ANEXO C.04.5

ESPECIFICACIONES TÉCNICAS DE LOS AEROGENERADORES

LISTADO DE PRODUCTOS/CONSUMIBLES DE LOS AEROGENERADORES Y DEMÁS EQUIPOS

DECLARACIÓN JURADA DE EQUIPOS LIBRES DE PCBs
1. INTRODUCCIÓN

En el presente informe se detallan las características técnicas y descripción general de los aerogeneradores seleccionado para el proyecto, y un listado de los productos/consumibles de las turbinas eólicas y demás equipos que serán almacenados en el sitio.

Al final del informe se presenta una Declaración Jurada de la empresa GREENWIND S.A. manifestando que todo el equipamiento (Parque Eólico y Estación Transformadora) serán libres de policloruros de bifenilos (PCBs), y que tampoco se almacenarán dichos productos en el predio.

Los siguientes documentos fueron suministrados por el Desarrollador del proyecto.

- Manual de características generales (ver aerogenerador Gamesa 2,625 MW, modelo G114 IIA, altura de torre 93 metros -4 tramos-)
- Listado de productos/consumibles de los aerogeneradores y demás equipos. Las correspondientes Hojas de Seguridad (MSDS) de los productos indicados y otros adicionales que sean requeridos para el proyecto, deberán ser presentadas previo al inicio de la obra.
- Declaración Jurada manifestando que todo el equipamiento (Parque Eólico y Estación Transformadora) serán libres de policloruros de bifenilos (PCBs), y que tampoco se almacenarán dichos productos en el predio.

A continuación se adjuntan los documentos indicados en el párrafo anterior.
ALCANCE

Aerogeneradores de la plataforma **Gamesa 2.5-2.625 MW (modelos G106 IA, G114 IIA y G126 IIIA)**.

REGISTRO DE CAMBIOS

<table>
<thead>
<tr>
<th>Rev.</th>
<th>Fecha</th>
<th>Autor</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>11/02/13</td>
<td>MDANDRES</td>
<td>Versión Inicial</td>
</tr>
<tr>
<td>01</td>
<td>25/06/13</td>
<td>MDANDRES</td>
<td>Se modifican los datos técnicos</td>
</tr>
<tr>
<td>02</td>
<td>01/04/14</td>
<td>MDANDRES</td>
<td>Se incluye el aerogenerador G106 IA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Se modifica el punto 5: Datos técnicos</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Se incluyen los estándares de diseño</td>
</tr>
<tr>
<td>03</td>
<td>14/10/14</td>
<td>MDANDRES</td>
<td>Se incluyen torres de 72 y 80 m</td>
</tr>
<tr>
<td>04</td>
<td>09/04/15</td>
<td>MDANDRES</td>
<td>Se incluye el aerogenerador G126 IIIA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Se modifica la sección pesos aproximados</td>
</tr>
</tbody>
</table>

"El idioma original de este documento es el español. En caso de discrepancia entre una traducción y el original prevalece siempre el documento en español."
ÍNDICE

ALCANCE ... 1
REGISTRO DE CAMBIOS ... 1

1. DESCRIpción de los aerogeneradores gamesa 2.5-2.625 MW (modelos G106 IA, G114 IIA Y G126 IIIA) ... 4
 1.1 DESCRIpción de la góndola .. 5
 1.1.1 Carcasa .. 5
 1.1.2 Bastidor .. 6
 1.1.3 Eje principal ... 6
 1.1.4 Multiplicadora .. 6
 1.1.5 Sistema de orientación Gamesa Active Yaw ... 7
 1.1.6 Sistema de freno .. 7
 1.1.7 Sistema hidráulico ... 7
 1.1.8 Generador ... 8
 1.1.9 Transformador .. 8
 1.1.10 Armarios eléctricos de control y potencia ... 8

1.2 Rotor .. 9
 1.2.1 Palas .. 10
 1.2.2 Rodamiento de pala .. 10
 1.2.3 Buje ... 10
 1.2.4 Cono .. 10
 1.2.5 Sistema hidráulico de cambio de paso .. 10

1.3 Torre y cimentación .. 11
 1.3.1 Torre ... 11
 1.3.2 Cimentación ... 11

1.4 SISTEMA DE CONTROL .. 11

1.5 SISTEMA DE MANTENIMIENTO PREDICTIVO GAMESA SMP 12

1.6 SISTEMA DE GESTIÓN INTEGRAL DE PARQUES EÓLICOS GAMESA WINDNET® ... 13

1.7 SENSORES .. 14

1.8 SISTEMA DE PROTECCIÓN CONTRA RAYOS .. 14

2 CONexión a red y emplazamiento .. 15
 2.1 CONexión a red .. 15

 2.2 CONDICIONES AMBIENTALES ... 15

 2.3 CONDICIONES DE VIENTO ... 15

 2.4 VERIFICACIÓN DE LAS CONDICIONES DEL EMPLAZAMIENTO 17

3 ESTÁNDARES DE DISEÑO ... 17
 3.1 AEROGENERADOR .. 17

 3.2 DISEÑO ESTRUCTURAL ... 18

 3.3 COMPONENTES MECÁNICOS ... 19

 3.4 COMPONENTES ELÉCTRICOS .. 19

4 OPCIONES .. 21
 4.1 CONDICIONES AMBIENTALES EXTREMAS ... 21

 4.2 HUECOS DE TENSIÓN ... 21

 4.3 VERSIONES DE BAJO RUído .. 21

 4.4 BALIZAMIENTO ... 21

 4.5 CELDA DE ALTA TENSIÓN ... 21

 4.6 TENSIÓN DE RED .. 21

 4.7 TENSIÓN DE SERVICIO ... 22

5 DATOS TÉCNICOS ... 22
 5.1 Rotor ... 22
 5.2 Palas ... 22
 5.3 Carcasa .. 23
5.4 BUJE .. 23
5.5 EJE PRINCIPAL .. 23
5.6 BASTIDOR DELANTERO .. 23
5.7 SISTEMA DE GIRO ... 24
5.8 GRUPO HIDRAULICO .. 24
5.9 TORRE ... 24
5.10 MULTIPLICADORA .. 25
5.11 GENERADOR .. 25
5.12 FRENO MECÁNICO ... 25
5.13 TRANSFORMADOR .. 25
5.14 PESOS APROXIMADOS ... 26
6 RESTRICCIONES GENERALES ... 26
1. DESCRIPCIÓN DE LOS AEROGENERADORES GAMESA 2.5-2.625 MW (MODELOS G106 IA, G114 IIA y G126 IIIA)

![Diagrama de aerogenerador]

<table>
<thead>
<tr>
<th>Posición</th>
<th>Denominación</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>Altura de buje</td>
</tr>
<tr>
<td>d</td>
<td>Diámetro de rotor</td>
</tr>
</tbody>
</table>

Figura 1: Aerogenerador completo

Los aerogeneradores **Gamesa 2.5-2.625 MW** (modelos **G106 IA, G114 IIA y G126 IIIA**) son del tipo de rotor tripala a barlovento y produce una potencia nominal de 2.5-2.625 MW.

La plataforma está formada por 3 modelos de aerogeneradores con diámetros de rotor de 106 m, 114 m y 126 m (posición d en la Figura 1) y pueden tener una altura de buje de 72 m, 80 m, 84 m, 93 m, 102 m o 125 m (posición h en la Figura 1).

Los aerogeneradores **Gamesa 2.5-2.625 MW** (modelos **G106 IA, G114 IIA y G126 IIIA**) están regulados por un sistema de cambio de paso independiente en cada pala y cuenta con un sistema de orientación activo. El sistema de control permite operar el aerogenerador a velocidad variable maximizando en todo momento la potencia producida y minimizando las cargas y el ruido.

A continuación se realiza una descripción general de los principales componentes de los aerogeneradores **Gamesa 2.5-2.625 MW** (modelos **G106 IA, G114 IIA y G126 IIIA**).
1.1 DESCRIPCIÓN DE LA GÓNDOLA

La carcasa es la cubierta que protege los componentes del aerogenerador que se encuentran en la góndola, frente a los agentes meteorológicos y condiciones ambientales externas. Es de material compuesto de resina con refuerzo de fibra de vidrio.

En el interior de la carcasa hay suficiente espacio para realizar las operaciones de mantenimiento del aerogenerador. La carcasa tiene 3 trampillas:

- Trampilla de acceso a la góndola desde la torre, situada en el suelo de la góndola.
- Trampilla de acceso al interior del cono/buje, situada en la parte frontal.
- Trampilla de operación de grúa, situada en el suelo de la parte trasera.

Figura 2 : Componentes principales de la góndola

<table>
<thead>
<tr>
<th>Posición</th>
<th>Denominación</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Carcasa</td>
</tr>
<tr>
<td>2</td>
<td>Bastidor</td>
</tr>
<tr>
<td>3</td>
<td>Eje principal</td>
</tr>
<tr>
<td>4</td>
<td>Multiplicadora</td>
</tr>
<tr>
<td>5</td>
<td>Sistema de orientación</td>
</tr>
<tr>
<td>6</td>
<td>Freno mecánico</td>
</tr>
<tr>
<td>7</td>
<td>Grupo hidráulico</td>
</tr>
<tr>
<td>8</td>
<td>Generador</td>
</tr>
<tr>
<td>9</td>
<td>Transformador</td>
</tr>
<tr>
<td>10</td>
<td>Armarios eléctricos</td>
</tr>
</tbody>
</table>
En la parte superior de la carcosa existen dos puertas que se utilizan para facilitar las operaciones de mantenimiento de grandes componentes. La apertura de las mismas se realiza mediante el utilaje apropiado, montado en el momento de la operación, y cuya fijación se realiza en los agujeros preparados en los pórticos del puente grúa. Además cuenta con dos claraboyas en el techo que proporcionan luz solar por el día, ventilación adicional y acceso al exterior, donde se encuentran los instrumentos de medida de viento y el pararrayos.

