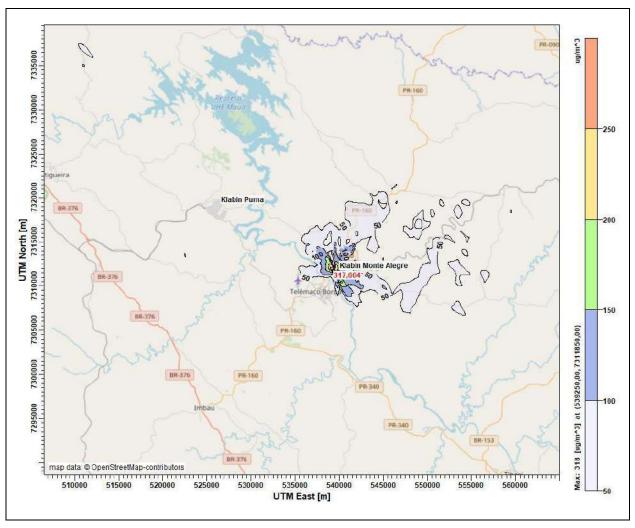
CONAMA 03/1990 – Resolução do Conselho Nacional de Meio Ambiente

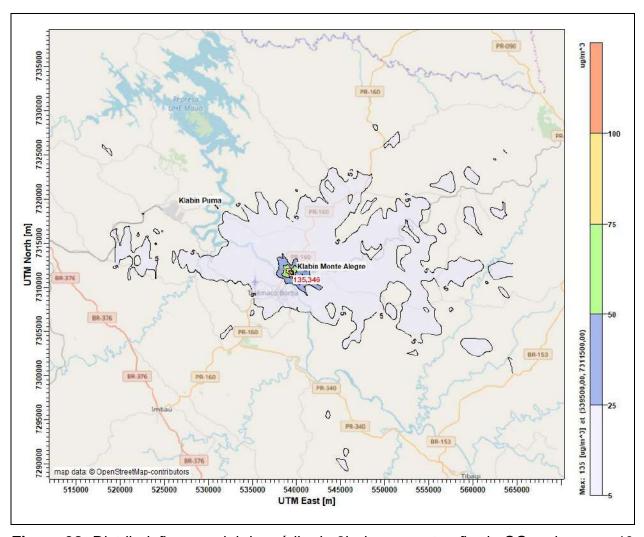
LAKES Environmental Software (2007). User's Guide ISC-AERMod View.

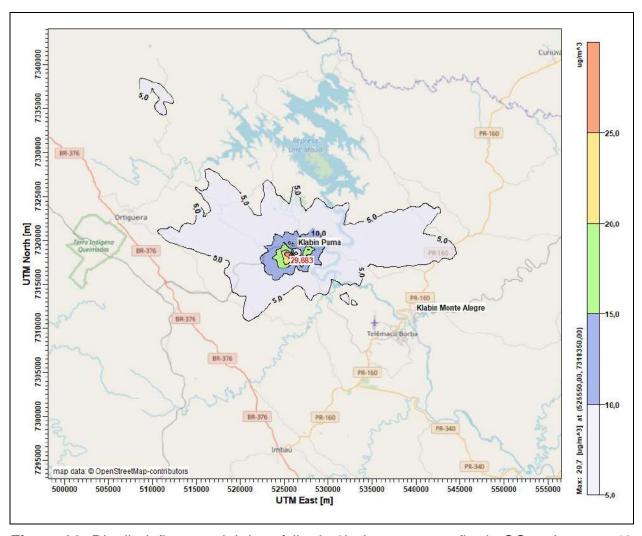

US EPA (1987). Environmental Protection Agency, 1987. On-Site Meteorological Program Guidance for Regulatory Modeling Applications, EPA - 450/4-87-013.

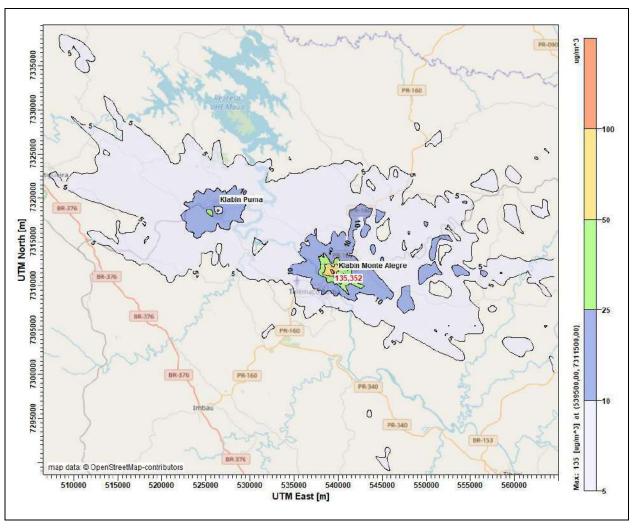
US EPA (2007). AERMOD Modeling System (acesso 19/06/2007)

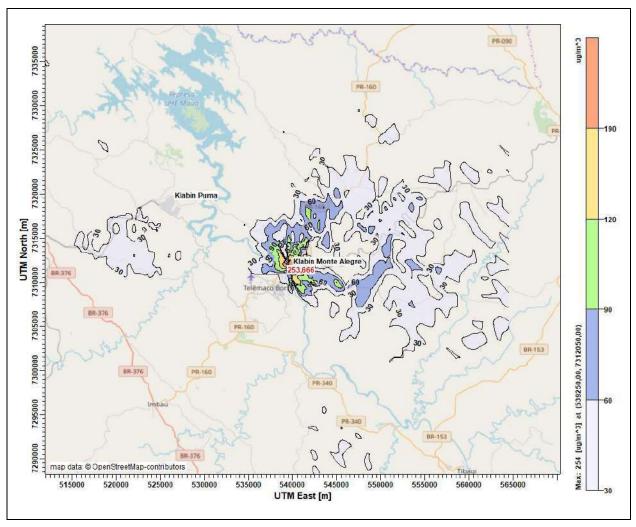

http://www.epa.gov/scram001/dispersion_prefrec.htm#aermod.

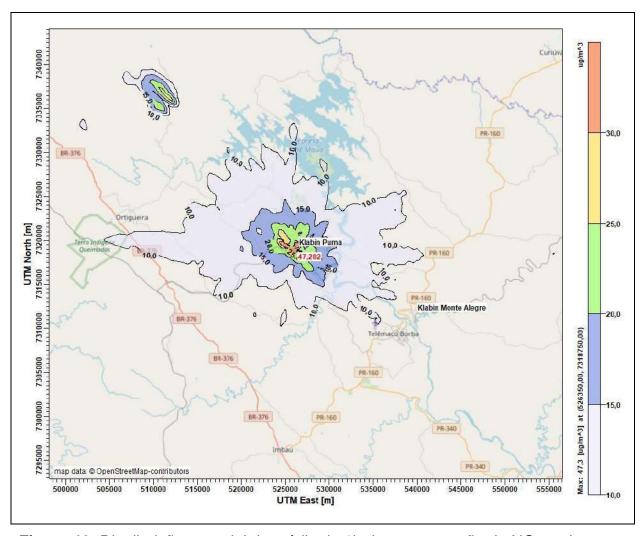

ANEXO A: DISTRIBUIÇÃO ESPACIAL DAS CONCENTRAÇÕES DOS POLUENTES

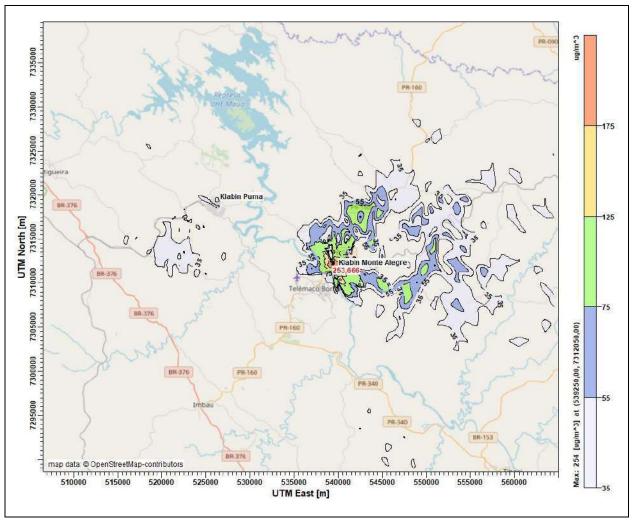

Figura 35: Distribuição espacial da média de 1h da concentração de CO na imagem 40 km x 40 km, com a concentração máxima em destaque, localização das unidades sobre o mapa viário e de uso so solo para a unidade Monte Alegre no cenário ATUAL.

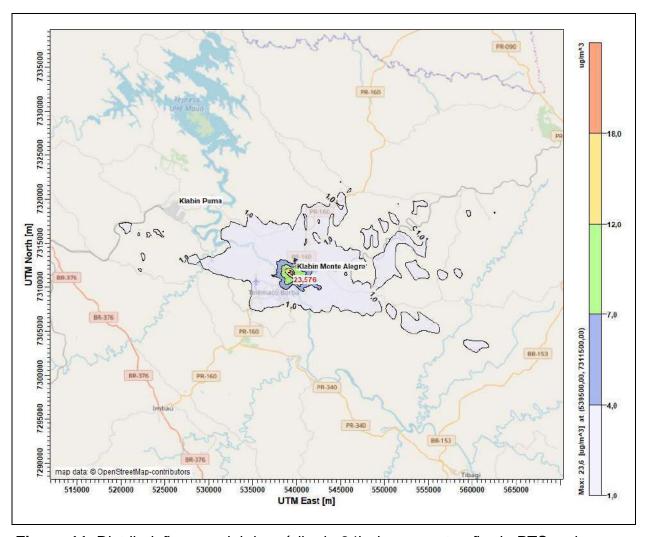

Figura 36: Distribuição espacial da média de 1h da concentração de CO na imagem 40 km x 40 km, com a concentração máxima em destaque, localização das unidades sobre o mapa viário e de uso so solo para a unidade Puma no cenário ATUAL.

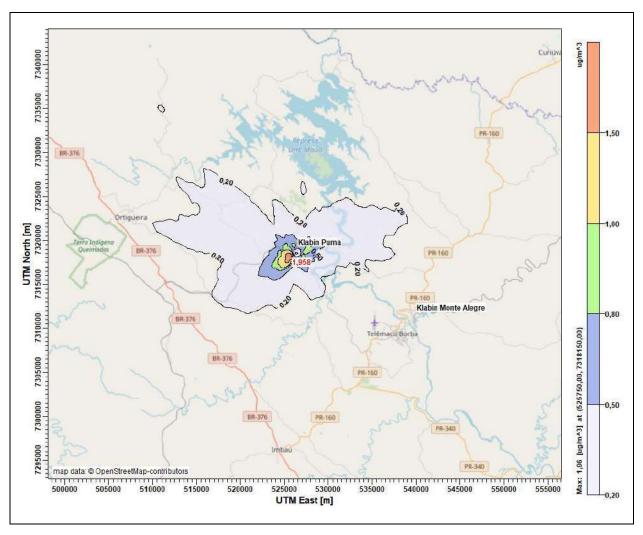

Figura 37: Distribuição espacial da média de 1h da concentração de CO na imagem 40 km x 40 km, com a concentração máxima em destaque, localização das unidades sobre o mapa viário e de uso so solo para as unidades Monte Alegre e Puma, no cenário ATUAL.

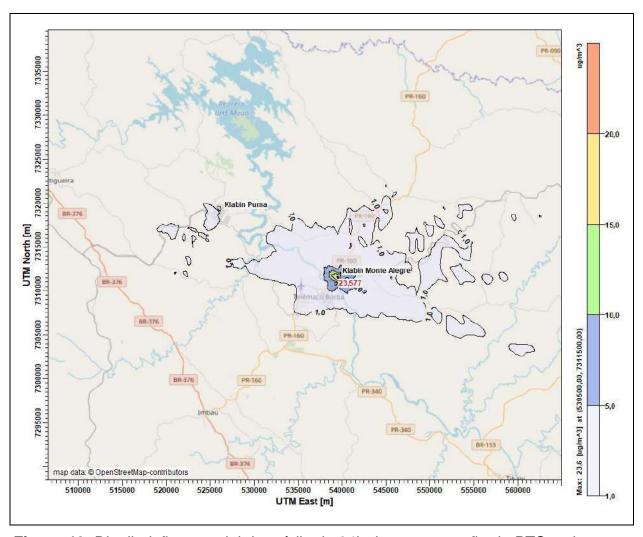

Figura 38: Distribuição espacial da média de 8h da concentração de CO na imagem 40 km x 40 km, com a concentração máxima em destaque, localização das unidades sobre o mapa viário e de uso so solo para a unidade Monte Alegre no cenário ATUAL.