Los componentes giratorios están debidamente protegidos para garantizar la seguridad del personal de mantenimiento.

La góndola contiene en su interior una grúa de servicio de 1000 kg.

1.1.2 Bastidor

El bastidor de los aerogeneradores **Gamesa 2.5-2.625 MW** (modelos G106 IA, G114 IIA y G126 IIIA) se ha diseñado bajo los criterios de sencillez mecánica y robustez con objeto de soportar adecuadamente los elementos de la góndola y transmitir las cargas hasta la torre. La transmisión de estas cargas se realiza a través del cojinete del sistema de orientación.

El bastidor se divide en dos partes:

- **Bastidor delantero:** Bancada de fundición donde se fijan los soportes del eje principal, reaccionan los brazos de par de la multiplicadora y la corona de orientación.
- **Bastidor trasero:** Estructura mecano-soldada formada por dos vigas unidas por su parte delantera y trasera.

El bastidor se somete a exhaustivas pruebas de vida en el banco de ensayos de bastidores, Gamesa UPB, propiedad de Gamesa. Estas pruebas consisten principalmente en ciclos de cargas extremas que reproducen de forma acelerada los esfuerzos y solicitaciones a los que se ve sometido el bastidor a lo largo de toda su vida útil. De esta forma, se asegura y se mejora la fiabilidad del componente validando su correcto diseño. Los resultados de los ensayos se utilizan adicionalmente para realimentar y correlacionar los modelos de simulación de los bastidores desarrollados por Gamesa, asegurando la mejora continua y mayor precisión de los diseños realizados.

1.1.3 Eje principal

La transmisión del par motor que provoca el viento sobre el rotor hasta la multiplicadora se realiza a través del eje principal. El eje se une al buje mediante una brida atornillada y está apoyado sobre 2 rodamientos alojados en soportes fundidos. La unión con la entrada de baja velocidad de la multiplicadora se consigue con un collarín cónico de apriete que transmite el par por fricción.

El eje está fabricado en acero forjado y tiene un orificio central longitudinal para alojar las mangueras hidráulicas y los cables de control del sistema de cambio de paso.

El apoyo del eje principal sobre 2 rodamientos conlleva importantes ventajas estructurales. Todos los esfuerzos provenientes del rotor son transmitidos al bastidor delantero excepto el par torsi, que es aprovechado aguas abajo en el generador para producir energía eléctrica. De esta forma, se asegura que la multiplicadora únicamente transmite dicho par y que las solicitudes flectoras, axiales y cortantes van directamente a la bancada. Además, el sistema proporciona mayor facilidad de servicio al permitir el desmontaje de la multiplicadora sin necesidad de desmontar el eje principal ni el rotor.

1.1.4 Multiplicadora

Transmite la potencia del eje principal al generador. La multiplicadora se compone de 3 etapas combinadas, dos planetarias y una de eje paralelo. El dentado de la multiplicadora está diseñado para obtener una máxima eficiencia junto con un bajo nivel de emisión de ruido y vibraciones. Como resultado de la relación de multiplicación, parte del par de entrada es absorbido por los brazos de reacción. Estos brazos de reacción simétricos, fijan la multiplicadora al bastidor por medio de amortiguadores que minimizan la transmisión de
vibraciones. El eje de alta velocidad está unido al generador por medio de un acoplamiento flexible con limitador de par que evita sobrecargas en la cadena de transmisión.

Gracias al diseño modular del tren de potencia, el peso de la multiplicadora está soportado por el eje principal mientras que los amortiguadores de unión al bastidor reaccionan únicamente ante el par torsor restringiendo el giro de la multiplicadora así como la ausencia de cargas no deseadas.

La multiplicadora tiene un sistema de lubricación principal con sistema de filtrado asociado a su eje de alta velocidad. Existe un equipo secundario eléctrico de filtrado que permite un grado de limpieza del aceite de hasta 3µm, disminuyendo así el potencial número de averías y un tercer circuito extra de refrigeración.

Los componentes y parámetros de funcionamiento de la multiplicadora están monitorizados mediante sensores tanto del sistema de control como del sistema de mantenimiento predictivo Gamesa SMP. Todas las multiplicadoras se someten a pruebas de carga a potencia nominal durante su fabricación. Estas pruebas reducen las probabilidades de fallo en su periodo de operación y aseguran la calidad del producto.

1.1.5 Sistema de orientación Gamesa Active Yaw

El sistema de orientación Gamesa Active Yaw permite el giro de la góndola alrededor del eje de la torre. Es del tipo activo y consiste en seis motorreductores accionados eléctricamente por el sistema de control del aerogenerador de acuerdo con la información recibida de los anemómetros y veletas colocados en la parte superior de la góndola. Los motores del sistema de orientación hacen girar los piñones del sistema de giro, los cuales engranan con los dientes de la corona de orientación, constituida por una sola pieza y montada en la parte superior de la torre produciendo el giro relativo entre góndola y torre.

Mediante un cojinete de fricción se consigue un par de retención suficiente para controlar el giro de orientación. Adicionalmente, el freno hidráulico compuesto por 7 mordazas activas proporciona mayor par de retención para fijar el aerogenerador. La actuación conjunta de estos 2 sistemas evita fatigas y posibles daños en el engranaje asegurando la orientación de una manera estable y controlada.

Al igual que el bastidor, el sistema de orientación Gamesa Active Yaw se somete a ciclos de pruebas de vida acelerada y envejecimiento en el banco de ensayos Gamesa UPB. Estas pruebas consisten principalmente en ciclos de orientación con cargas de funcionamiento comprimiendo la duración de los ensayos de durabilidad o envejecimiento para simular el periodo de vida del sistema de orientación. Con estas pruebas se asegura y se mejora la fiabilidad del componente validando su correcto diseño y realimentando los modelos virtuales para rediseños y mejoras posteriores.

1.1.6 Sistema de freno

El freno principal del aerogenerador es de tipo aerodinámico por puesta en bandera de las palas. Al ser el sistema de cambio de paso independiente para cada una de las palas, se cuenta con una seguridad en caso de fallo de alguna de ellas.

El freno mecánico está compuesto por un freno de disco, hidráulicamente activado que se monta a la salida del eje de alta velocidad de la multiplicadora. Este freno mecánico se utiliza únicamente como freno de aparcamiento o en caso de aplicación de un pulsador de emergencia.

1.1.7 Sistema hidráulico

El sistema hidráulico proporciona aceite presurizado a los 3 actuadores independientes de cambio de paso, al freno mecánico del eje de alta velocidad y al sistema de freno del sistema de orientación. Incorpora un sistema *fail-safe* que asegura el nivel de presión y caudal de aceite necesarios en caso de ausencia de corriente para activar los cilindros de cambio de paso de las palas, el freno de disco y el freno del sistema de orientación llevando al aerogenerador a un modo seguro.
1.1.8 Generador

El generador es del tipo asíncrono doblemente alimentado con 4 polos (G106 IA / G114 IIA 50Hz) o 6 polos (G126 IIIA 50Hz / 60Hz), rotor bobinado y anillos rozantes. Es altamente eficiente y está refrigerado por un intercambiador aire-aire. El sistema de control permite trabajar con velocidad variable mediante el control de la frecuencia de las intensidades del rotor.

Las características y funcionalidades que introduce este generador son:

- Comportamiento síncrono frente a la red.
- Funcionamiento óptimo para cualquier velocidad de viento maximizando la producción y minimizando cargas y ruido gracias a la operación en velocidad variable.
- Control de la potencia activa y reactiva mediante el control de la amplitud y la fase de las corrientes del rotor.
- Suave conexión y desconexión a la red eléctrica.

El generador está protegido frente a corto-circuitos y sobrecargas. La temperatura es continuamente monitorizada mediante sondas en puntos del estator, de rodamientos y del cajón de anillos rozantes.

1.1.9 Transformador

El transformador es del tipo trifásico, seco encapsulado, con diferentes opciones de tensión de salida entre 6,6kV y 35kV, diferentes rangos de potencia aparente y está especialmente diseñado para aplicaciones eólicas. Está situado en la parte trasera de la góndola en un compartimento separado por una pared metálica que lo aísla térmica y eléctricamente del resto de componentes de la góndola.

Al ser del tipo seco, el riesgo de incendio es mínimo. Además, el transformador incluye todas las protecciones necesarias para evitar daños como detectores de arco y fusibles de protección. La situación del transformador en la góndola evita pérdidas eléctricas debido a la reducida longitud de los cables de baja tensión y reduce el impacto visual.

1.1.10 Armarios eléctricos de control y potencia

El soporte físico de este sistema eléctrico se reparte en tres armarios:

1. Armario eléctrico **TOP** situado en la góndola. Este armario, a su vez, se divide en cuatro partes:

 - Sección de control: se encarga de las tareas propias del gobierno de la góndola como la monitorización del viento, cambio del ángulo de paso, orientación, control de la temperatura interior, etc.
 - Convertidor de frecuencia: se encarga del control de potencia y de gestionar la conexión y desconexión del generador de la red.
 - Sección de embarrados y protecciones: en esta parte se encuentra la salida de la potencia producida con las protecciones eléctricas necesarias.
 - Armario de servicios auxiliares. Separado físicamente del resto del armario, se halla situado en la parte derecha posterior de la góndola, en el pasillo de acceso al transformador. Se encarga de alimentar y activar los sistemas de refrigeración o calefacción de la góndola para permitir su funcionamiento dentro de los rangos de temperatura de las diferentes versiones.

2. Armario eléctrico **GROUND** situado en la base de la torre. Desde la pantalla táctil del armario GROUND se pueden revisar los diferentes parámetros de operación, realizar test de los diferentes subsistemas, detener y poner en marcha el aerogenerador, etc. También se puede conectar una pantalla portátil al armario TOP para realizar estas tareas.
3. Armario eléctrico de control del buje (HUB) situado en la parte giratoria del aerogenerador. Se encarga principalmente de la activación de los cilindros del sistema de cambio de paso.

1.2 ROTOR

<table>
<thead>
<tr>
<th>Posición</th>
<th>Denominación</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pala</td>
</tr>
<tr>
<td>2</td>
<td>Sistema de cambio de paso</td>
</tr>
<tr>
<td>3</td>
<td>Buje</td>
</tr>
<tr>
<td>4</td>
<td>Cono</td>
</tr>
<tr>
<td>5</td>
<td>Rodamiento de pala</td>
</tr>
<tr>
<td>6</td>
<td>Transmisor de rayos</td>
</tr>
</tbody>
</table>

Figura 3: Ejemplos de pantalla táctil

Figura 4: Componentes principales del rotor
El rotor de los aerogeneradores **Gamesa 2.5-2.625 MW** (modelos G106 IA, G114 IIA y G126 IIIA) está compuesto por tres palas unidas a un buje mediante rodamientos de pala. El buje está dotado, en las bridas de unión a palas, de un ángulo de conicidad de 2 grados que aleja la punta de las mismas de la torre.

Los diámetros de rotor de los diferentes modelos de la plataforma son de 106 m, 114 m y 126 m.

1.2.1 Palas

Las palas de los aerogeneradores **Gamesa 2.5-2.625 MW** (modelos G106 IA, G114 IIA y G126 IIIA) están fabricadas en material compuesto de fibra de vidrio infusionado en resina epoxy, proporcionando la rigidez necesaria sin penalizar el peso de la misma. Las palas poseen cambio de paso en la envergadura completa de la pala maximizando la producción energética, reduciendo las cargas y el ruido emitido.

La longitud de las palas puede ser de 62 m (modelo G126 IIIIA), 56 m (modelo G114 IIA) o 52 m (modelo G106 IA). La distancia de la raíz de las palas hasta el centro del buje es de 1,230 m.

La estructura de cada pala consiste en dos conchas pegadas a una viga estructural o largueros internos. La pala es diseñada para el cumplimiento de dos funciones básicas, la estructural y la aerodinámica.

Asimismo, la pala se diseña teniendo en cuenta tanto el método de fabricación utilizado, como los materiales elegidos para garantizar los márgenes de seguridad necesarios.

Las palas disponen de un sistema de protección contra-rayos cuya misión es conducir el rayo desde el receptor hasta la raíz de pala donde es transmitido al aerogenerador para ser descargado a tierra. Adicionalmente las palas van equipadas con los drenajes necesarios para evitar la retención de agua en su interior que pudiese causar desequilibrios o daños estructurales por vaporización del agua al impactar un rayo.

1.2.2 Rodamiento de pala

Los rodamientos de la pala son el interfaz entre la pala y el buje y permiten el movimiento de cambio de paso.

La unión de la pala a la pista interior del rodamiento de pala se realiza mediante pernos tensionados lo que facilita su inspección y desmontaje.

1.2.3 Buje

El buje está fabricado en fundición nodular. Se une a la pista exterior de los tres rodamientos de pala y al eje principal mediante uniones atornilladas. Posee una abertura en la parte frontal que permite el acceso al interior para realizar inspecciones y mantenimiento tanto de la hidráulica del sistema de cambio de paso como del par de apriete de los tornillos de las palas.

1.2.4 Cono

El cono protege el buje y los rodamientos de pala del ambiente. El cono se atornilla a la parte frontal del buje y está diseñado para permitir el acceso al buje para labores de mantenimiento.

1.2.5 Sistema hidráulico de cambio de paso

Se compone de actuadores hidráulicos independientes para cada pala que proporcionan una capacidad de giro entre –3º y 87º y un sistema de acumuladores que aseguran el movimiento a bandera en caso de emergencia.

El sistema de cambio de paso actúa según la siguiente consigna:

- Cuando la velocidad del viento es inferior a la nominal el ángulo de paso seleccionado es aquel que maximiza la potencia eléctrica obtenida para cada velocidad del viento.
- Cuando la velocidad del viento es superior a la nominal el ángulo de paso es aquél que proporciona la potencia nominal del aerogenerador.
Además gobierna la activación del freno aerodinámico en caso de emergencia llevando al aerogenerador a un modo seguro.

El sistema hidráulico proporciona mayor rapidez de actuación que otros tipos de sistemas. Debido al sistema de acumuladores hidráulicos, no requiere baterías para su funcionamiento, lo que aumenta la fiabilidad en situaciones de emergencia.

1.3 TORRE Y CIMENTACIÓN

1.3.1 Torre

La torre de los aerogeneradores **Gamesa 2.5-2.625 MW** (modelos **G106 IA, G114 IIA y G126 IIIA**) es de estructura tubular de acero, de forma tronco-cónica y dividida en una serie de tramos dependiendo de la altura de torre:

- 72 m (estructura de acero): tres tramos (solo aplica a **G106 IA**).
- 80 m (estructura de acero): tres tramos.
- 84 m (estructura de acero): tres tramos (solo aplica a **G126 IIIA**).
- 93 m (estructura de acero): cuatro tramos.
- 102 m (estructura de acero): cuatro tramos (solo aplica a **G126 IIIA**).
- 125 m (estructura de acero): cinco tramos.

Se suministra con sus correspondientes plataformas, escaleras y alumbrado de emergencia. Gamesa ofrece de serie un elevador guiado por cable que facilita el mantenimiento del aerogenerador.

1.3.2 Cimentación

Las cimentaciones estándar son del tipo losa de hormigón armado con acero. Han sido calculadas basándose en las cargas certificadas del aerogenerador y considerando un terreno estándar.

En el caso de que las hipótesis manejadas sufran variaciones, los valores definidos no tendrán valor y será necesario un recálculo de las cimentaciones. Para cada emplazamiento, será necesario revisar las características del terreno junto con los datos de viento para seleccionar la cimentación más adecuada.

1.4 SISTEMA DE CONTROL

Las funciones del aerogenerador están controladas en tiempo real por un sistema basado en un PLC (Programable Logic Controller). El sistema de control está compuesto por algoritmos de regulación y de supervisión.

A) Sistema de regulación

El sistema de regulación se encarga de seleccionar los valores adecuados de par en el eje, del ángulo de paso de las palas, y de las consignas de potencia. Éstas se modifican en cada instante dependiendo de la velocidad de viento que llega al aerogenerador, garantizando una operación segura y fiable en cualquier condición de viento existente.

Las principales ventajas del sistema de regulación de los aerogeneradores **Gamesa 2.5-2.625 MW** (modelos **G106 IA, G114 IIA y G126 IIIA**) son:

1. Maximización de la producción de energía.
2. Limitación de las cargas mecánicas.
3. Reducción del ruido aerodinámico.
4. Alta calidad de energía.
A-1) Regulación del cambio de paso

A velocidades de viento por encima de la nominal, el sistema de control y el sistema de cambio de paso mantienen la potencia en su valor nominal. Con velocidades de viento por debajo de la nominal, el sistema de cambio de paso variable y de control optimiza la producción de energía seleccionando la combinación óptima de velocidad de giro del rotor y ángulo de paso.

A-2) Regulación de potencia

El sistema de control de potencia asegura que la velocidad de giro y el par motor del aerogenerador siempre suministren una potencia eléctrica estable a la red.

El sistema de control de potencia actúa sobre un conjunto de sistemas eléctricos que consiste en un generador doblemente alimentado de rotor devanado con anillos rozantes, un convertidor de 4 cuadrantes de tecnología IGBT, contactores y protección eléctrica y software. Eléctricamente, el conjunto generador-convertidor es equiparable al de un generador sincrono con lo que se asegura un óptimo acoplamiento a la red eléctrica con suaves procesos de conexión y desconexión.

El conjunto generador-convertidor es capaz de trabajar con velocidad variable para optimizar su funcionamiento y maximizar la potencia generada para cada velocidad de viento. Permite igualmente gestionar la potencia reactiva evacuada en colaboración con el sistema de control remoto Gamesa Windnet®.

B) Sistema de supervisión

El sistema de supervisión verifica continuamente el estado de los diferentes sensores, así como el de los parámetros internos:

- Condiciones ambientales: velocidad y dirección del viento o temperatura ambiente.
- Parámetros internos de los diferentes componentes como temperaturas, niveles y presiones de aceite, vibraciones, enrollamiento del cable de media tensión, etc.
- Estado del rotor: velocidad de rotación y posición del cambio de paso.
- Situación de la red: generación de energía activa y reactiva, tensión, corrientes y frecuencia.

1.5 SISTEMA DE MANTENIMIENTO PREDICTIVO GAMESA SMP

Los aerogeneradores Gamesa 2.5-2.625 MW (modelos G106 IA, G114 IIA y G126 IIIA) incorporan el sistema de mantenimiento predictivo Gamesa SMP, desarrollado por Gamesa, basado en el análisis de vibraciones y optimizado para su aplicación en aerogeneradores. El sistema puede gestionar y procesar simultáneamente la información de 12 acelerómetros que están situados en puntos estratégicos del aerogenerador como la multiplicadora, el generador y los rodamientos delanteros del eje principal.