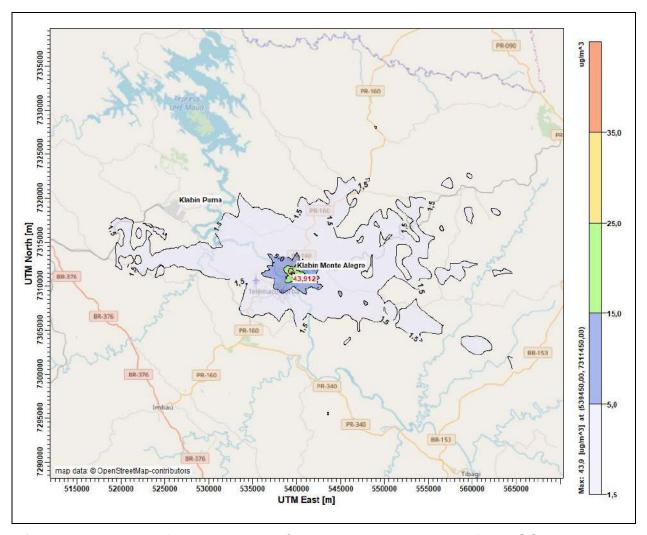

Figura 39: Distribuição espacial da média de 8h da concentração de CO na imagem 40 km x 40 km, com a concentração máxima em destaque, localização das unidades sobre o mapa viário e de uso so solo para a unidade Puma no cenário ATUAL.

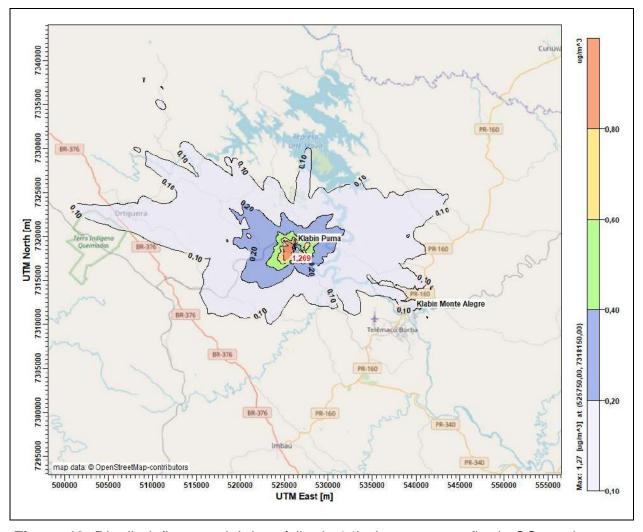

Figura 40: Distribuição espacial da média de 8h da concentração de CO na imagem 40 km x 40 km, com a concentração máxima em destaque, localização das unidades sobre o mapa viário e de uso so solo para as unidades Monte Alegre e Puma, no cenário ATUAL.

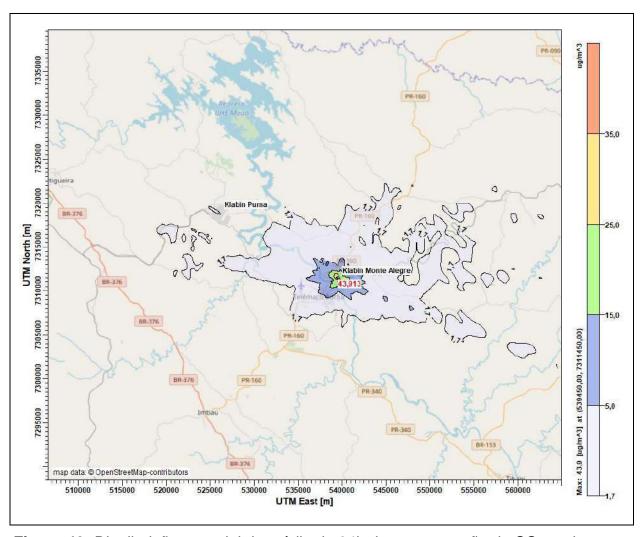

Figura 41: Distribuição espacial da média de 1h da concentração de NO_X na imagem 40 km x 40 km, com a concentração máxima em destaque, localização das unidades sobre o mapa viário e de uso so solo para a unidade Monte Alegre no cenário ATUAL.

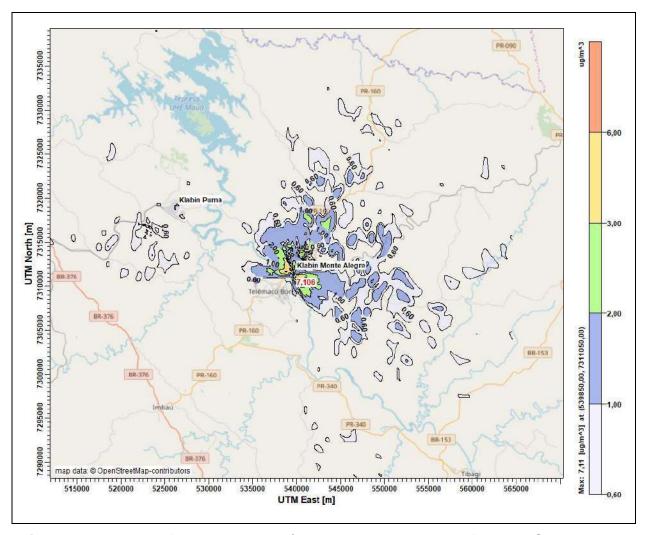

Figura 42: Distribuição espacial da média de 1h da concentração de NO_x na imagem 40 km x 40 km, com a concentração máxima em destaque, localização das unidades sobre o mapa viário e de uso so solo para a unidade Puma no cenário ATUAL.

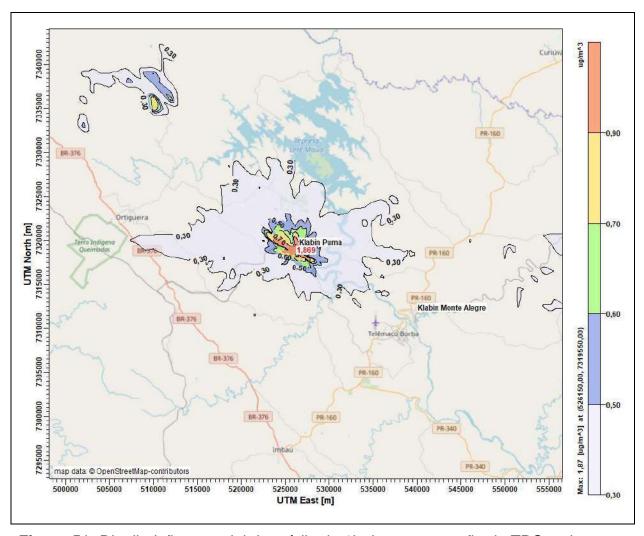

Figura 43: Distribuição espacial da média de 1h da concentração de NO_X na imagem 40 km x 40 km, com a concentração máxima em destaque, localização das unidades sobre o mapa viário e de uso so solo para as unidades Monte Alegre e Puma, no cenário ATUAL.

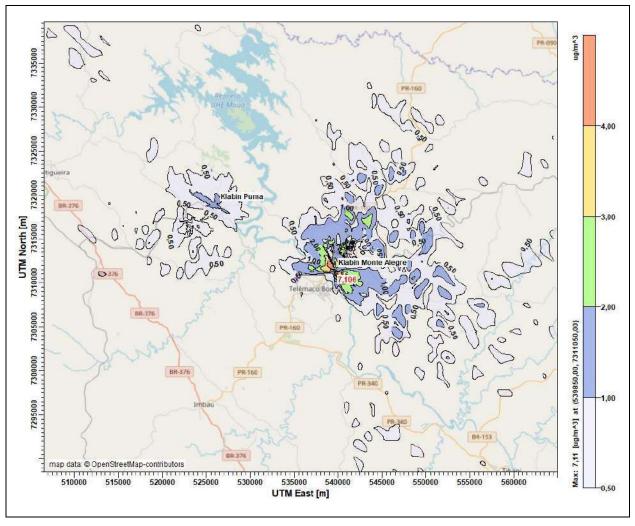

Figura 44: Distribuição espacial da média de 24h da concentração de PTS na imagem 40 km x 40 km, com a concentração máxima em destaque, localização das unidades sobre o mapa viário e de uso so solo para a unidade Monte Alegre no cenário ATUAL.

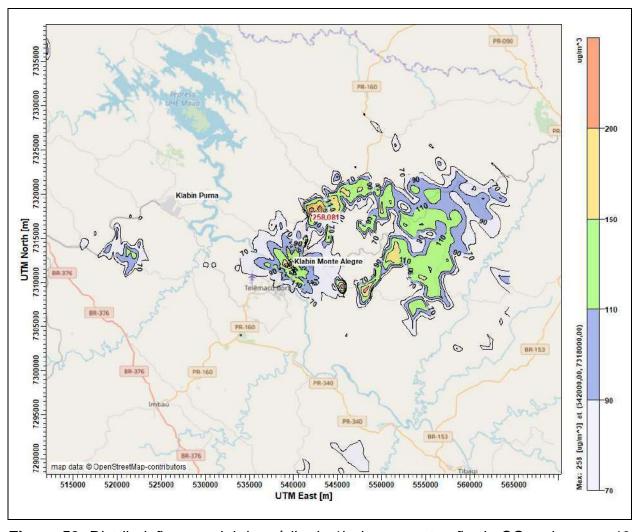

Figura 45: Distribuição espacial da média de 24h da concentração de PTS na imagem 40 km x 40 km, com a concentração máxima em destaque, localização das unidades sobre o mapa viário e de uso so solo para a unidade Puma no cenário ATUAL.

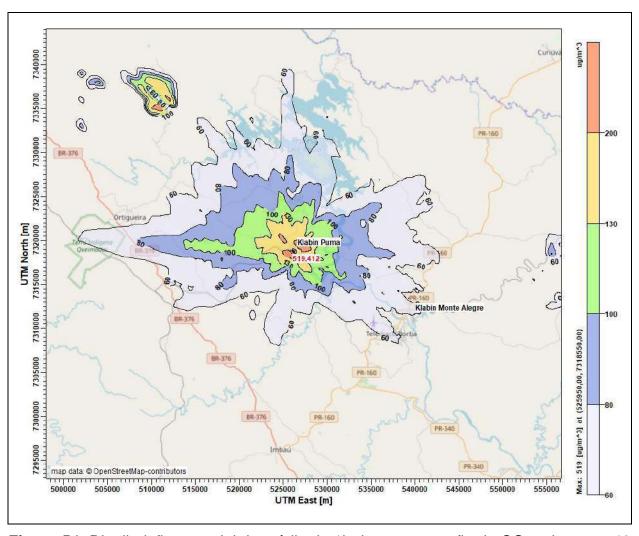

Figura 46: Distribuição espacial da média de 24h da concentração de PTS na imagem 40 km x 40 km, com a concentração máxima em destaque, localização das unidades sobre o mapa viário e de uso so solo para as unidades Monte Alegre e Puma, no cenário ATUAL.

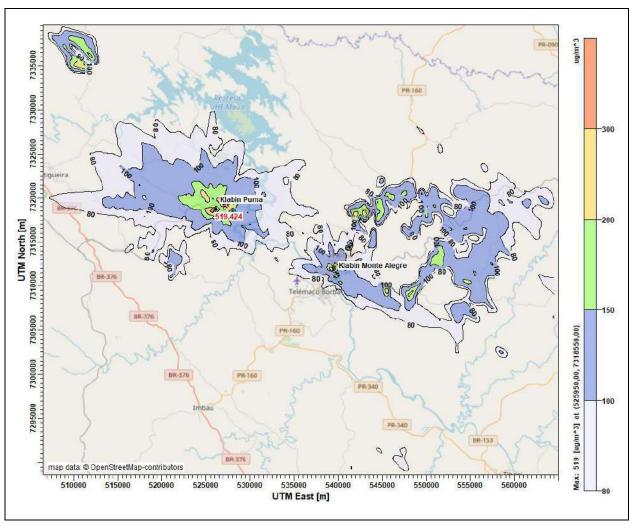

Figura 47: Distribuição espacial da média de 24h da concentração de SOx na imagem 40 km x 40 km, com a concentração máxima em destaque, localização das unidades sobre o mapa viário e de uso so solo para a unidade Monte Alegre no cenário ATUAL.