Las características principales del Gamesa SMP son las siguientes:

- Monitorización en continuo de componentes críticos del aerogenerador.
- Capacidad de proceso de señal y detección de alarmas.
- Integrado con PLC y redes de parque Gamesa WindNet®.
- Fácil mantenimiento.
- Bajo coste.

En general, el principal objetivo de un sistema de mantenimiento predictivo es la detección prematura de fallos o deterioros en los componentes principales del aerogenerador. Entre los importantes beneficios asociados a la instalación de un sistema de este tipo, destacan los siguientes:

- La disminución de grandes correctivos.
- La protección sobre el resto de los componentes del aerogenerador.
- El incremento de la vida útil del aerogenerador y de su mejor funcionamiento.
Disminución de la dedicación de recursos de mantenimiento.

Acceso a mercados con estrictas normativas, tipo certificación *Germanischer Lloyds, DNV Business Assurance*.

Reducción en las tarifas de las compañías aseguradoras.

1.6 **SISTEMA DE GESTIÓN INTEGRAL DE PARQUES EÓLICOS GAMESA WINDNET®**

Los aerogeneradores *Gamesa-2.5-2.625 MW* (modelos G106 IA, G114 IIA y G126 IIIA) se integran en el sistema de supervisión, control y adquisición de datos (SCADA) *Gamesa WindNet®*, que permite un acceso a la información del parque eólico vía navegador, fácil e intuitivo.

El sistema *Gamesa WindNet®* es fácilmente configurable y adaptable a cualquier distribución de parque eólico, incluidos aquellos con elevada variedad de modelos de aerogeneradores, siendo capaz de comunicar de forma rápida y fiable cualquier topología de parque basada en tecnologías de red Ethernet. También permite la integración de instalaciones del parque eólico como subestaciones eléctricas, equipos de potencia reactiva, así como bancos de condensadores, etc.

El sistema *Gamesa WindNet®* soporta una amplia variedad de protocolos de comunicación usados en los sistemas eólicos como son OPC DA, MODBUS y DNP3. La comunicación con los aerogeneradores Gamesa está basada en un protocolo propio robusto y eficiente.

Con esta herramienta el usuario podrá en todo momento:

- Realizar un seguimiento y control de los equipos del parque eólico.
- Conocer la producción de energía de cada aerogenerador del parque.
- Monitorizar las alarmas en tiempo real de los distintos elementos del parque y observar el histórico de las mismas.
- Enviar órdenes directas a los aerogeneradores (arranque, pausa o paso a emergencia) y subestación.
- Analizar la evolución de variables en el tiempo de una forma sencilla, gracias a los gráficos de los históricos de tendencias: *Gamesa Trend Viewer*.
- Crear informes de producciones y disponibilidades: *Gamesa Report Generator*.
- Enviar mensajes de estado y alarmas a móvil mediante SMS.
- Integrar los equipos de compensación de energía reactiva (STATCOM y SVC).
- Gestionar el mantenimiento predictivo con la integración de *Gamesa SMP*.
- Administrar diferentes perfiles de usuario, manteniendo así la seguridad y simplificando a su vez el uso diario de la aplicación.

El interfaz de usuario se ha diseñado con criterios de accesibilidad, facilidad de uso y simplicidad. La información se presenta en formatos gráficos. Existe adicionalmente un acceso Web que permite el acceso a la información actualizada a través de cualquier dispositivo dotado de navegador y conexión a Internet.

El sistema *Gamesa WindNet®* ofrece diferentes perfiles de usuario, administrador, configurador, promotor y mantenedor, para dar acceso sólo a aquellas funciones e información necesaria para cada tipo de usuario, aumentando así la seguridad y simplificando también el uso diario de la aplicación.

Opcionalmente se dispone de una serie de módulos que añaden funcionalidades avanzadas al sistema *Gamesa WindNet®*:

- Módulo de limitación de potencia activa.
- Módulo de regulación de reactiva generada.
- Módulo de regulación de frecuencia.
• Generación de informes personalizados con el Gamesa Information Manager, mediante la categorización de las pérdidas de energía.
• Módulo de control de estelas.
• Módulo de control de ruido: Gamesa NRS®.
• Módulo de control de sombras.
• Módulo de control de hielo.

![Figura 5: Ejemplo de pantalla WindNet® acceso Web](image)

1.7 SENSORES

Los aerogeneradores Gamesa 2.5-2.625 MW (modelos G106 IA, G114 IIA y G126 IIIA) están equipados con diversos sensores que controlan de forma permanente diferentes parámetros. Cuenta con sensores dedicados a recoger señales externas al aerogenerador como por ejemplo la temperatura exterior o la velocidad y dirección de viento. Otros sensores se encargan de registrar parámetros del funcionamiento de los aerogeneradores como son temperaturas de los componentes, niveles de presión, vibraciones o posición de palas.

Toda esta información se registra y analiza en tiempo real y alimenta las funciones de supervisión y regulación del sistema de control.

1.8 SISTEMA DE PROTECCIÓN CONTRA RAYOS

Los aerogeneradores Gamesa 2.5-2.625 MW (modelos G106 IA, G114 IIA y G126 IIIA) están protegidos contra el impacto de rayos mediante un sistema de transmisión que desde los receptores de pala y góndola, pasando por la carcasa, el bastidor y la torre va hasta la cimentación. Con este sistema se evita el paso del rayo a través de componentes sensibles al mismo. Como sistemas de protección adicional, el sistema eléctrico cuenta con protectores de sobretensión.

Todos estos sistemas de protección están diseñados para conseguir un nivel de protección máximo clase I de acuerdo a la norma IEC 62305, considerando como normas de referencia la IEC 61400 e IEC61024.
2 CONEXIÓN A RED Y EMPLAZAMIENTO

2.1 CONEXIÓN A RED

Los aerogeneradores Gamesa 2.5-2.625 MW (modelos G106 IA, G114 IIA y G126 IIIA) cuentan con versiones capaces de funcionar en redes de 50Hz y 60Hz.

El transformador que equipa el aerogenerador debe ser el adecuado a la tensión de la red eléctrica. El voltaje de la red de baja tensión deberá encontrarse dentro del intervalo ± 10% y la frecuencia de la red deberá permanecer dentro del intervalo de ± 3Hz tanto en redes de 50Hz como de 60Hz.

El sistema de tierras incluido en la obra civil consta de dos anillos concéntricos con una impedancia global acorde a los requisitos establecidos en la IEC 62305. Las corrientes de paso y de contacto deberán cumplir con las normas IEC 60478-1 y IEC 61936-1. Prevalecerán las normativas locales en el caso de ser más restrictivas que las citadas normativas internacionales.

La tensión de red especificada para los aerogeneradores Gamesa 2.5-2.625 MW (modelos G106 IA, G114 IIA y G126 IIIA) viene definida en el apartado 4.6 del presente documento.

El factor de potencia de los aerogeneradores Gamesa 2.5-2.625 MW (modelos G106 IA, G114 IIA y G126 IIIA) se encuentra entre los límites 0,95 capacitivo y 0,95 inductivo en todo el rango de potencias en las siguientes condiciones: ± 5% de tensión nominal, para el intervalo de temperaturas correspondiente, siempre y cuando la potencia aparente del transformador sea igual o superior a 2775kVA. Consultar condiciones particulares para otros modelos de transformador.

2.2 CONDICIONES AMBIENTALES

Los aerogeneradores Gamesa 2.5-2.625 MW (modelos G106 IA, G114 IIA y G126 IIIA) están diseñados en su versión estándar para trabajar a temperaturas ambientales exteriores comprendidas en el rango –20º C y +40º C. Existen versiones de aerogeneradores capaces de soportar temperaturas ambientales más exigentes.

Los aerogeneradores Gamesa 2.5-2.625 MW (modelos G106 IA, G114 IIA y G126 IIIA) son capaces de operar en condiciones de humedad relativa ambiente del 95% de forma continuada, y del 100% de humedad relativa durante periodos de tiempo inferior al 10% del tiempo de funcionamiento.

El grado de protección contra corrosión de los distintos elementos de los aerogeneradores Gamesa 2.5-2.625 MW (modelos G106 IA, G114 IIA y G126 IIIA) es, conforme a la normativa ISO 12944-2, el mostrado en la tabla siguiente:

<table>
<thead>
<tr>
<th>COMPONENTES</th>
<th>EXTERIOR</th>
<th>INTERIOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torre</td>
<td>C5-I/H</td>
<td>C4/H</td>
</tr>
</tbody>
</table>

Tabla 1. Grados de protección contra corrosión

Gamesa dispone de versiones de producto especialmente diseñadas para ambientes corrosivos.

2.3 CONDICIONES DE VIENTO

La distribución anual de viento para un emplazamiento se especifica normalmente por una distribución de Weibull. Esta distribución viene descrita por el factor de escala A y el factor de forma k. El factor A es proporcional a la velocidad media del viento y el factor k define la forma de la distribución para diferentes
velocidades de viento. La intensidad de turbulencia es el parámetro que cuantifica las variaciones instantáneas en la velocidad de viento.

Las condiciones de diseño del aerogenerador **G126 IIIA 2.5-2.625 MW** se indican a continuación:

<table>
<thead>
<tr>
<th>Norma</th>
<th>IEC - IIIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media anual del viento (m/s)</td>
<td>7,5</td>
</tr>
<tr>
<td>Intensidad de turbulencia I15 (%)</td>
<td>18</td>
</tr>
<tr>
<td>Velocidad de viento de referencia diezminutal de 50 años (m/s)</td>
<td>37,5</td>
</tr>
<tr>
<td>Velocidad de viento extrema de 50 años sobre media de 3 seg (m/s)</td>
<td>52,5</td>
</tr>
</tbody>
</table>

Tabla 2. Parámetros de diseño del aerogenerador G126 IIIA 2.5-2.625 MW

Las condiciones de diseño del aerogenerador **G114 IIA 2.5-2.625 MW** se indican a continuación:

<table>
<thead>
<tr>
<th>Norma</th>
<th>IEC - IIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media anual del viento (m/s)</td>
<td>8,5</td>
</tr>
<tr>
<td>Intensidad de turbulencia I15 (%)</td>
<td>16</td>
</tr>
<tr>
<td>Velocidad de viento de referencia diezminutal de 50 años (m/s)</td>
<td>42,5</td>
</tr>
<tr>
<td>Velocidad de viento extrema de 50 años sobre media de 3 seg (m/s)</td>
<td>59,5</td>
</tr>
</tbody>
</table>

Tabla 3. Parámetros de diseño del aerogenerador G114 IIA 2.5-2.625 MW

Las condiciones de diseño del aerogenerador **G106 IA 2.5-2.625 MW** se indican a continuación:

<table>
<thead>
<tr>
<th>Norma</th>
<th>IEC - IA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media anual del viento (m/s) [1]</td>
<td>10</td>
</tr>
<tr>
<td>Intensidad de turbulencia I15 (%)</td>
<td>16</td>
</tr>
<tr>
<td>Velocidad de viento de referencia diezminutal de 50 años (m/s)</td>
<td>50</td>
</tr>
<tr>
<td>Velocidad de viento extrema de 50 años sobre media de 3 seg (m/s)</td>
<td>70</td>
</tr>
</tbody>
</table>

Tabla 4. Parámetros de diseño de la plataforma G106 IA 2.5-2.625 MW
2.4 VERIFICACIÓN DE LAS CONDICIONES DEL EMLAZAMIENTO

Como regla general, el aerogenerador deberá instalarse en parque con una distancia de al menos 5 diámetros de rotor entre aerogeneradores en la dirección predominante del viento. Si los aerogeneradores se sitúan en fila, perpendicularmente a la dirección predominante del viento, la distancia entre los mismos deberá ser de al menos 2 diámetros de rotor. Estos criterios podrán ser modificados en ciertas condiciones previo estudio técnico específico para cada caso.

Los aerogeneradores se pueden situar bajo diferentes y variadas condiciones climáticas donde la densidad del aire, la intensidad de turbulencia, la velocidad media del viento y el parámetro de forma k son los principales parámetros a considerar. Si la intensidad de turbulencia es alta las cargas en el aerogenerador aumentan y su tiempo de vida disminuye. Por el contrario, las cargas se reducirán y su tiempo de vida aumentará si la velocidad media del viento o la intensidad de turbulencia o ambas son bajas. Por lo tanto, los aerogeneradores pueden situarse en emplazamientos con alta intensidad de turbulencia si la velocidad media del viento es adecuadamente baja.

La intensidad de turbulencia (I) es el cociente de la desviación estándar de velocidad de viento entre la velocidad media medida o estimada (Ver IEC 61400-13). Como valor característico se suele utilizar la intensidad de turbulencia 115 para la velocidad de viento media diezminutal de 15 m/s.

En terreno complejo las condiciones de viento serán verificadas sobre la base de medidas realizadas en el emplazamiento. Habrá que considerar adicionalmente el efecto de la topografía en la velocidad y cortadura del viento, la intensidad de turbulencia y la inclinación del flujo de viento sobre cada aerogenerador.

Se requerirá el suministro de los datos necesarios para evaluar las principales características del emplazamiento:

- Condiciones ambientales de temperatura, densidad, salinidad, concentración de polvo y/o arena, etc.
- Vientos medidos en el emplazamiento así como los planos topográficos y la disposición de los aerogeneradores a una escala que permita la evaluación de las características del emplazamiento.
- Tensión y frecuencia de red, así como tensión de servicio.
- Cualquier otra información que se requiera por parte de Gamesa para la correcta definición del aerogenerador a instalar.

3 ESTÁNDARES DE DISEÑO

Los aerogeneradores Gamesa 2.5-2.625 MW (modelos G106 IA, G114 IIA y G126 IIIA) han sido diseñados y validados siguiendo los siguientes estándares según el tipo de componente.

3.1 AEROGENERADOR

<table>
<thead>
<tr>
<th>Norma</th>
<th>Descripción</th>
<th>Edición</th>
</tr>
</thead>
<tbody>
<tr>
<td>Certificación</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IEC 61400-1</td>
<td>Aerogeneradores – Requisitos de diseño</td>
<td>3</td>
</tr>
<tr>
<td>IEC 61400-22</td>
<td>Ensayos de conformidad y certificación</td>
<td>1</td>
</tr>
<tr>
<td>Validación de diseño y pruebas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IEC 61400-11</td>
<td>Técnicas de medición de ruido acústico</td>
<td></td>
</tr>
<tr>
<td>IEC 61400-12</td>
<td>Medidas de rendimiento de energía para la producción de electricidad en aerogeneradores</td>
<td></td>
</tr>
<tr>
<td>IEC 61400-13</td>
<td>Medición de cargas mecánicas</td>
<td></td>
</tr>
</tbody>
</table>
3.2 DISEÑO ESTRUCTURAL

<table>
<thead>
<tr>
<th>Norma</th>
<th>Descripción</th>
<th>Edición</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comunes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN 1991 Eurocode 1.1-4</td>
<td>Acciones en estructuras - Parte 1-4: Acciones generales - Acciones de viento</td>
<td>Abril 2005</td>
</tr>
<tr>
<td>EN 1993 Eurocode 3.1-1/6/8/9/10</td>
<td>Diseño de estructuras de acero</td>
<td>2005</td>
</tr>
<tr>
<td>IEC 61400-1</td>
<td>Aerogeneradores - Requisitos de Diseño</td>
<td>2005</td>
</tr>
<tr>
<td>VDI 2230 Part 1</td>
<td>Cálculo sistemático para las uniones atornilladas - Juntas con un perno cilíndrico</td>
<td>2003</td>
</tr>
<tr>
<td>Torre</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEB-FIB Mode</td>
<td>CEB-FIB Mode Code 1990</td>
<td>1990</td>
</tr>
<tr>
<td>DIBt</td>
<td>Política de aerogeneradores - Efectos y pruebas de estabilidad para la torre y cimientos, cuarta edición</td>
<td>Octubre 2012</td>
</tr>
<tr>
<td>EN 14399</td>
<td>Pernos estructurales de alta resistencia para precarga</td>
<td>Marzo 2005</td>
</tr>
<tr>
<td>EN 1992 Eurocode 2.1-1</td>
<td>Diseño de estructuras de hormigón - Parte 1-1: Reglas generales y reglas para edificios</td>
<td>Diciembre 2004</td>
</tr>
<tr>
<td>En 1998 Eurocode 8</td>
<td>Diseño de estructuras sismorrresistentes</td>
<td>Mayo 2005</td>
</tr>
<tr>
<td>ISO 898-1</td>
<td>Propiedades mecánicas de elementos de fijación de acero al carbono y acero de aleación</td>
<td>Enero 2013</td>
</tr>
<tr>
<td>VDI 2230</td>
<td>Cálculo sistemático para las uniones atornilladas - Juntas con un perno cilíndrico</td>
<td>Mayo 2005</td>
</tr>
</tbody>
</table>
3.3 COMPONENTES MECÁNICOS

<table>
<thead>
<tr>
<th>Norma</th>
<th>Descripción</th>
<th>Edición</th>
</tr>
</thead>
<tbody>
<tr>
<td>Palas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEFU R25</td>
<td>Protección contra rayos de las turbinas eólicas, Recomendación 25</td>
<td></td>
</tr>
<tr>
<td>DNV OS J102</td>
<td>Diseño y fabricación de palas en aerogeneradores offshore y onshore</td>
<td>2006-10</td>
</tr>
<tr>
<td>IEC 1024-1</td>
<td>Protección de estructuras contra rayos - Principios Generales</td>
<td>2007-11</td>
</tr>
<tr>
<td>IEC 60721</td>
<td>Clasificación de las condiciones ambientales - Condiciones ambientales que aparecen en la naturaleza</td>
<td>2002-10</td>
</tr>
<tr>
<td>ISO 2813</td>
<td>Pinturas y barnices - Determinación del brillo especular de películas de pintura no metálica</td>
<td></td>
</tr>
<tr>
<td>Eje principal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN 1991 Eurocode 1.1-4</td>
<td>Acciones en estructuras - Parte 1-4: Acciones generales - Acciones de viento</td>
<td>Abril 2005</td>
</tr>
<tr>
<td>EN 1993 Eurocode 3.1-1/6/8/9/10</td>
<td>Diseño de estructuras de acero</td>
<td>2005</td>
</tr>
<tr>
<td>VDI 2230 Part 1</td>
<td>Cálculo sistemático para las uniones atornilladas - Juntas con un perno cilíndrico</td>
<td>2003</td>
</tr>
<tr>
<td>Multiplicadora</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN ISO 4871</td>
<td>Acústica - Declaración y verificación de los valores de emisión de ruido de maquinaria y equipo</td>
<td>2009</td>
</tr>
<tr>
<td>GL 2010</td>
<td>Guía para la Certificación de Aerogeneradores</td>
<td></td>
</tr>
<tr>
<td>IEC 61400-1/4</td>
<td>Aerogeneradores - Requisitos de Diseño</td>
<td></td>
</tr>
<tr>
<td>ISO 10816-1</td>
<td>Vibraciones mecánicas - Evaluación de la vibración de la máquina mediante mediciones en piezas no giratorias</td>
<td></td>
</tr>
<tr>
<td>ISO 6336</td>
<td>Cálculo de la capacidad de carga de estímulo y engranajes helicoidales</td>
<td></td>
</tr>
<tr>
<td>ISO 81400-4</td>
<td>Diseño y especificación de multiplicadoras</td>
<td></td>
</tr>
</tbody>
</table>