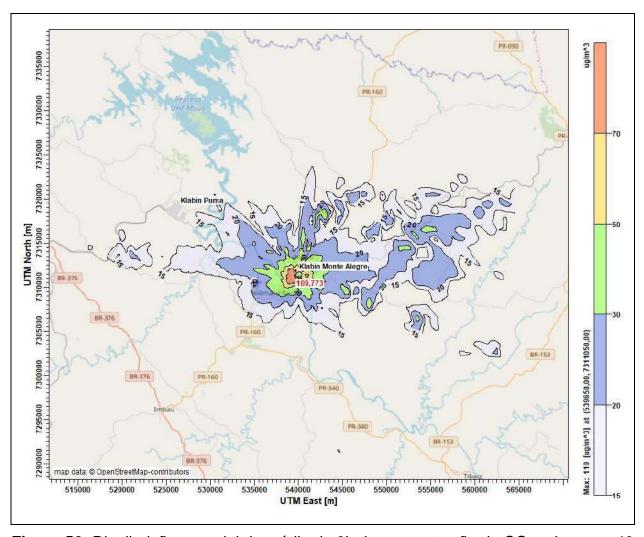

Figura 48: Distribuição espacial da média de 24h da concentração de SOx na imagem 40 km x 40 km, com a concentração máxima em destaque, localização das unidades sobre o mapa viário e de uso so solo para a unidade Puma no cenário ATUAL.

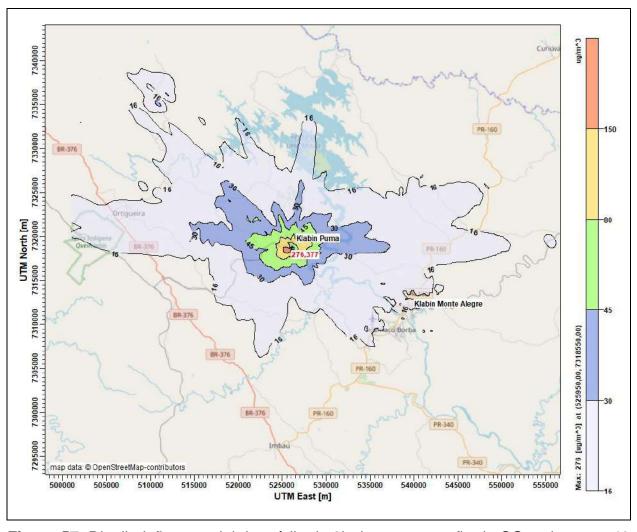

Figura 49: Distribuição espacial da média de 24h da concentração de SOx na imagem 40 km x 40 km, com a concentração máxima em destaque, localização das unidades sobre o mapa viário e de uso so solo para as unidades Monte Alegre e Puma, no cenário ATUAL.


Figura 50: Distribuição espacial da média de 1h da concentração de TRS na imagem 40 km x 40 km, com a concentração máxima em destaque, localização das unidades sobre o mapa viário e de uso so solo para a unidade Monte Alegre no cenário ATUAL.


Figura 51: Distribuição espacial da média de 1h da concentração de TRS na imagem 40 km x 40 km, com a concentração máxima em destaque, localização das unidades sobre o mapa viário e de uso so solo para a unidade Puma no cenário ATUAL.


Figura 52: Distribuição espacial da média de 1h da concentração de TRS na imagem 40 km x 40 km, com a concentração máxima em destaque, localização das unidades sobre o mapa viário e de uso so solo para as unidades Monte Alegre e Puma, no cenário ATUAL.


Figura 53: Distribuição espacial da média de 1h da concentração de CO na imagem 40 km x 40 km, com a concentração máxima em destaque, localização das unidades sobre o mapa viário e de uso so solo para a unidade Monte Alegre no cenário FUTURO.


Figura 54: Distribuição espacial da média de 1h da concentração de CO na imagem 40 km x 40 km, com a concentração máxima em destaque, localização das unidades sobre o mapa viário e de uso so solo para a unidade Puma no cenário FUTURO.

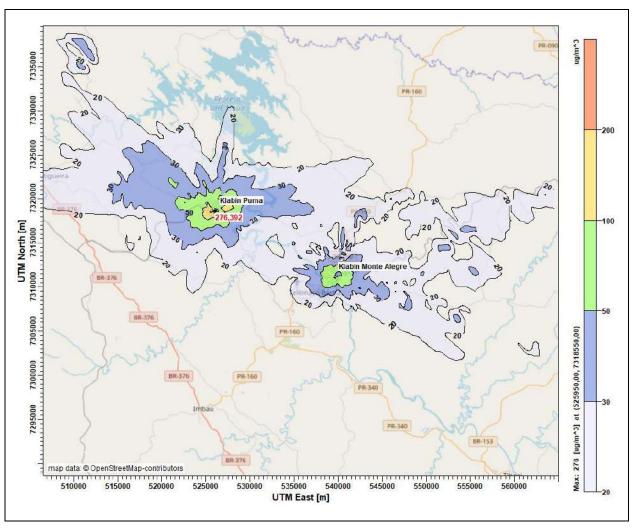

Figura 55: Distribuição espacial da média de 1h da concentração de CO na imagem 40 km x 40 km, com a concentração máxima em destaque, localização das unidades sobre o mapa viário e de uso so solo para as unidades Monte Alegre e Puma, no cenário FUTURO.

Figura 56: Distribuição espacial da média de 8h da concentração de CO na imagem 40 km x 40 km, com a concentração máxima em destaque, localização das unidades sobre o mapa viário e de uso so solo para a unidade Monte Alegre no cenário FUTURO.

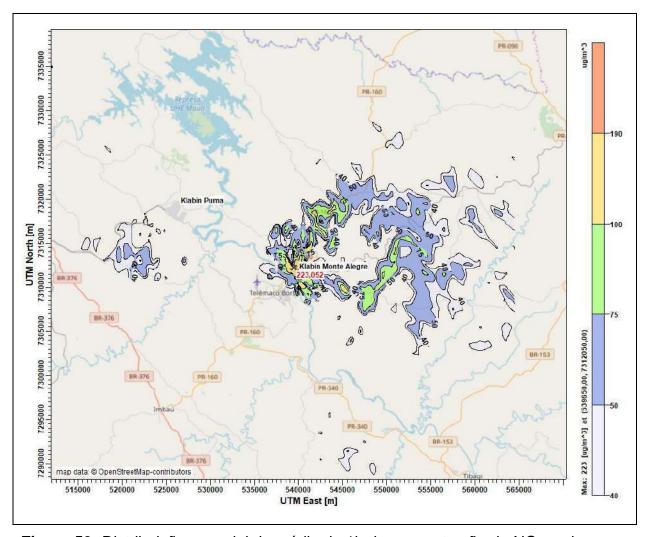


Figura 57: Distribuição espacial da média de 8h da concentração de CO na imagem 40 km x 40 km, com a concentração máxima em destaque, localização das unidades sobre o mapa viário e de uso so solo para a unidade Puma no cenário FUTURO.

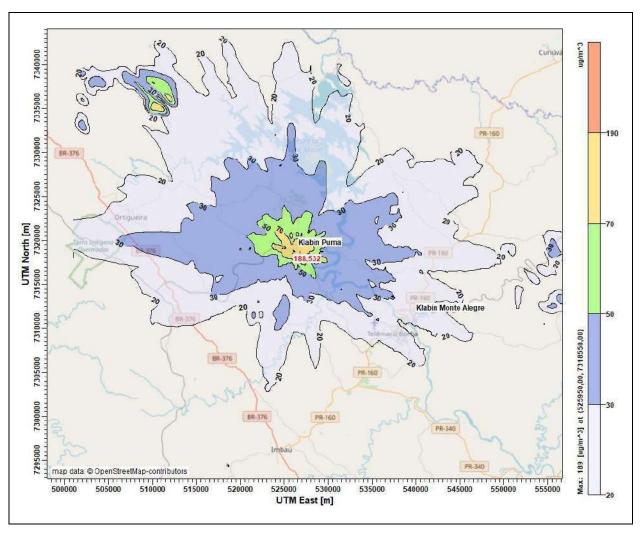
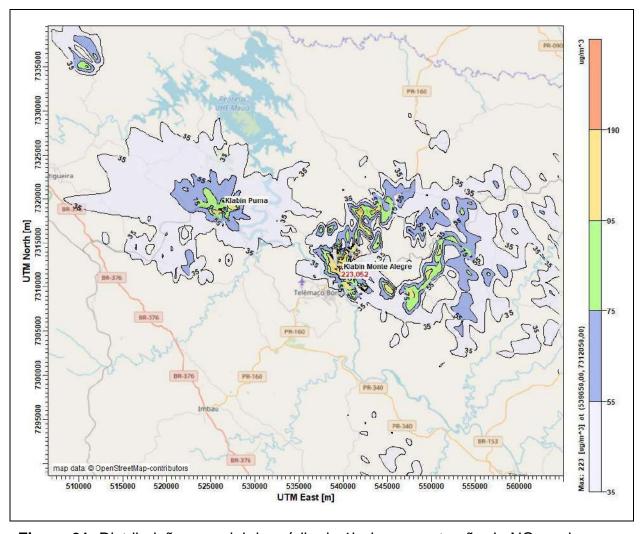
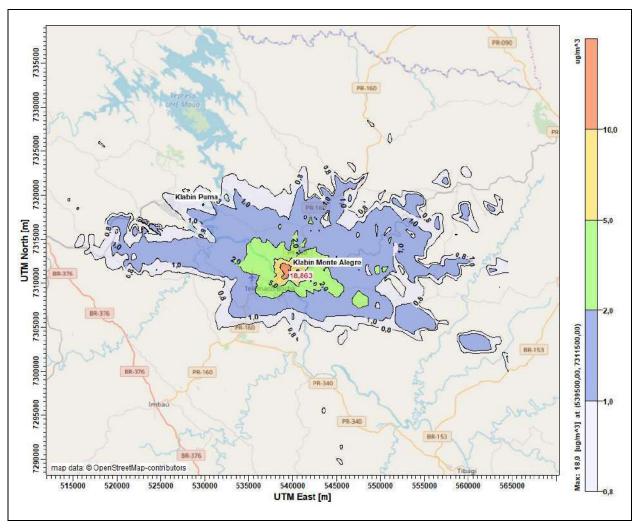
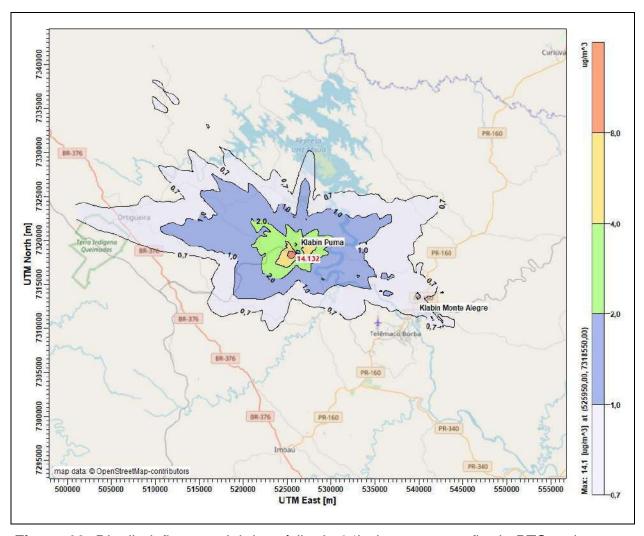
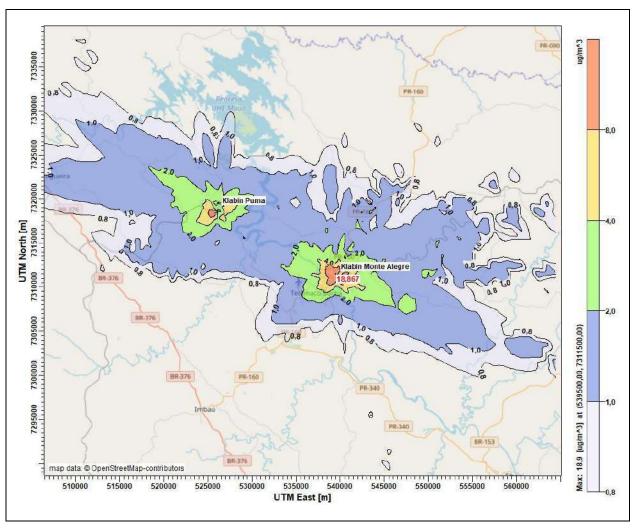