3.4 COMPONENTES ELÉCTRICOS

<table>
<thead>
<tr>
<th>Norma</th>
<th>Descripción</th>
<th>Edición</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comunes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IEC 60204-1</td>
<td>Seguridad de las máquinas - Equipo eléctrico de las máquinas</td>
<td>5</td>
</tr>
<tr>
<td>IEC 60228</td>
<td>Cables - Conductores de cables aislados</td>
<td></td>
</tr>
<tr>
<td>IEC 60332</td>
<td>Las pruebas en cables de fibra óptica y eléctricos sometidos al fuego</td>
<td>1</td>
</tr>
<tr>
<td>IEC 60332-1/3</td>
<td>Cables - Las pruebas en cables eléctricos y de fibra óptica sometidos a condiciones de fuego</td>
<td></td>
</tr>
<tr>
<td>IEC 60364-5-52</td>
<td>Instalaciones eléctricas de baja tensión - Selección y montaje de equipos eléctricos - Sistemas de cableado</td>
<td></td>
</tr>
<tr>
<td>IEC 60502-2/4</td>
<td>Cables de baja tensión</td>
<td></td>
</tr>
<tr>
<td>Código</td>
<td>Título</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>GD181875-es</td>
<td>MANUAL DE CARACTERÍSTICAS GENERALES</td>
<td></td>
</tr>
<tr>
<td>GD181875</td>
<td>Fecha: 09/04/15</td>
<td></td>
</tr>
<tr>
<td>GD181875</td>
<td>Pág.: 20 de 27</td>
<td></td>
</tr>
<tr>
<td>GD181875</td>
<td>Título: Características y descripción general de los aerogeneradores Gamesa 2.5-2.625 MW</td>
<td></td>
</tr>
</tbody>
</table>

Manual de Características Generales

- **IEC 60909** Instalaciones eléctricas - Corteccircuito en sistemas trifásicos de CA
- **IEC 61400-1** Aerogeneradores - Requisitos de Diseño
- **IEC 61000-6-2** Compatibilidad Electromagnética (EMC)

Generador

- **IEC 34** Máquinas eléctricas giratorias
- **IEC 60034-1/2/18** Generador
- **IEC 72 & 72 A** Dimensiones y potencias nominales para máquinas eléctricas giratorias
- **IEC 85** Clasificación de Aislamiento y materiales para maquinaria eléctrica

Convertidor y Armarios eléctricos

- **BS EN 60071** Coordinación de aislamiento
- **IEC 60185** Transformadores de corriente
- **IEC 60186** Transformadores de tensión
- **IEC 60269** Fusibles de baja tensión
- **IEC 60754-1** Cables - Ensayo de gases desprendidos durante la combustión de los materiales de los cables
- **IEC 60831** Condensadores de potencia
- **IEC 61439-1/2** Convertidor y armarios auxiliares / aparataje de baja tensión y conjuntos de engranajes de control
- **IEC 61800-3/5** Convertidor / Accionamientos eléctricos de potencia de velocidad variable - Métodos de ensayos específicos CEM
- **IEC 62477** Convertidor / Requisitos de seguridad para los sistemas y equipos de energía del convertidor electrónico

Transformador y Celda de Media Tensión

- **IEC 60056** Alto voltaje. Interruptores AC
- **IEC 60060** Técnicas de prueba de alta tensión
- **IEC 60076-11** Transformadores de potencia - Parte 11: transformadores de tipo seco
- **IEC 60099-4/5** Descargadores de sobretensión
- **IEC 60137** Casquillos aislantes para AC. Voltaje por encima 1kV
- **IEC 60265** Interruptores de alta tensión
- **IEC 60376** Especificación técnica del grado de hexafluoruro de azufre (SF6) para su uso en equipos eléctricos
- **IEC 60840** Cables de MT sobre 36kV
- **IEC 62271** Celda de media tensión / Conmutadores de alta tensión

Puesta a tierra y protección de rayos

- **IEC 61400-24** Aerogeneradores – protección contra rayos
- **BS EN 61019** Seccionadores e interruptores de tierra AC
- **IEC 62305-1/3** Protección contra el rayo

Control y Comunicaciones

- **IEC 60068-2-1** Frío
- **IEC 60068-2-14** Golpe de temperatura
- **IEC 60068-2-2** Calor seco
- **IEC 60068-2-30** Ensayo cíclico de calor húmedo
- **IEC 60068-2-32** Caída libre
- **IEC 60068-2-52** Prueba de salpicaduras de sal
- **IEC 60068-2-56** Ensayo de calor húmedo, Estado estacionario
- **IEC 60068-2-6** Vibración sinusoidal
- **IEC 60068-2-64** Vibración aleatoria
- **IEC 60529** Protección proporcionadas por las envolventes
- **IEC 61131** Autómatas programables
4 OPCIONES

4.1 CONDICIONES AMBIENTALES EXTREMAS

Gamesa dispone de versiones de producto especialmente diseñadas para condiciones ambientales extremas de temperatura, polvo y/o corrosión.

4.2 HUECOS DE TENSIÓN

Los aerogeneradores Gamesa 2.5-2.625 MW (modelos G106 IA, G114 IIA y G126 IIIA) son capaces de mantenerse conectado a la red durante huecos de tensión, contribuyendo de este modo a garantizar la calidad de la energía y la continuidad del suministro.

Opcionalmente, es posible equipar los aerogeneradores con un dispositivo denominado Gamesa Brake Chopper, capaz de soportar huecos más exigentes y de contribuir a la inyección de reactiva requerida en ciertos códigos de red.

Los aerogeneradores Gamesa 2.5-2.625 MW (modelos G106 IA, G114 IIA y G126 IIIA) disponen de certificados de cumplimiento de huecos de tensión emitidos por institutos acreditados según P.O.12.3 de REE y EON2003.

4.3 VERSIONES DE BAJO RUIDO

Los aerogeneradores Gamesa-2.5-2.625 MW (modelos G106 IA, G114 IIA y G126 IIIA) disponen de diferentes versiones de control que minimizan la emisión de ruido. La aplicación de dichas versiones puede suponer modificación de la curva de potencia.

Estas versiones de control de ruido son gestionadas por el sistema Gamesa NRS® que asegura la optimización de la producción manteniendo los niveles de ruido previamente programados de acuerdo a las normativas locales.

4.4 BALIZAMIENTO

Gamesa ofrece, como opción, la inclusión de sistemas de balizamiento luminoso de acuerdo a la normativa de navegación aérea correspondiente, siendo este suministro exclusivo de Gamesa.

Estas balizas podrán estar alimentadas por un módulo UPS, definido de acuerdo a los requerimientos del cliente. Asimismo, existe como opción la posibilidad de incluir un módulo de sincronización de destellos.

4.5 CELDA DE ALTA TENSIÓN

Gamesa ofrece opcionalmente el suministro de la celda de conexión del aerogenerador a la red eléctrica en Media Tensión. La conexión del cable de media tensión se realiza en la parte inferior de la torre a la celda de media tensión. El tipo de celda recomendada por Gamesa es de tipo con interruptor automático (no ruptofusible).

Gamesa requerirá la información necesaria para la correcta definición de la celda. En el caso de que el cliente suministre la celda de media tensión, deberá cumplir las especificaciones técnicas de Gamesa sobre su taraje y otros aspectos que puedan afectar al aerogenerador.

4.6 TENSIÓN DE RED

Gamesa dispone de diferentes opciones de transformadores preparados para conectarse en redes de 50Hz y 60Hz a distintos niveles de tensión de red comprendida en el rango de 6,6 ~ 35kV.

Gamesa podrá desarrollar, a petición del cliente, transformadores con niveles de tensión no disponibles dentro del rango previamente especificado.
4.7 TENSIÓN DE SERVICIO
Los aerogeneradores Gamesa 2.5-2.625 MW (modelos G106 IA, G114 IIA y G126 IIIA) cuentan con versiones capaces de operar con tensión de servicio 230V ó 120V opcionalmente.

5 DATOS TÉCNICOS
A continuación se detallan los datos técnicos principales de los diferentes componentes de los aerogeneradores Gamesa 2.5-2.625 MW (modelos G106 IA, G114 IIA y G126 IIIA).

5.1 ROTOR

<table>
<thead>
<tr>
<th>Aerogenerador</th>
<th>G106 IA 2.5-2.625 MW</th>
<th>G114 IIA 2.5-2.625 MW</th>
<th>G126 IIIA 2.5-2.625 MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diámetro rotor (m)</td>
<td>106</td>
<td>114</td>
<td>126</td>
</tr>
<tr>
<td>Área barrida (m2)</td>
<td>8825</td>
<td>10207</td>
<td>12469</td>
</tr>
<tr>
<td>Vel. Rotación operación (rpm)</td>
<td>12,95</td>
<td>12,95</td>
<td>11,59</td>
</tr>
</tbody>
</table>

5.2 PALAS

<table>
<thead>
<tr>
<th>Material</th>
<th>Material infusionado en resina epoxy.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitud (m)</td>
<td></td>
</tr>
<tr>
<td>G106 IA 2.5-2.625 MW</td>
<td>52 m</td>
</tr>
<tr>
<td>G114 IIA 2.5-2.625 MW</td>
<td>56 m</td>
</tr>
<tr>
<td>G126 IIIA 2.5-2.625 MW</td>
<td>62 m</td>
</tr>
<tr>
<td>Cuerda de pala (máxima / mínima) (m)</td>
<td></td>
</tr>
<tr>
<td>G106 IA 2.5-2.625 MW</td>
<td>3,984 m</td>
</tr>
<tr>
<td>G114 IIA 2.5-2.625 MW</td>
<td>3,984 m</td>
</tr>
<tr>
<td>G126 IIIA 2.5-2.625 MW</td>
<td>3,984 m</td>
</tr>
<tr>
<td>Torsión (º)</td>
<td></td>
</tr>
<tr>
<td>G106 IA 2.5-2.625 MW</td>
<td>Max 25 Min -1,5</td>
</tr>
<tr>
<td>G114 IIA 2.5-2.625 MW</td>
<td>Max 25 Min -1,5</td>
</tr>
<tr>
<td>G126 IIIA 2.5-2.625 MW</td>
<td>Max 25 Min -1,5</td>
</tr>
</tbody>
</table>
5.3 CARCASA

<table>
<thead>
<tr>
<th>Dimensiones aprox. (m)</th>
<th>4,200 x 3,975 x 11,200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>Composite de matriz orgánica reforzado con fibra de vidrio</td>
</tr>
</tbody>
</table>

5.4 BUJE

<table>
<thead>
<tr>
<th>Material</th>
<th>Fundición nodular</th>
</tr>
</thead>
</table>

5.5 EJE PRINCIPAL

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Eje forjado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soporte del eje</td>
<td>Fundición nodular</td>
</tr>
</tbody>
</table>

5.6 BASTIDOR DELANTERO

<table>
<thead>
<tr>
<th>Material</th>
<th>Fundición nodular</th>
</tr>
</thead>
</table>
5.7 SISTEMA DE GIRO

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Corona de orientación con cojinete de fricción</th>
</tr>
</thead>
</table>

5.8 GRUPO HIDRAULICO

<table>
<thead>
<tr>
<th>Presión de trabajo (bar)</th>
<th>220</th>
</tr>
</thead>
</table>

5.9 TORRE

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Tronco-cónica tubular</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>Acero al carbono estructural</td>
</tr>
<tr>
<td>Tratamiento superficial</td>
<td>Pintada</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Altura del buje (opciones estándar) (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>72 (tres tramos de acero. Solo en G106 IA)</td>
</tr>
<tr>
<td>80 (tres tramos de acero)</td>
</tr>
<tr>
<td>84 (tres tramos de acero. Solo en G106 IIIA)</td>
</tr>
<tr>
<td>93 (cuatro tramos de acero)</td>
</tr>
<tr>
<td>102 (cuatro tramos de acero. Solo en G106 IIIA)</td>
</tr>
<tr>
<td>125 (cinco tramos de acero)</td>
</tr>
</tbody>
</table>
5.10 MULTIPLICADORA

<table>
<thead>
<tr>
<th>Tipo</th>
<th>2 etapas planetarias / 1 paralela</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratio</td>
<td></td>
</tr>
<tr>
<td>G106 IA / G114 IIA</td>
<td>G126 IIIA</td>
</tr>
<tr>
<td>1:129,7 (50Hz)</td>
<td>1:96,6 (50Hz)</td>
</tr>
<tr>
<td>1:103,8 (60Hz)</td>
<td>1:115,93 (60Hz)</td>
</tr>
</tbody>
</table>

5.11 GENERADOR

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Doblemente alimentado con rotor bobinado y anillos rozantes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potencia nominal (kW)</td>
<td>2625 (estátor + rótor)</td>
</tr>
<tr>
<td>Tensión (Vac)</td>
<td>690</td>
</tr>
<tr>
<td>Frecuencia (Hz)</td>
<td>50 / 60</td>
</tr>
</tbody>
</table>

5.12 FRENO MECÁNICO

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Freno de disco</th>
</tr>
</thead>
</table>

5.13 TRANSFORMADOR

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Trifásico, seco encapsulado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potencia nominal</td>
<td>Diferentes opciones a consultar</td>
</tr>
<tr>
<td>Tensión en media tensión</td>
<td>Diferentes opciones a consultar</td>
</tr>
<tr>
<td>Frecuencia (Hz)</td>
<td>50 / 60</td>
</tr>
<tr>
<td>Clase de aislamiento</td>
<td>F o H</td>
</tr>
</tbody>
</table>
5.14 PESOS APROXIMADOS

<table>
<thead>
<tr>
<th>Góndola</th>
<th>G106 IA 2.5-2.625 MW</th>
<th>G114 IIA 2.5-2.625 MW</th>
<th>G126 IIIA 2.5-2.625 MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso góndola (t)</td>
<td>105</td>
<td>105</td>
<td>105</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rotor</th>
<th>G106 IA 2.5-2.625 MW</th>
<th>G114 IIA 2.5-2.625 MW</th>
<th>G126 IIIA 2.5-2.625 MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso rotor (t)</td>
<td>26,8 (sin palas)</td>
<td>26,8 (sin palas)</td>
<td>28,8 (sin palas)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Peso torres (t)</th>
<th>Tipo Brida</th>
<th>G106 IA 2.5-2.625 MW</th>
<th>G114 IIA 2.5-2.625 MW</th>
<th>G126 IIIA 2.5-2.625 MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altura de torre</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72 m</td>
<td>T</td>
<td>133</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>80 m</td>
<td>T</td>
<td>156</td>
<td></td>
<td></td>
</tr>
<tr>
<td>84 m</td>
<td>T</td>
<td>170</td>
<td>194</td>
<td></td>
</tr>
<tr>
<td>93 m</td>
<td>T</td>
<td>194</td>
<td>234</td>
<td></td>
</tr>
<tr>
<td>102 m</td>
<td>T</td>
<td>234</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125 m</td>
<td>T</td>
<td>394</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTA:
- Se incluyen los pesos de las torres estándar.
- Estos pesos no incluyen la celda de media tensión y el armario GROUND.
- Todos estos pesos son genéricos o aproximados y pueden variar.

6 RESTRICCIONES GENERALES

- Todos los datos mostrados son válidos para condiciones al nivel del mar y densidad de aire estándar.
- Durante los periodos de vientos bajos, es de esperar un aumento del consumo de potencia para el calentamiento y la deshumidificación de la góndola.
- Respecto a la acumulación de gran cantidad de hielo en las palas y otros componentes del aerogenerador, es de esperar interrupciones en la operación. Asimismo, la combinación de vientos altos con las siguientes condiciones de altas temperaturas, bajas temperaturas, baja densidad y/o bajo voltaje de red, puede ocurrir una disminución de la potencia nominal para asegurar que las condiciones térmicas de algunos componentes principales como la multiplicadora, generador, transformador, cables de potencia, etc. se mantengan dentro de los límites.
- Generalmente se recomienda que la tensión de red eléctrica se mantenga tan cerca del nominal como sea posible.
• En caso de pérdida de tensión eléctrica y muy bajas temperaturas, se debe esperar un cierto tiempo para el calentamiento antes de que el aerogenerador comience a operar.

• Si el terreno, dentro de un radio de 100 m en torno a un aerogenerador, tiene una pendiente de más de 10º, podrían ser necesarias consideraciones particulares.

• Los aerogeneradores **Gamesa 2.5-2.625 MW** (modelos G106 IA, G114 IIA y G126 IIIA) están preparados para operar hasta 2500 m sobre el nivel del mar. Hasta 1000 m el aerogenerador opera en condiciones de plena potencia, a partir de 1000 m el aerogenerador opera en condiciones de producción con “derating” en potencia en función de la temperatura ambiente. Además, en los emplazamientos situados sobre el nivel del mar el riesgo de congelación se verá aumentado.

• Todos los parámetros de arranque y parada descritos (temperaturas, velocidades de viento...) llevan asociados una histéresis en el sistema de control. Esto puede suponer en ciertas condiciones la parada del aerogenerador, aún cuando los parámetros ambiente instantáneos estén dentro de los límites especificados.

• Las intermitentes o rápidas fluctuaciones de la frecuencia de la red eléctrica pueden causar serios problemas al aerogenerador.

• Las caídas de la tensión eléctricas no deberán ocurrir más de 52 veces al año.