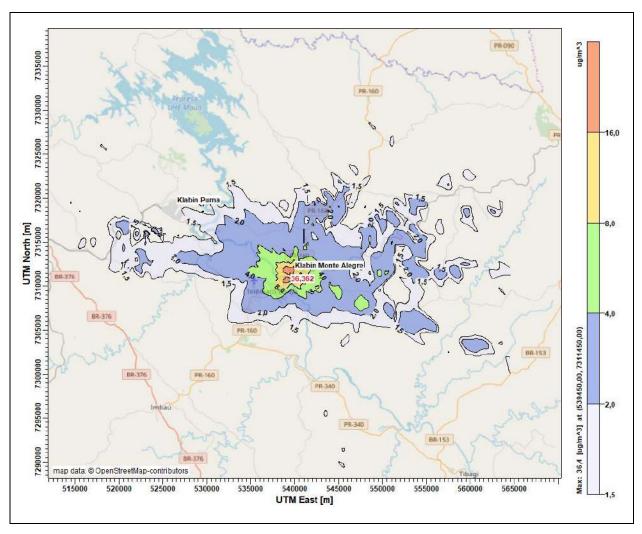
Figura 58: Distribuição espacial da média de 8h da concentração de CO na imagem 40 km x 40 km, com a concentração máxima em destaque, localização das unidades sobre o mapa viário e de uso so solo para as unidades Monte Alegre e Puma, no cenário FUTURO.

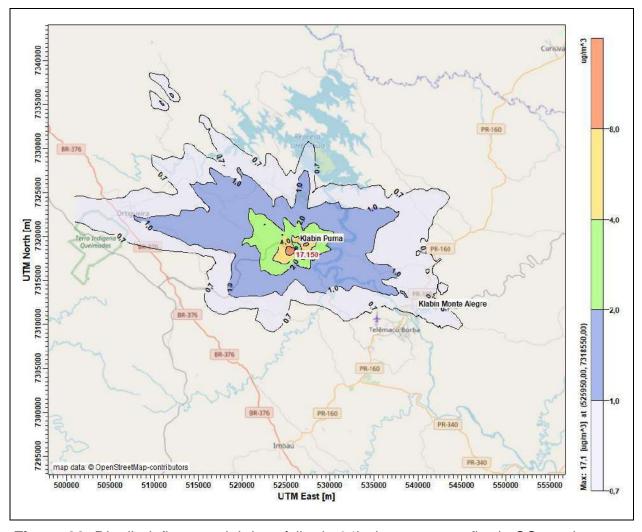



Figura 59: Distribuição espacial da média de 1h da concentração de NO_X na imagem 40 km x 40 km, com a concentração máxima em destaque, localização das unidades sobre o mapa viário e de uso so solo para a unidade Monte Alegre no cenário FUTURO.


Figura 60: Distribuição espacial da média de 1h da concentração de NO_x na imagem 40 km x 40 km, com a concentração máxima em destaque, localização das unidades sobre o mapa viário e de uso so solo para a unidade Puma no cenário FUTURO.


Figura 61: Distribuição espacial da média de 1h da concentração de NO_X na imagem 40 km x 40 km, com a concentração máxima em destaque, localização das unidades sobre o mapa viário e de uso so solo para as unidades Monte Alegre e Puma, no cenário FUTURO.


Figura 62: Distribuição espacial da média de 24h da concentração de PTS na imagem 40 km x 40 km, com a concentração máxima em destaque, localização das unidades sobre o mapa viário e de uso so solo para a unidade Monte Alegre no cenário FUTURO.


Figura 63: Distribuição espacial da média de 24h da concentração de PTS na imagem 40 km x 40 km, com a concentração máxima em destaque, localização das unidades sobre o mapa viário e de uso so solo para a unidade Puma no cenário FUTURO.

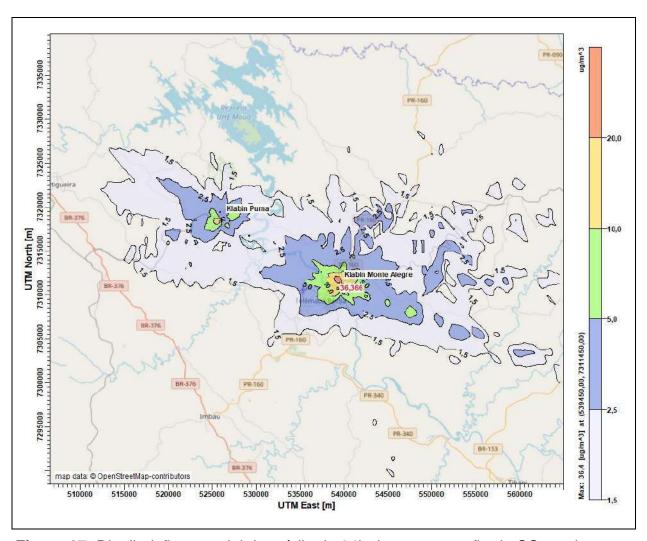

Figura 64: Distribuição espacial da média de 24h da concentração de PTS na imagem 40 km x 40 km, com a concentração máxima em destaque, localização das unidades sobre o mapa viário e de uso so solo para as unidades Monte Alegre e Puma, no cenário FUTURO.

Figura 65: Distribuição espacial da média de 24h da concentração de SOx na imagem 40 km x 40 km, com a concentração máxima em destaque, localização das unidades sobre o mapa viário e de uso so solo para a unidade Monte Alegre no cenário FUTURO

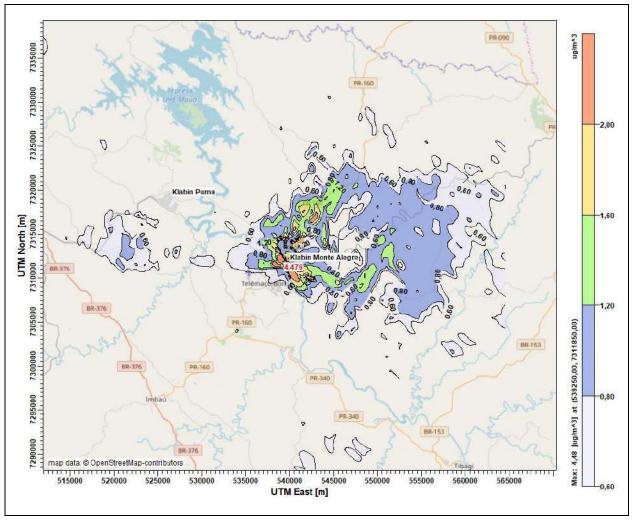


Figura 66: Distribuição espacial da média de 24h da concentração de SOx na imagem 40 km x 40 km, com a concentração máxima em destaque, localização das unidades sobre o mapa viário e de uso so solo para a unidade Puma no cenário FUTURO.

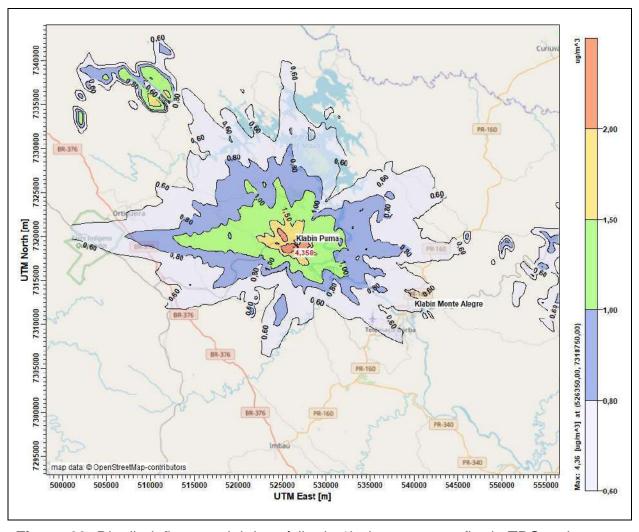


Figura 67: Distribuição espacial da média de 24h da concentração de SOx na imagem 40 km x 40 km, com a concentração máxima em destaque, localização das unidades sobre o mapa viário e de uso so solo para as unidades Monte Alegre e Puma, no cenário FUTURO.

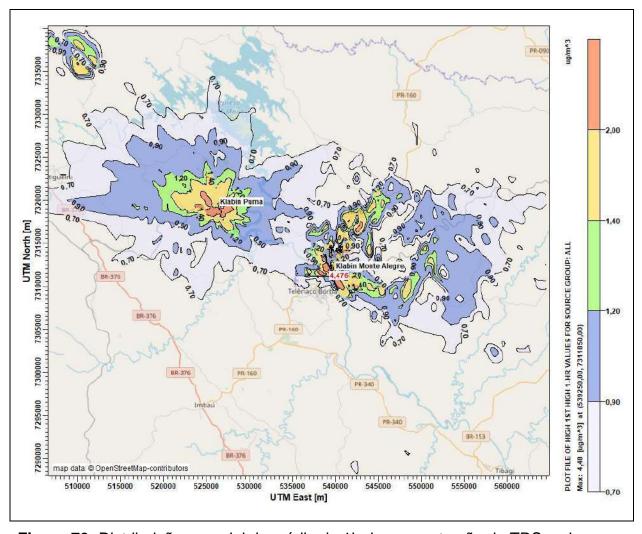


Figura 68: Distribuição espacial da média de 1h da concentração de TRS na imagem 40 km x 40 km, com a concentração máxima em destaque, localização das unidades sobre o mapa viário e de uso so solo para a unidade Monte Alegre no cenário FUTURO.

Figura 69: Distribuição espacial da média de 1h da concentração de TRS na imagem 40 km x 40 km, com a concentração máxima em destaque, localização das unidades sobre o mapa viário e de uso so solo para a unidade Puma no cenário FUTURO.

Figura 70: Distribuição espacial da média de 1h da concentração de TRS na imagem 40 km x 40 km, com a concentração máxima em destaque, localização das unidades sobre o mapa viário e de uso so solo para as unidades Monte Alegre e Puma, no cenário FUTURO.

ANEXO B: CINQUENTA (50) MAIORES CONCENTRAÇÕES DE CURTO PERÍODO

Tabela 32: Cinquenta maiores concentrações (μg/m³) de curto período (1h) do CO no cenário ATUAL para as fontes de Monte Alegre e Puma

NK	CONC (YYMMDDHH) AT	RECEPTOR	(XR, YR) OF T	YPE	RANK	CONC (YYMMDDHH)	AT	RECEPTOR	(XR,YR) OF TY	/PE
1.	317.60430 (14121303) A	r (539250.00,	7311850.00)	GC	26.	250.45924	(17120722)	AT (539250.00,	7311850.00)	GC
2.	315.89012 (16062007) A	r (539250.00,	7311850.00)	GC	27.	249.41688	(14021004)	AT (539000.00,	7312000.00)	GC
3.	315.06414 (13112024) A	,		GC	28.		,		•	7311650.00)	GC
4.	311.06385 (17122709) A	r (539250.00,	7312050.00)	GC	29.	246.83005	(14052001)	AT (539250.00,	7312050.00)	GC
5.	308.49078 (15032808) A	,	,	GC	30.		,		•	7311850.00)	GC
6.	303.88496 (15032808) A	,	,	GC	31.		,	,	•	7312250.00)	GC
7.	300.41615 (17122709) A	,	•	GC	32.	246.12258	, ,	,		7311850.00)	GC
8.	299.33655 (13112204) A	,	,	GC	33.	245.63236	,	,	•	7312000.00)	GC
9.	298.16776 (13052505) A	•	,	GC	34.					7311850.00)	GC
10.	280.43668 (16010623) A			GC	35.		. ,	,	•	7312050.00)	GC
11.	273.96365 (15072724) A	•	,	GC	36.		,	,	•	7311050.00)	GC
12.	271.97558 (17122806) A	•	,	GC	37.	244.39796	,		•	7311850.00)	GC
13.	270.58295 (16010623) A		·	GC	38.					7312050.00)	GC
14.	268.94941 (14121303) A	•	,	GC	39.		,			7311050.00)	GC
15.	267.47785 (16062007) A	, ,	,	GC	40.		, , ,	,		7312050.00)	GC
16.	266.57357 (14102004) A	•	,	GC	41.		,			7311050.00)	GC
17.	263.62715 (16062707) A	•	,	GC	42.	241.61445	,			7311650.00)	GC
18.	263.23104 (14061423) A	•	,	GC	43.		. ,	,	•	7312050.00)	GC
19.	260.65873 (16062903) A	•	,	GC	44.		,			7311050.00)	GC
20.	256.74809 (16121224) A	•	,	GC	45.	240.58112	,		•	7311050.00)	GC
21.	255.53687 (14052802) A	•	,	GC	46.		,			7312050.00)	GC
22.	255.15499 (16121224) A	•	,	GC	47.		,		•	7311050.00)	GC
23.	253.32154 (13091801) A	•	,	GC	48.	239.56026	,			7311050.00)	GC
24.	252.05213 (13020709) A		·	GC	49.					7311050.00)	GC
25.	251.43438 (14061902) A	r (539250.00,	7312050.00)	GC	50.	236.88565	(15012916)	AT (539650.00,	7311050.00)	GC

Tabela 33: Cinquenta maiores concentrações (μg/m³) de curto período (8h) do CO no cenário ATUAL para as fontes de Monte Alegre e Puma

NK	CONC (YYMMDDHH)	AT	RECEPTOR	(XR, YR) OF	' TYPE	RANK	CONC	(YYMMDDHH)	AT	RECEPTOR	(XR,YR) OF T	YPE
1.	135.35155	(14082008)	AT	(539500.00,	7311500.0	0) GC	26.	97.67787	(16031308)	AT	(539250.00,	7311650.00)	GC
2.	132.03460	(16113008)	AT	(539500.00,	7311500.0	0) GC	27.	97.59758	c(16090608)	AT	(539650.00,	7311050.00)	GC
3.	128.77146	(17122416)	AT	(539650.00,	7311050.0	0) GC	28.	97.38802	(14081408)	AT	(539450.00,	7311650.00)	GC
4.		,		(539450.00,		•	29.		(15073008)		•	7311850.00)	GC
5.		,		(539850.00,		•	30.		,		•	7311050.00)	GC
6.		,		(539850.00,		•	31.		(15012208)		•	7311500.00)	GC
7.		,		(539500.00,		- ,	32.		, ,		,	7311450.00)	GC
8.		,		(539450.00,		•	33.		,		•	7310850.00)	GC
9.		,		(539450.00,		•	34.	95.97489	(13030616)	AΤ	(539650.00,	7311050.00)	GC
10.				(539650.00,			35.	95.52440	(13100808)	AΤ	(539450.00,	7311450.00)	GC
11.		,		(539250.00,		- ,	36.		,		•	7311650.00)	GC
12.		,		(539850.00,		,	37.		(13110208)		•	7311650.00)	GC
13.	107.99321	(17060816)	AT	(539650.00,	7311050.0	0) GC	38.		. ,		•	7311050.00)	GC
14.		•		(539500.00,		•	39.					7311450.00)	GC
15.		•		(539450.00,		•	40.		(17060116)		•	7311050.00)	GC
16.		,		(539500.00,		,	41.	94.36914	(14082008)	ΑT	(539450.00,	7311450.00)	GC
17.				(539500.00,			42.		. ,		•	7311500.00)	GC
18.	103.21486	(14082008)	AT	(539250.00,	7311850.0	0) GC	43.	94.10851	(13082708)	AΤ	(540050.00,	7311050.00)	GC
19.		•		(539850.00,		•	44.		. ,		•	7311050.00)	GC
20.		,		(539450.00,		- ,	45.		,		,	7311500.00)	GC
21.		•		(539250.00,		•	46.		. ,		•	7311500.00)	GC
22.		•		(539500.00,		•	47.		. ,		•	7311650.00)	GC
23.		•		(539500.00,		•	48.		. ,		•	7311050.00)	GC
24.		•		(539250.00,		•	49.		,		•	7311050.00)	GC
25.	98.77911	(15051908)	AT	(539450.00,	7311650.0	0) GC	50.	92.81383	(16111908)	AT	(539450.00,	7311450.00)	GC

Tabela 34: Cinquenta maiores concentrações (μg/m³) de curto período (1h) do NO_X no cenário ATUAL para as fontes de Monte Alegre e Puma

NK	CONC (YYMMDDHH) A	T	RECEPTOR	(XR, YR) OF	TYPE	RANK	CONC	(YYMMDDHH)	AT	RECEPTOR	(XR,YR) OF T	YPE
1.	253.66642	(15032808)	AT	(539250.00,	7312050.0	10) GC	26.	216.47524	(15060411)	AT (539050.00,	7311850.00)	GC
2.	251.75169	(13091801)	AT	(539650.00,	7312050.0	00) GC	27.	215.60511	(17082009)	AT (539650.00,	7312050.00)	GC
3.		,		(539250.00,		•	28.		,		•	7312000.00)	DC
4.				(539650.00,			29.					7312000.00)	
5.				(539650.00,			30.					7312000.00)	
6.		,		(539250.00,		•	31.		,		•	7312000.00)	GC
7.		,		(539250.00,		•	32.		,		•	7312450.00)	GC
8.		,		(539650.00,		•	33.		,		•	7311850.00)	GC
9.				(539250.00,			34.					7312000.00)	GC
10.				(539650.00,			35.				•	7312050.00)	GC
11.		,		(539650.00,			36.		,		•	7312050.00)	
12.				(539250.00,			37.					7311850.00)	GC
13.		,		(539650.00,		•	38.		•		•	7312000.00)	GC
14.				(539850.00,			39.					7312000.00)	
15.		,		(539450.00,			40.		•		•	7311850.00)	GC
16.		,		(539050.00,		•	41.		,		•	7311850.00)	GC
17.		,		(539450.00,		•	42.		,		•	7312050.00)	
18.		. ,		(539250.00,		,	43.		,		•	7312000.00)	GC
19.		. ,		(539050.00,		,	44.					7312250.00)	GC
20.		,		(539650.00,			45.		•		•	7312050.00)	GC
21.		,		(539650.00,		•	46.		•		•	7312250.00)	GC
22.		,		(539650.00,		•	47.		,		•	7311850.00)	GC
23.				(539850.00,			48.				•	7312050.00)	
24.		. ,		(539250.00,		,	49.					7311650.00)	GC
25.	218.83524	(15101302)	AT	(539850.00,	7312050.0	00) GC	50.	205.79613	(17120722)	AT (539250.00,	7311850.00)	GC

Tabela 35: Cinquenta maiores concentrações (μg/m³) de curto período (24h) do PTS no cenário ATUAL para as fontes de Monte Alegre e Puma

NK	CONC (YYMMDDHF) AT	RECEPTOR	(XR,YR) OF	TYPE	RANK	CONC	(YYMMDDHH)	AT	RECEPTOR	(XR,YR) OF T	YPE
1.	23.57670m(1501222	4) AT	(539500.00,	7311500.00	O) GC	26.					7311650.00)	
2.	21.57239 (1706012	•			•	27.		,			7311050.00)	
3.	21.02160m(1501222	•			•	28.		,		•	7311650.00)	
4.	20.10680m(1501222	•			•	29.					7311250.00)	
5.	19.71184 (1712242					30.				•	7311650.00)	
6.	19.55558 (1402162	•	•		•	31.		(13011124)			7311500.00)	
7.	19.31426 (1402152	•			•	32.		,			7311450.00)	
8.	19.30211 (1304052	•			•	33.		,			7311450.00)	
9.	19.04536m (1501222	•			•	34.		,			7311500.00)	
10.	18.63371 (1312222				-	35.				•	7311650.00)	
11.	18.52431 (1505192	•			•	36.		,			7311050.00)	
12.	18.20184 (1706012	•			•	37.		(14100324)		•	7311650.00)	
13.	18.12411 (1410032	•			•	38.		. ,		•	7311500.00)	
14.	17.91106 (1311062	•			•	39.		. ,		•	7311450.00)	
15.	17.88751 (1311062	•			•	40.		,		•	7311450.00)	
16.	17.81229 (1312222					41.		. ,		•	7311050.00)	
17. 18.	17.79619 (1410032 17.39536 (1710162	•			•	42.		(13070924)		•	7311050.00) 7311500.00)	
19.	17.23929 (1410032	•			•	43. 44.		. ,		•	7311300.00)	
20.	17.19796 (1611302					45.				•	7311430.00)	
20.	17.11115 (1311232	,			- ,	46.		. ,		•	7311850.00)	
22.	17.05140 (1311062	•			•	47.		. ,		•	7311850.00)	
23.	17.02480 (1402162	•			•	48.		. ,		•	7311430.00)	
24.	17.002480 (1402182				-	49.					7311030.00)	
25.	16.92374 (1406292	•			•	50.		. ,			7311250.00)	

Tabela 36: Cinquenta maiores concentrações (μg/m³) de curto período (24h) do SO_x no cenário ATUAL para as fontes de Monte Alegre e Puma

NK	CONC (YYMMDDHH) A	T RECEPTOR	(XR,YR) OF T	YPE	RANK	CONC	(YYMMDDHH)	AT	RECEPTOR	(XR,YR) OF T	YPE
1.	43.91286m(15012224)	AT (539450.00,	7311450.00)	GC	26.	30.18487	(13122324)	AT	(539450.00,	7311450.00)	GC
2.	42.53524m(15012224)	,	,	GC	27.		,		•	7311450.00)	GC
3.	40.81625 (14021624)	,	,	GC	28.		•			7311450.00)	GC
4.	39.19685 (13122224)	,	,		29.					7311500.00)	GC
5.	38.21908 (14021524)		·	GC	30.				•	7311500.00)	GC
6.	36.36662 (16113024)	,	,	GC	31.		(15042924)		•	7311450.00)	GC
7.	34.76182 (14021624)	, ,	,	GC	32.		,		•	7311450.00)	GC
8.	34.39757 (13122224)	,	,		33.		,		•	7311850.00)	GC
9.	34.35279 (15051924)	,	,	GC	34.		,		•	7311450.00)	GC
10.	34.31065m(15012224)			GC	35.					7311450.00)	GC
11.	34.19185 (14122324)	•	,		36.		,		•	7311650.00)	GC
12.	33.73162 (14021524)	•	,	GC	37.		,		•	7311450.00)	GC
13.	33.59914 (13122224)	•	,	GC	38.		,		•	7311500.00)	GC
14.	32.69177 (13122224)	•	,		39.		,		•	7311450.00)	GC
15.	32.21160 (14122324)	•	,	GC	40.		,		•	7311650.00)	GC
16.	32.16240 (14021624)	•	,	GC	41.		,		•	7311250.00)	GC
17.	32.15036 (15051924)	•	,	GC	42.		,		•	7311450.00)	GC
18.	31.99536 (16111424)	•	,	GC	43.		,		•	7311450.00)	GC
19.	31.39653 (13081724)			GC	44.					7311450.00)	GC
20.	31.11962 (13112324)	, ,	/	GC	45.		,		•	7311450.00)	GC
21.	30.79994m(15012224)	•	,	GC	46.		,		•	7311450.00)	GC
22.	30.40316m(15012224)	•	,	GC	47.		,		•	7311650.00)	GC
23.	30.32741 (14021624)			GC	48.					7311050.00)	GC
24.	30.23615 (13081724)	•	,	GC	49.		,		•	7311650.00)	GC
25.	30.22595 (14021524)	AT (539650.00,	7311450.00)	GC	50.	27.65765	(16111424)	AT	(539500.00,	7311500.00)	GC

Tabela 37: Cinquenta maiores concentrações (μg/m³) de curto período (1h) do ERT no cenário ATUAL para as fontes de Monte Alegre e Puma