• Debido a los cambios y actualizaciones en nuestros productos, Gamesa se reserva el derecho a cambiar las especificaciones.
APLICABILIDAD

- **Atributos de producto**

<table>
<thead>
<tr>
<th>Modelo</th>
<th>G106 - 2.5 MW - 2.625 MW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G114 - 2.5 MW - 2.625 MW</td>
</tr>
<tr>
<td></td>
<td>G126 - 2.5 MW - 2.625 MW</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tensión de servicio</th>
<th>ALL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frecuencia</td>
<td>ALL</td>
</tr>
<tr>
<td>Temperatura</td>
<td>ALL</td>
</tr>
<tr>
<td>Polvo</td>
<td>ALL</td>
</tr>
<tr>
<td>Corrosión</td>
<td>ALL</td>
</tr>
<tr>
<td>Convertidor de Potencia</td>
<td>ALL</td>
</tr>
<tr>
<td>Sistema de Orientación</td>
<td>ALL</td>
</tr>
</tbody>
</table>

- **Atributos de componente**

| Operación PLC | ALL |

REGISTRO DE CAMBIOS

<table>
<thead>
<tr>
<th>Rev.</th>
<th>Autor</th>
<th>Fecha</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>GROJO</td>
<td>13/07/15</td>
<td>Versión inicial</td>
</tr>
</tbody>
</table>

"El idioma original de este documento es el español. En caso de discrepancia entre una traducción y el original prevalece siempre el documento en español."
ÍNDICE

1 CARTA DE LUBRICACIÓN ... 3
 1.1 RODAMIENTOS DE LAS PALAS ... 3
 1.1.1 LISTADO DE LUBRICANTES ... 3
 1.2 RODAMIENTOS DEL EJE PRINCIPAL ... 3
 1.2.1 LISTADO DE LUBRICANTES ... 3
 1.3 MULTIPLICADORA ... 3
 1.3.1 LISTADO DE LUBRICANTES ... 3
 1.4 GRUPO HIDRÁULICO .. 4
 1.4.1 LISTADO DE LUBRICANTES ... 4
 1.5 GENERADOR .. 4
 1.5.1 LISTADO DE LUBRICANTES ... 4
 1.6 SISTEMA DE ELEVACIÓN DE CARGAS. GRúa ... 4
 1.7 MOTORREDUCTORES .. 4
 1.7.1 LISTADO DE LUBRICANTES ... 4
 1.8 DIENTES DE LA CORONA DEL SISTEMA DE ORIENTACIÓN ... 5
 1.8.1 LISTADO DE LUBRICANTES ... 5
 1.9 ELEMENTOS DESLIZANTES DEL SISTEMA DE ORIENTACIÓN .. 5
 1.9.1 LISTADO DE LUBRICANTES ... 5
1 CARTA DE LUBRICACIÓN

El objeto de este documento es fijar la lubricación que se debe realizar en el aerogenerador.

1.1 RODAMIENTOS DE LAS PALAS

1.1.1 LISTADO DE LUBRICANTES

<table>
<thead>
<tr>
<th>Denominación</th>
<th>Código Gamesa</th>
<th>Cantidad por rodamiento</th>
<th>Comentarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grasa</td>
<td>GP021978</td>
<td>3500 g (*)</td>
<td>Para todos los fabricantes de rodamientos</td>
</tr>
</tbody>
</table>

Tabla 1: Listado de posibles lubricantes para el rodamiento de pala

NOTA:

(*) Para poder inyectar en cada engrasador la cantidad de lubricante preciso, se dividirá la cantidad total de lubricante por el número de engrasadores del rodamiento.

1.2 RODAMIENTOS DEL EJE PRINCIPAL

1.2.1 LISTADO DE LUBRICANTES

<table>
<thead>
<tr>
<th>Denominación</th>
<th>Código Gamesa</th>
<th>Cantidad por rodamiento</th>
<th>Comentarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grasa</td>
<td>GP144559</td>
<td>4000 g</td>
<td>Rodamiento delantero (engrase 12 meses)</td>
</tr>
<tr>
<td>Grasa</td>
<td>GP144559</td>
<td>4000 g</td>
<td>Rodamiento trasero (engrase 12 meses)</td>
</tr>
</tbody>
</table>

Tabla 2: Listado de posibles lubricantes para los rodamientos delantero y trasero del eje principal

1.3 MULTIPLICADORA

NOTA:

Queda permitida la miscibilidad de los aceites minerales (GP007395 y GP051944) entre sí, eliminando la necesidad de realizar el procedimiento de flushing previo.

Si se realiza la sustitución de aceite entre uno de tipo mineral y otro de tipo sintético (o viceversa), es necesario realizar el procedimiento de flushing previo.

1.3.1 LISTADO DE LUBRICANTES

<table>
<thead>
<tr>
<th>Denominación</th>
<th>Código Gamesa</th>
<th>Cantidad</th>
<th>Comentarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aceite mineral</td>
<td>GP007395</td>
<td>(**)</td>
<td>No válido para aerogeneradores de baja temperatura</td>
</tr>
<tr>
<td>Aceite mineral</td>
<td>GP051944</td>
<td>(**)</td>
<td>No válido para aerogeneradores de baja temperatura</td>
</tr>
<tr>
<td>Aceite sintético</td>
<td>GP012777</td>
<td>(**)</td>
<td>Válido para todo tipo de temperaturas</td>
</tr>
<tr>
<td>Aceite sintético</td>
<td>GP051945</td>
<td>(**)</td>
<td>Válido para todo tipo de temperaturas</td>
</tr>
<tr>
<td>Aceite sintético</td>
<td>GP051946</td>
<td>(**)</td>
<td>Válido para todo tipo de temperaturas</td>
</tr>
<tr>
<td>Aceite sintético</td>
<td>GP051947</td>
<td>(**)</td>
<td>Válido para todo tipo de temperaturas</td>
</tr>
</tbody>
</table>

Tabla 3: Listado de posibles lubricantes para la multiplicadora
NOTA:

(**) Confirmar en la placa de características de la multiplicadora y añadir al dato en todos los casos 50 l (para el circuito de refrigeración y filtrado).

1.4 GRUPO HIDRÁULICO

1.4.1 LISTADO DE LUBRICANTES

<table>
<thead>
<tr>
<th>Denominación</th>
<th>Código Gamesa</th>
<th>Cantidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aceite</td>
<td>GP007381</td>
<td>290 l</td>
</tr>
<tr>
<td>Aceite</td>
<td>GP012887</td>
<td>290 l</td>
</tr>
<tr>
<td>Aceite</td>
<td>GP012886</td>
<td>290 l</td>
</tr>
</tbody>
</table>

Tabla 4: Listado de posibles lubricantes para el grupo hidráulico

1.5 GENERADOR

1.5.1 LISTADO DE LUBRICANTES

<table>
<thead>
<tr>
<th>Denominación</th>
<th>Código Gamesa</th>
<th>Cantidad</th>
<th>Comentarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grasa</td>
<td>149191</td>
<td>211 g</td>
<td>Para rodamiento delantero</td>
</tr>
<tr>
<td>Grasa</td>
<td>149191</td>
<td>211 g</td>
<td>Para rodamiento trasero</td>
</tr>
</tbody>
</table>

Tabla 5: Listado de posibles lubricantes para el Generador

1.6 SISTEMA DE ELEVACIÓN DE CARGAS. GRÚA

NOTA:

La grúa del sistema de elevación de cargas está lubricada de por vida.

1.7 MOTORREDUCTORES

1.7.1 LISTADO DE LUBRICANTES

Este listado de lubricantes es válido para los siguientes modelos de motorreductores:

1) Comer
2) Bonfiglioli
3) Brevini

<table>
<thead>
<tr>
<th>Denominación</th>
<th>Código Gamesa</th>
<th>Cantidad</th>
<th>Comentarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aceite</td>
<td>149107</td>
<td>14 l</td>
<td>Bonfiglioli</td>
</tr>
<tr>
<td>Aceite</td>
<td>149107</td>
<td>10 l</td>
<td>Comer</td>
</tr>
<tr>
<td>Aceite</td>
<td>149107</td>
<td>9 l</td>
<td>Brevini</td>
</tr>
</tbody>
</table>

Tabla 6: Listado de posibles lubricantes para los motorreductores del sistema de orientación
1.8 DIENTES DE LA CORONA DEL SISTEMA DE ORIENTACIÓN

1.8.1 LISTADO DE LUBRICANTES

<table>
<thead>
<tr>
<th>Denominación</th>
<th>Código Gamesa</th>
<th>Cantidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grasa</td>
<td>GP009909</td>
<td>1000 g</td>
</tr>
</tbody>
</table>

Tabla 7: Listado de posibles lubricantes para los dientes de la corona

1.9 ELEMENTOS DESLIZANTES DEL SISTEMA DE ORIENTACIÓN

1.9.1 LISTADO DE LUBRICANTES

<table>
<thead>
<tr>
<th>Denominación</th>
<th>Código Gamesa</th>
<th>Cantidad</th>
<th>Comentarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grasa</td>
<td>GP007373</td>
<td>(***</td>
<td></td>
</tr>
<tr>
<td>Grasa</td>
<td>GP123031</td>
<td>(***</td>
<td>Solo para aerogeneradores de baja temperatura</td>
</tr>
</tbody>
</table>

Tabla 8: Listado de posibles lubricantes para los elementos deslizantes de la corona

NOTA:

(***) Cantidad en función del tipo de elementos deslizantes:
- Elementos deslizantes axiales: 30 g/engrasador (14 engrasadores) = 420 g
- Elementos deslizantes radiales: 5 g/engrasador (7 engrasadores) = 35 g
Buenos Aires, 15 de julio de 2016

Sres.
Organismo Provincial para el Desarrollo Sostenible

Ref.: Declaración Jurada – Instalaciones Libre de PCB

De mi mayor consideración,

Me dirijo a Ud. en mi carácter de apoderado de GREENWIND S.A., con domicilio en Ortiz de Ocampo 3302, edificio 4, Ciudad Autónoma de Buenos Aires, empresa titular del Proyecto Eólico denominado “Parque Eólico Corti”.

Por medio de la presente, y en carácter de declaración jurada, informo que los equipos aerogeneradores, los transformadores y los equipos de la Estación Transformadora a instalarse para la construcción y operación del Parque Eólico Corti a ubicarse en Bahía Blanca serán libres de policloruros de bifenilos (PCBs) y que no se almacenarán aparatos que contengan PCBs en el predio, en cumplimiento con lo establecido en la Resolución SPA 1118/12.

Sin otro particular, saludos a Ud. atentamente,

[Signatures]

[Signature]
Apoderado

[Signature]
APOTERADO