ANK	CONC (YYMMDDHH) AT	RECEPTOR (XR, YR) OF TY	YPE	RANK	CONC (YY	YMMDDHH) A	ΔΤ	RECEPTOR	(XR,YR) OF TY	PE
1.	7.10596 (15081521) AT	(539850.00, 7311050.00)	GC	26.	5.52415 (1	16010623)	AT (539250.00,	7312050.00)	GC
2.	7.00838 (14062023) AT	(539850.00, 7311050.00)	GC	27.	5.42331 (1	17061215)	AT (539850.00,	7311250.00)	GC
3.	,	(539250.00, 7311850.00)		28.	•	,		•	7312000.00)	GC
4.	6.73090 (14121303) AT	(539250.00, 7311850.00)	GC	29.					7311250.00)	GC
5.	·	(539250.00, 7311850.00)	GC	30.					7312050.00)	GC
6.	· · · · · · · · · · · · · · · · · · ·	(539250.00, 7311850.00)	GC	31.	•	,	,	•	7311650.00)	GC
7.	,	(539850.00, 7311050.00)	GC	32.	•	,	,	•	7312050.00)	GC
8.	,	•	GC	33.	•	,	,	•	7311850.00)	GC
9.	· · · · · · · · · · · · · · · · · · ·	(539450.00, 7311650.00)	GC	34.	·			•	7311850.00)	GC
10.		•	GC	35.	·	•		•	7312050.00)	GC
11.	· · · · · · · · · · · · · · · · · · ·	(539450.00, 7311650.00)		36.	•	,	,	•	7312000.00)	GC
12.	· · · · · · · · · · · · · · · · · · ·	(539250.00, 7312050.00)	GC	37.	•	,	,	•	7311250.00)	GC
13.	The state of the s	(539850.00, 7311050.00)	GC	38.	·	·		•	7312000.00)	GC
14.	· · · · · · · · · · · · · · · · · · ·	(539250.00, 7312050.00)	GC	39.	•	,	,	•	7311050.00)	GC
15.	6.12154 (15072724) AT	(539250.00, 7311850.00)	GC	40.	5.04036 (1	14061902)	AT (539450.00,	7311650.00)	GC
16.	6.07058 (17122806) AT	(539250.00, 7311850.00)	GC	41.	5.01549 (1	17112714)	AT (539850.00,	7311250.00)	GC
17.	5.91204 (17120722) AT	(539250.00, 7311850.00)	GC	42.	5.01265 (1	13020709)	AT (539250.00,	7312050.00)	GC
18.	5.74226 (16090504) AT	(539850.00, 7311050.00)	GC	43.	5.01055 (1	14061902)	AT (539250.00,	7312050.00)	GC
19.	5.66093 (14102004) AT	(539250.00, 7311850.00)	GC	44.	4.99691 (1	14103109)	AT (539850.00,	7311050.00)	GC
20.	· · · · · · · · · · · · · · · · · · ·	(539850.00, 7311050.00)	GC	45.	•	,		•	7311650.00)	GC
21.	5.64893 (16062707) AT	(539250.00, 7311850.00)	GC	46.	4.98638 (1	16050724)	AT (539250.00,	7312050.00)	GC
22.	· · · · · · · · · · · · · · · · · · ·	(539450.00, 7311650.00)	GC	47.	•	,		•	7311050.00)	GC
23.	The state of the s	(539850.00, 7311250.00)	GC	48.					7311250.00)	GC
24.	5.57894 (14061423) AT	(539250.00, 7311850.00)	GC	49.	4.95320 (1	13030503)	AT (539050.00,	7311850.00)	GC
25.	5.56331 (14052802) AT	(539250.00, 7311850.00)	GC	50.	4.92047 (1	14052001)	AT (539250.00,	7312050.00)	GC

Tabela 38: Cinquenta maiores concentrações (μg/m³) de curto período (1h) do CO no cenário FUTURO para as fontes de Monte Alegre e Puma

NK	CONC	(YYMMDDHH)	AT	RECEPTOR	(XR, YR) OF	TYPE	RANK	CONC	(YYMMDDHH)	AT	RECEPTOR	(XR,YR) OF T	YPE
1.	519.42367	(15122414)) AT	(525950.00,	7318550.0	0) GC	26.		,			7318550.00)	
2.		•		(525950.00,		,	27.		'		•	7318550.00)	
3.		•		(525950.00,		•	28.		'		•	7318550.00)	
4.		•		(525950.00,		•	29.		'		•	7318550.00)	
5.		•		(525950.00,		•	30.					7318550.00)	
6.		•		(525950.00,		•	31.		'		•	7318550.00)	
7.				(525950.00,		- ,	32.		'		•	7318550.00)	
8.		•		(525950.00,		•	33.		,			7318550.00)	
9.		•		(525950.00,		•	34.		'		•	7318550.00)	
10.				(525950.00,			35.					7318550.00)	
11.		•		(525950.00,		•	36.					7318550.00)	
12.		•		(525950.00,		•	37.		'		•	7318550.00)	
13.		•		(525950.00,		•	38.		,		,	7318550.00)	
14.		•		(525950.00,		•	39.		'		•	7318550.00)	
15.		•		(525950.00,		•	40.		,		,	7318550.00)	
16.		•		(525950.00,		•	41.		'		•	7318550.00)	
17.		•		(525950.00,		•	42.		,		,	7318550.00)	
18.		•		(525950.00,		,	43.		,			7318550.00)	
19.				(525950.00,			44.					7318550.00)	
20.				(525950.00,		- ,	45.		'		•	7318550.00)	
21.		•		(525950.00,		•	46.		,		,	7318550.00)	
22.		•		(525950.00,		•	47.		'		•	7318550.00)	
23.				(525950.00,			48.					7318550.00)	
24.				(525950.00,			49.		'		•	7318550.00)	
25.	468.26517	(15031513)) AT	(525950.00,	7318550.0	0) GC	50.	449.36919	(15122013)	AT	(525950.00,	7318550.00)	GC

Tabela 39: Cinquenta maiores concentrações (μg/m³) de curto período (8h) do CO no cenário FUTURO para as fontes de Monte Alegre e Puma

NK	CONC (YYM	MMDDHH) AT	RECEPTOR	(XR, YR) OF	TYPE	RANK	CONC	(YYMMDDHH)	AT	RECEPTOR	(XR,YR) OF T	YPE
1.	276.39176 (16	5013016) AT	(525950.00,	7318550.00) GC	26.					7318550.00)	GC
2.	267.21555 (15	,	,		•	27.		,	,	•	7318550.00)	GC
3.	257.24803 (15	,	,		•	28.		,	,	•	7318550.00)	GC
4.	256.25570 (16	,	,		•	29.		,	,	•	7318500.00)	GC
5.	252.86586 (15					30.					7318550.00)	GC
6.	235.32604 (13	,	,		•	31.		(16013016)	,	•	7318550.00)	GC
7.	233.63816 (16	- ,	, ,		,	32.		,	,	•	7318550.00)	GC
8.	223.36279 (14	,	,		•	33.		,	,	•	7318550.00)	GC
9.	219.39473 (16	,	,		•	34.		,	,	•	7318550.00)	GC
10.	219.08143 (13					35.					7318550.00)	GC
11.	216.95374 (15	,	,		•	36.					7318550.00)	GC
12.	216.35161 (13	,	,		•	37.		,	,	•	7318550.00)	GC
13.	214.43043 (16	,	,		•	38.		,			7318550.00)	GC
14.	209.56975 (16	,	,		•	39.		,	,	•	7318550.00)	GC
15.	207.98501 (17	,	,		•	40.		,			7318550.00)	GC
16.	207.40491 (13	,	,		•	41.		,		•	7318550.00)	GC
17.	207.00707 (14	,	,		•	42.					7318500.00)	GC
18.	205.65642 (15	,	,		•	43.		,		•	7318550.00)	GC
19.	204.54260 (14					44.					7318550.00)	GC
20.	204.44493 (14	/	, ,		,	45.		,	,	•	7318550.00)	GC
21.	203.62902 (14	,	,		•	46.		,			7318550.00)	GC
22.	202.57317 (14	,	,		•	47.		,	,	•	7318550.00)	GC
23.	202.07644 (15					48.					7318550.00)	GC
24. 25.	202.04375 (15 201.94364 (14	,	,		•	49. 50.		,	,	•	7318550.00) 7318350.00)	GC GC

Tabela 40: Cinquenta maiores concentrações (μg/m³) de curto período (1h) do NO_X no cenário FUTURO para as fontes de Monte Alegre e Puma

ANK	CONC (YYMMDDHH)	AT	RECEPTOR	(XR,YR) OF	TYPE	RANK	CONC	(YYMMDDHH)	AT	RECEPTOR	(XR,YR) OF T	YPE
1.	223.05242 (13091801)	AT (539650.00,	7312050.0	0) GC	26.	188.15873	(13071405)	AT (540000.00,	7312000.00)	GC
2.	219.87395 (13091801)	AT (539650.00,	7312250.0	0) GC	27.	187.48875	(16072422)	AT (539850.00,	7312050.00)	GC
3.	213.48026 (13091801)	AT (539650.00,	7311850.0	0) GC	28.	184.64673	(16060402)	AT (539850.00,	7312050.00)	GC
4.	210.86711 (13010201)	AT (539650.00,	7311850.0	0) GC	29.	184.38865	(17082009)	AT (539650.00,	7312250.00)	GC
5.	210.09851 (13010201)		•		•	30.		,	,	•	7312250.00)	GC
6.	209.33858 (15050702)		•		•	31.		,	,	•	7312050.00)	GC
7.	206.32259 (15032808)		•		•	32.		,	,	•	7312250.00)	GC
8.	206.00005 (15101302)		•		•	33.		(14121303)	,	•	7311850.00)	GC
9.	205.96218 (15050702)		•		•	34.		,	,	•	7318550.00)	GC
10.	202.24354 (17122709)		•		•	35.		,	,	•	7311850.00)	GC
11.	200.30218 (13010201)		•		•	36.		•		•	7312250.00)	GC
12.	199.37272 (13091801)		•		•	37.		,	,	•	7311850.00)	GC
13.	194.90890 (15050702)		•		•	38.		,	,	•	7318550.00)	GC
14.	193.65700 (17072208)		•		•	39.		,	,	•	7311850.00)	GC
15.	192.22019 (14121303)		•		,	40.		•		•	7311850.00)	GC
16.	191.91176 (15050702)		•		•	41.		,	,	•	7312050.00)	GC
17.	191.26855 (16062007)		•		•	42.		,	,	•	7312050.00)	GC
18.	191.14233 (14020908)		•		•	43.		,	,	•	7318550.00)	GC
19.	191.12254 (14020908)		•		•	44.		(15101305)	,	•	7312250.00)	GC
20.	189.97483 (14022409)		•		•	45.		(15060411)	,	· · · · · · · · · · · · · · · · · · ·	7312000.00)	GC
21.	189.59212 (16050704)		•		•	46.		,	,	•	7318550.00)	GC
22.	189.25587 (15101302)		•		•	47.		,	,	•	7318550.00)	GC
23.	188.59759 (17082009)		•		,	48.		,	,	•	7318550.00)	GC
24. 25.	188.53777 (13122713) 188.18330 (13071405)					49. 50.		,	,	•	7318550.00) 7312050.00)	GC GC

Tabela 41: Cinquenta maiores concentrações (μg/m³) de curto período (24h) do PTS no cenário FUTURO para as fontes de Monte Alegre e Puma

NK	CONC (YYMMDDHH) AT	RECEPTOR (XR, YR) OF	TYPE	RANK	CONC (YYMMDD)	H) AT	RECEPTOR	(XR, YR) OF TY	YPE
1.	18.86665m(15012224) AT	539500.00, 7311500.0	0) GC	26.	14.15065 (13110)	524) AT	(539050.00,	7311850.00)	GC
2.	18.15818m(15012224) AT	539450.00, 7311650.0	0) GC	27.	14.13455 (13072)	,			GC
3.	17.90839m(15012224) AT	539250.00, 7311850.0	0) GC	28.	14.08514 (13031	324) AT	(539250.00,	7311450.00)	GC
4.	17.84776m(15012224) AT	•	,	29.	13.94591m(15012	224) AT	(539050.00,	7312050.00)	GC
5.	16.98223 (14100324) AT			30.	13.94456 (16012)		•	·	GC
6.	16.42063 (14021624) AT	•	,	31.	13.93353 (13052)	,			GC
7.	16.11699 (14021524) AT	•	•	32.	13.89588 (17101	,	,	,	GC
8.	16.05068m(15012224) AT	•	•	33.	13.89412 (13122:	,	,	,	GC
9.	15.88545 (13110624) AT	•	•	34.	13.72579 (13112)			·	GC
10.	15.86593 (14082024) AT (•	•	35.	13.67783 (13012)			·	GC
11.	15.74283 (13122224) AT (·	•	36.	13.65557 (15110)				GC
12.	15.66556 (13122224) AT (·	•	37.	13.64324 (15042)	,	,	,	GC
13.	15.58356 (14100324) AT (•	•	38.	13.61121 (15071		•	·	GC
14.	15.39404 (13110624) AT (·	•	39.	13.56425 (13082)	,	,	,	GC
15.	15.10058 (14021524) AT	539450.00, 7311650.0	0) GC	40.	13.55237 (14021	,			GC
16.	15.09763 (14021624) AT (·	•	41.	13.45537 (16121				GC
17.	15.08558 (14100324) AT (·	•	42.	13.40700 (17122				GC
18.	15.05289 (17060124) AT (·	•	43.	13.33938 (15051)	,	,	,	GC
19.	14.83577 (13110624) AT (·	•	44.	13.33809 (13081)	,	,	,	GC
20.	14.64427 (17101624) AT	•	,	45.	13.32354 (14100	,			GC
21.	14.63123 (15051924) AT	·	•	46.	13.32088 (13110	,	,	,	GC
22.	14.62971 (14082024) AT	·	•	47.	13.29950 (14060)	,	,	,	GC
23.	14.41595 (13112324) AT (•	•	48.	13.24692 (13012)		•	·	GC
24.	14.18087 (15051924) AT	•		49.	13.24368 (17060)			·	GC
25.	14.17740 (16113024) AT	539450.00, 7311450.0	0) GC	50.	13.21025 (16113)	24) AT	(539250.00,	7311850.00)	GC

Tabela 42: Cinquenta maiores concentrações (μg/m³) de curto período (24h) do SO_X no cenário FUTURO para as fontes de Monte Alegre e Puma

NK	CONC (YYMMDDHH) AT	RECEPTOR (XR, YR) OF	TYPE	RANK	CONC (YYM)	MDDHH) AT	RECEPTOR	(XR,YR) OF TY	/PE
1.	36.36551m(15012224) AT (539450.00, 7311450.00) GC	26.	25.60522 (140	021524) A	AT (539450.00,	7311650.00)	GC
2.	34.96894 (13122224) AT (539500.00, 7311500.00) GC	27.	•	,	T (539650.00,		GC
3.	34.60421m(15012224) AT (539500.00, 7311500.00) GC	28.	24.81705 (133	122224) A	T (539650.00,	7311450.00)	GC
4.	32.45609 (14021524) AT (539650.00, 7311250.00) GC	29.	•	•	T (539650.00,	•	GC
5.	32.34764 (14021624) AT (•		30.		-	AT (539500.00,	•	GC
6.	30.99008 (13122224) AT (•	•	31.	•	•	T (539450.00,	•	GC
7.	30.93178 (14021624) AT (•	•	32.	•	•	AT (539450.00,	,	GC
8.	30.67305 (14021524) AT (•	•	33.	•	•	AT (539450.00,	•	GC
9.	30.62010m(15012224) AT (•		34.			AT (539450.00,		GC
10.	29.09656m(15012224) AT (•		35.			AT (539450.00,	·	GC
11.	28.91144 (14021624) AT (•	•	36.			T (539650.00,		GC
12.	28.84548m(15012224) AT (•	•	37.	•	•	AT (539500.00,	•	GC
13.	28.54946 (14122324) AT (•		38.			AT (539450.00,		GC
14.	28.07869 (15051924) AT (•	•	39.	•	•	AT (539500.00,	•	GC
15.	27.96503 (13122224) AT (•	•	40.	•	•	T (539450.00,	,	GC
16.	27.80093 (16113024) AT (•	•	41.	•	•	T (539650.00,	•	GC
17.	27.56292 (14122324) AT (42.			T (539450.00,		GC
18.	26.43687 (16111424) AT (•	•	43.	•	•	AT (539250.00,	•	GC
19.	26.37747 (14021524) AT (•	•	44.	•	•	AT (539650.00,	,	GC
20.	26.27647 (13122224) AT (•	•	45.	•	,	AT (539050.00,		GC
21.	26.21979 (14082024) AT (•	•	46.	•	•	AT (539050.00,	,	GC
22.	26.18598 (13122224) AT (•	•	47.	•	,	AT (539500.00,		GC
23.	26.07503 (14021624) AT (•		48.			AT (539500.00,		GC
24.	25.95608 (15051924) AT (•		49.			AT (539250.00,	·	GC
25.	25.63420 (15051924) AT (539450.00, 7311650.00) GC	50.	22.09261 (170	042824) A	T (539450.00,	7311650.00)	GC

Tabela 43: Cinquenta maiores concentrações (μg/m³) de curto período (1h) do ERT no cenário FUTURO para as fontes de Monte Alegre e Puma

RANK	CONC (YYMMDDHH) AT	RECEPTOR (XR,YR) OF	TYPE	RANK	CONC (YYMMDDHH)	AT	RECEPTOR	(XR, YR) OF T	YPE
1.	4.47636 (14121303) AT	3 (539250.00,	7311850.00) GC	26.	3.78986 (16020317) AT	(525950.00,	7318550.00)	GC
2.	4.46408 (16062007) AT	(539250.00,	7311850.00) GC	27.	3.77488 (17110717) AT	(525950.00,	7318550.00)	GC
3.	4.37449 (16092917) AT	(526350.00,	7318750.00) GC	28.	3.77176 (14121303) AT	(539050.00,	7312050.00)	GC
4.	4.36211 (13112024) AT	3 (539250.00,	7311850.00) GC	29.	3.76916 (14021004) AT	(539000.00,	7312000.00)	GC
5.	4.26575 (17122709) AT	3 (539250.00,	7312050.00) GC	30.	3.76769 (13030413) AT	(525950.00,	7318550.00)	GC
6.	4.24489 (15032808) AT	3 (539250.00,	7312050.00) GC	31.	3.76098 (16062007) AT	(539050.00,	7312050.00)	GC
7.	4.09744 (13112204) AT	3 (539250.00,	7311850.00) GC	32.	3.75506 (15060411) AT	(539000.00,	7312000.00)	GC
8.	4.08560 (13052505) AT	3 (539250.00,	7311850.00) GC	33.	3.74993 (16051115) AT	(525950.00,	7318550.00)	GC
9.	4.07228 (16062903) AT	(539000.00,	7312000.00) GC	34.	3.74089 (17112714) AT	(539850.00,	7311250.00)	GC
10.	4.06528 (17020714) AT	(525950.00,	7318550.00) GC	35.	3.74060 (13080315) AT	(525950.00,	7318550.00)	GC
11.	4.03173 (15012415) AT	(525950.00,	7318550.00) GC	36.	3.73686 (16030915) AT	(525950.00,	7318550.00)	GC
12.	3.95475 (13012915) AT	(525950.00,	7318550.00) GC	37.	3.73264 (15072724) AT	(539250.00,	7311850.00)	GC
13.	3.95288 (16031616) AT	(525950.00,	7318550.00) GC	38.	3.72849 (15030316) AT	(525950.00,	7318550.00)	GC
14.	3.92774 (14020214) AT	(525950.00,	7318550.00) GC	39.	3.72536 (14102004) AT	(539250.00,	7311850.00)	GC
15.	3.92520 (16101517) AT	(525950.00,	7318550.00) GC	40.	3.71375 (14112113) AT	(525950.00,	7318550.00)	GC
16.	3.91177 (14101013) AT	(525950.00,	7318550.00) GC	41.	3.70922 (15080516) AT	(525950.00,	7318550.00)	GC
17.	3.88433 (14052802) AT	(539250.00,	7311850.00) GC	42.	3.70484 (13042614) AT	(525950.00,	7318550.00)	GC
18.	3.85746 (15011813) AT	(525950.00,	7318550.00) GC	43.	3.69932 (17042309) AT	(539000.00,	7312000.00)	GC
19.	3.84068 (13122713) AT	(525950.00,	7318550.00) GC	44.	3.69185 (16022214) AT	(525950.00,	7318550.00)	GC
20.	3.83798 (15082416) AT	(525950.00,	7318550.00) GC	45.	3.68765 (14080817) AT	(525950.00,	7318550.00)	GC
21.	3.82910 (17090817) AT	,		*	46.	3.68763 (16010623		•	7312050.00)	GC
22.	3.82570 (15122013) AT				47.	3.68109 (14020913	•	•	•	GC
23.	3.81118 (16041714) AT	,		•	48.	3.66687 (17010507		•		GC
24.	3.80904 (17080716) AT	(525950.00,	7318550.00) GC	49.	3.65954 (15013116) AT	(525950.00,	7318550.00)	GC
25.	3.80563 (16102415) AT	c (525950.00,	7318550.00) GC	50.	3.64605 (16042315) AT	(525950.00,	7318550.00)	GC

6. ANFXOS

PORTARIA Nº 208/2016 - DPCA

O INSTITUTO DAS ÁGUAS DO PARANÁ por intermédio de seu DIRETOR PRESIDENTE, com fundamento no artigo 39 - A, inciso IX da Lei Estadual nº 12 725, de 28 de novembro de 1 999 e artigos 5º e 6º, incisos i a VI do Decreto Estadual nº 9.957, de 23 de janeiro de 2014, e conforme informações constantes no Protocolo nº 13,738,468-0, resolve:

Art. 1º. Outorgar o uso das águas de dominio do Estado do Paraná para captação/derivação, na modalidade de autorização de direito de uso, sob regime e condições abaixo especificadas, em favor do:

Razilo social KLABIN S.A.

C.N.P.J. 89.637.490/0165-72

Endereço Fazenda Apucarana Grande

Bairro/distrito Natingui Municipio Ortigueira

Atividade : Fabricação de celulose e outras pastas para a fabricação de papel

Bacie hidrográfica : Tibagi Manancial : Rio Tibagi

Finalidade Processo industrial Vazão outorgada Até 8.400,00 m³/h

Bombeamento 24 (vinte e quatro) hora(s) por dia, 7 (sete) dia(s) por semana

Demanda máxima Até 201 600,00 m²/día

Meses bombeamento : Jan/Fev/Mar/Abr/Mai/Jun/Jul/Ago/Set/Dut/Nov/Dez Coordenadas UTM : 7319428 N 529888 E Fuso (22) SIRGAS 2000

- Art 2º O Outorgado deverá instalar e manter em funcionamento equipamento de medição para monitoramento continuo da vazão captada/derivada.
- Art. 3º. O Outorgado deverá apresentar, com a periodicidade anual, a declaração de confirmação dos dados contidos na outorga.
- Art. 4º. A outorga, objeto desta Portaria, vigorará pelo prazo de 10 (dez) anos, podendo ser suspensa, de forma parcial ou total, por prazo determinado ou indeterminado, se verificadas as situações previstas no artigo 15 da Lei Estadual nº 12.726 de 26/11/99 combinado com os artigo 34 do Decreto Estadual 9.957 de 23/01/2014.
- Art. 5º. A outorga poderá ser revogada, nos casos de cancelamento da licença ambiental ou se as licenças municipais para construção e funcionamento não forem emitidas, se for o caso dessas exigências.

Parágrafo único. A outorga poderá ainda ser revogada, se verificados os demais casos previstos nos incisos La IV do artigo 35 e nos termos do §3º do artigo 34 do Decreto Estadual πº 9.957 de 23/01/2014.

- Art. 8º. Esta Portaria não dispensa nem substitui a obtenção pelo outorgado de certidões, alvarás ou licenças de qualquer natureza, exigidas pela legislação federal, estadual ou municipal.
- Art. 7º Qualquer ampliação, reforma ou modificação que alterem as disposições contidas neste ato de outorga, objeto desta Portaria, de forma permanente ou temporâria, deverá ser objeto de novo requerimento, a sujeitar-se aos mesmos procedimentos que deram origem a este ato de outorga.
- § 1º Para retificação ou alteração das condições de uso de recursos hídricos ou de dados administrativos da outorga, o Outorgado deverá encaminhar solicitação ao INSTITUTO DAS ÁGUAS DO PARANA por meio de requerimento específico disponível no sitio próprio na internet.

Rua Santo Antonio, 239 - Rebouças -CEP: 80230-120 - Curitiba-Parana-Brasil Fone: (41) 3213-4790 - Fan: (41) 3213-4800

PORTARIA Nº 208/2016 - DPCA

- § 2º A transferência de titularidade, relativa à alteração do titular da outorga, será automática se mantidas as condições originais estipuladas na outorga, e nos demais casos, poderá ser solicitada ao INSTITUTO DAS AGUAS DO PARANA num prazo máximo de até 50 % da vigência desta outorga, por meio de requerimento específico disponível no sitio próprio na internet.
- § 3º No caso de desalivação, interrupção das atividades do empreendimento ou desistência da outorga, o Outorgado deverá comunicar formalmente ao INSTITUTO DAS ÁGUAS DO PARANÁ, por meio de envio de requerimento específico disponível no sítio próprio na internet.
- Art. 8º. O requerimento para renovação de outorga deverá ser encaminhado ao Poder Público Outorgante no prazo máximo de até 90 (noventa) dias anteriores à data de expiração da vigência desta autorização.
- Art. 9º. O uso dos recursos hídricos, objeto desta outorga, está sujeito a cobrança, desde que não enquadrado no artigo nº 53, parágrafos 1º e 2º da Lei Estadual nº 12.726/1999, hipótese em que será isentado da cobrança, nos termos dos artigos 19 a 21 da Lei Estadual nº 12.726 de 26/11/99, com alteração pela Lei Estadual nº 16.242/2009 e do Decreto Estadual nº 5.361 de 26/02/2002, que regulamenta a cobrança pelo direito de uso dos recursos hídricos.
- Art. 10. O Outorgado se sujeita à fiscalização do INSTITUTO DAS AGUAS DO PARANA, por intermédio de seus agentes ou prepostos indicados, devendo franquear-thes o acesso ao empreendimento e à documentação relativa à outorga emitida por meio desta Portaria.

Art. 11. Esta Portaria entra em vigor na data de sua publicação.

Curitina, 23 de fevereiro de 2016

Waldir Fabricio dos Santos Diretor de Planejamento e Controle do Uso das Aguas P.D. Portaria 019/2015 - GAB

PORTARIA Nº 289/2016 - DPCA

O INSTITUTO DAS ÁGUAS DO PARANÁ por intermedio de seu DIRETOR PRESIDENTE, com fundamento no artigo 39 - A, inciso IX da Lei Estadual nº 12.726, de 28 de novembro de 1.999 e, artigos 5º e 6º , inciso I a VI, do Decreto Estadual nº 9.957, de 23 de janeiro de 2014, e conforme informações constantes no Protocolo nº 13.738.449-3, resolve:

Art. 1º. Outorgar o uso das águas de dominio do Estado do Paraná, para lançamento de efluentes, na modalidade de autorização de direito de uso, sob regime e condições abacio especificadas, em favor de:

Razão social KLABIN S.A.

CNPJ 89.637.490/0165-72

Endereco Fazenda Apucarana Grande

Bairro/Distrito Natingui Municipio Ortigueira

Atividade Fabricação de celulose e outras pastas para a fabricação de papel

Bacia hidrográfica Tibagi Rio Tibagi Corpo hidrico receptar Finalidade do uso Diluição

Origem do effuente Sanitário e Industrial Vazão máx. efluente 7400,00 m³/h Vazão máx, p/ difuição 37000,00 m⁶/h

Regime de lançamento: - 24 (vinte e quatro) hora(s) por dia

- 30 (trinta) dia(s) por mês

Jan/Fev/Mar/Abr/Mai/Jun/Jul/Ago/Set/Out/Nov/Dez

Coordenadas UTM

7318545 N 530312 E Fuso (22) SIRGAS 2000 Outras : Fica revogada a Portaria nº 111/2016 - DPCA

Concentrações máximas dos parâmetros para lançamento:

 Demanda Bioquímica de Oxigênio - DBO 30 (mg/L) - Demanda Química de Oxigênio - DQO 230 (mg/L) - Sólidos Suspensos - SS 100 (mg/L) - Fósforo 0.3 (mg/L)

Art. 2º. O Outorgado deverá instalar dispositivos de monitoramento e de controle de qualidade do efluente tratado e do corpo hidrico receptor. Os dados medidos e os resultados de análises laboratoriais devem ser entregues do INSTITUTO DAS ÁGUAS DO PARANÁ, na forma de um Relatório Técnico até o dia 31 de março de cada ano, referente ao ano civil anterior, subscrita pelo responsável técnico devidamente habilitado, conforme previsto no artigo 31 do Decreto Estadual nº 9.957 de 23/01/2014 e conforme segue.

Monitoramento do Effuente Tratado

Parâmetro	Frequência
DBO	Quinzenal
DQO	Quinzenal
SS	Quinzenal
Vazão	Quinzenal
P total	Quinzenal

Rus Santo Antonio, 239 - Rebouças -CEP: 80230-120 -- Curitiba-Paranai-Branil

PORTARIA Nº 289/2016 - DPCA

Monitoramento do Corpo Hidrico Receptor.

Ponto de Coleta: 100,00 m a montante e 100,00 m a jusante do ponto de

lançamento

Parâmetro	Freqüência
DBO DQO SS	Quinzenal Quinzenal Quinzenal
pH Oxigênio Dissolvido	Quinzenal
Temperatura P total	Quinzenal

Parágrafo único. O Outorgado deverá implantar e manter em funcionamento equipamentos de medição para monitoramento continuo da vazão lançada.

Art. 3º A outorga, objeto desta Portaria, vigorará pelo prazo de 6 (seis) anos, podendo ser suspensa, de forma parcial ou total, por prazo determinado ou indeterminado, se verificadas as situações previstas no artigo 15 da Lei Estadual nº 12.726 de 26/11/99 combinado com os artigos 34 do Decreto Estadual nº 9.957 de 23/01/2014.

Parágrafo único. A outorga poderá ainda ser revogada, se verificados os demais casos previstos nos incisos La IV do artigo 35 e nos termos do §3º do artigo 34 do Decreto Estadual nº 9.957 de 23/01/2014.

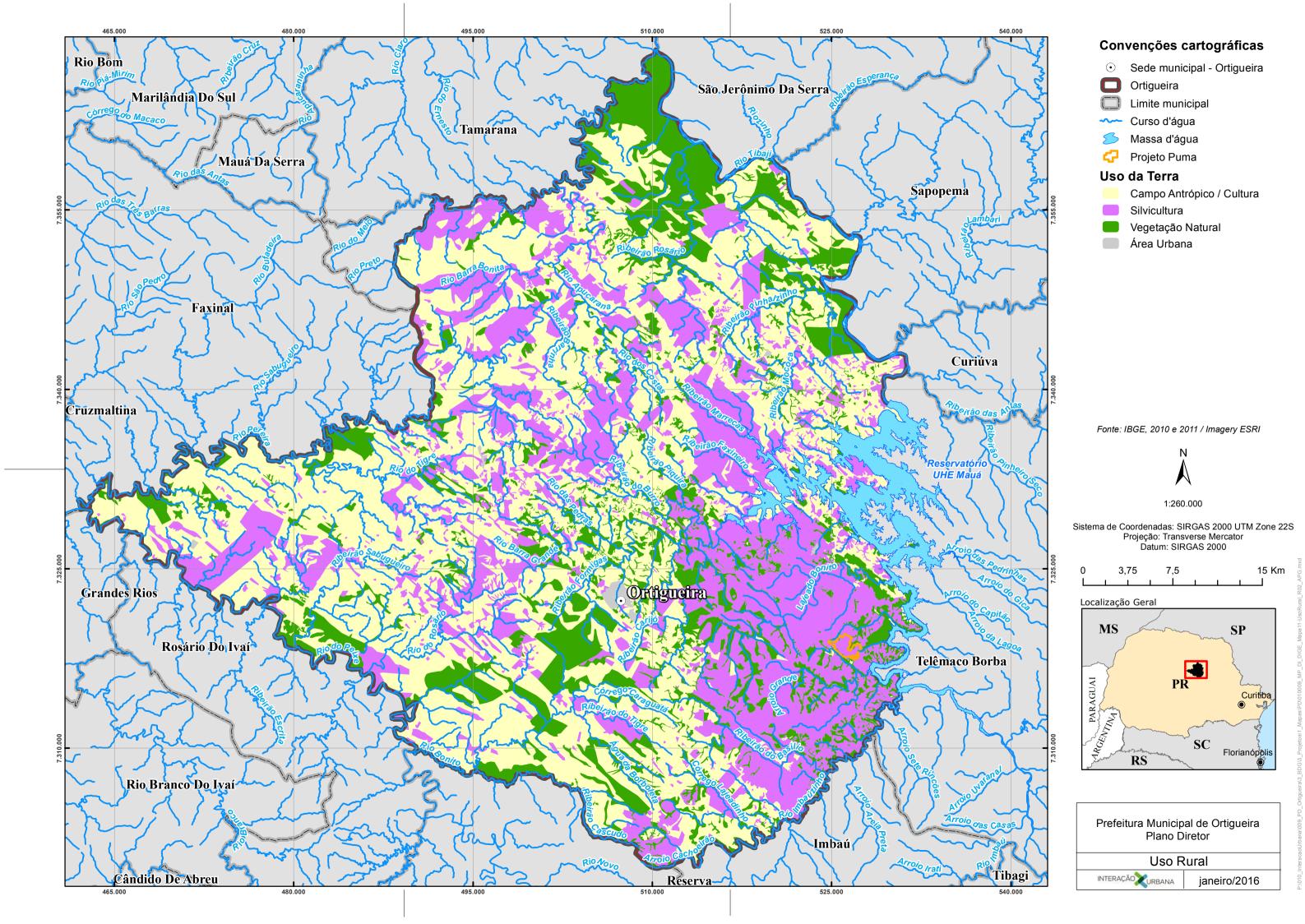
- Art. 4º. A presente outorga não é autorização de lançamento, mas assegura o uso da água para fins de diluição do efluente, e não dispensa nem substitui a obtenção, pelo Outorgado, de certidões, alvarás ou licenças de qualquer natureza, exigidas pela legislação federal, estadual ou municipal, especialmente o processo de licenciamento ambiental no órgão ambiental competente.
- Art. 6º Qualquer ampliação, reforma ou modificação que alterem as disposições contidas neste ato de outorga, objeto desta Portana, de forma permanente ou temporária, deverá ser objeto de novo requerimento, a sujeitar-se aos mesmos procedimentos que deram origem a este ato de outorga.
- § 1º Para retificação ou alteração das condições de uso de recursos hidricos ou de dados administrativos da outorga, o Outorgado deverá encaminhar solicitação ao INSTITUTO DAS ÁGUAS DO PARANÁ por meio de requerimento específico disponível no sitio próprio na internet.
- § 2º A transferência de titularidade, relativa à alteração do titular da outorga, será automática se mantidas as condições originais estipuladas na outorga e nos demais casos, poderá ser solicitada ao INSTITUTO DAS ÁGUAS DO PARANA num prazo máximo de até 50% da vigência desta outorga, por meio de requerimento específico disponível no sitio próprio na internet.
- § 3º No caso de desativação, interrupção das atividades do empreendimento ou desistência da outorga, o Outorgado deverá comunicar formalmente ao INSTITUTO DAS ÁGUAS DO PARANÁ, por meio de envio de requerimento específico disponível no sitio próprio na internet.
- Art. 6º. O requerimento para renovação de outorga deverá ser encaminhado ao Poder Público Outorgante no prazo máximo de até 90 (noventa) dias anteriores à data de expiração da vigência desta autorização.

PORTARIA Nº 289/2016 - DPCA

- Art. 7º. O uso dos recursos hídricos, objeto desta outorga, está sujeito á cobrança, desde que não enquadrado no artigo nº 53, parágrafos 1º e 2º da Lei Estadual nº 12.726/1999, hipótese em que será isentado da cobrança, nos termos dos artigos 19 a 21 da Lei Estadual nº 12.726 de 26/11/99, com alteração pola Lei Estadual nº 16.242/2009 e do Decreto Estadual nº 5.361 de 26/02/2002, que regulamenta a cobrança pelo direito de uso dos recursos hídricos.
- Art. 8º. O Outorgado se sujeita á fiscalização do INSTITUTO DAS ÁGUAS DO PARANÁ, por intermédio de seus agentes ou prepostos indicados, devendo franquear-fises o acesso ao empreendimento e á documentação relativa à outorga emitida por meio desta Portaria.

Art. 9º. Esta portaria entra em vigor na data de sua publicação

10


a 04 de março de 2016

Walds Fabricio Son Santos

Diretor de Planejamento e Controle do Uso das Aguas

P.D. Portaria 019/2015 - GAB

