

CONTENIDO

			Pág.
5	CAR.	ACTERIZACIÓN DEL ÁREA DE INFLUENCIA	1
5.2		MEDIO BIÓTICO	1
	5.2.1	Ecosistemas	1
	5.2.1	.1 Grandes biomas	1
	5.2.2	Flora	1
5.2	5.2.2	.1 Resultados	23
	5.2.3	Especies Amenazadas y/o en veda	206
	Caracte	rización de la flora epífita, rupícola y facultativa terrestre.	207
	5.2.4		
	5.2.5	Análisis de fragmentación.	278
Bib	liograf		295

Versión 1 – agosto de 2018.

LISTA DE TABLAS

Pag
Tabla 1 Grandes Biomas identificados en el en Área de Influencia del Proyecto. 1
Tabla 2. Distribución de los Ecosistemas identificados en el en Área de Influencia del Proyecto
Tabla 3 Coberturas de la tierra presentes en el área de intervención y de influencia para el Tramo San Juan — Pedregal
Tabla 4 Error de muestreo en el área de influencia por ecosistema para el Proyecto doble calzada Pasto — Rumichaca, Tramo San Juan — Pedregal 14
Tabla 5. Composición florística de la Vegetación secundaria alta del Hidrobioma Nudo de los pastos 24
Tabla 6 Abundancias, dominancias y frecuencias de la Vegetación secundaria alta del Hidrobioma Nudo de los pastos 26
Tabla 7 composición florística por estrato de la Vegetación secundaria alta del Hidrobioma Nudo de los pastos
Tabla 8 Frecuencias abundancias, categoría de tamaño e índice de regeneración natural para la Vegetación secundaria alta del Hidrobioma Nudo de los pastos 31
Tabla 9 Índice de valor de importancia ampliado IVIA% para la Vegetación secundaria alta del Hidrobioma Nudo de los pastos
Tabla 10 Índice de Sociabilidad para la Vegetación secundaria alta del Hidrobioma Nudo de los pastos 36 Tabla 11 Índices de diversidad calculados para la Vegetación secundaria alta del Hidrobioma Nudo de los pastos 37
Tabla 12 Composición florística de la Vegetación secundaria baja del Hidrobioma Nudo de los pastos 39 Tabla 13 Abundancia Frecuencia, Categoría de tamaño relativas e Índice de regeneración natural (Rn%) por
especie en la Vegetación secundaria baja del Hidrobioma Nudo de los pastos 40
Tabla 14 Posición sociológica por especie Abundancia Frecuencia, de la Vegetación secundaria baja del
Hidrobioma Nudo de los pastos42
Tabla 15 Índices de diversidad calculados para la Vegetación secundaria baja del Hidrobioma Nudo de los pastos46
Tabla 16. Composición florística de la Vegetación secundaria alta del Hidrobioma Patía 46
Tabla 17. Abundancias, dominancias y frecuencias de la Vegetación secundaria alta del Hidrobioma Patía 48 Tabla 18 Composición florística de la Regeneración natural de la vegetación secundaria alta del Hidrobioma Patía
Tabla 19 Abundancia, frecuencia y categoría de tamaño de la regeneración natural de la vegetación secundaria alta del Hidrobioma Patía51
Tabla 20 Índice de valor de importancia ampliado para la Vegetación secundaria alta del Hidrobioma Patía52
Tabla 21. Índice de Sociabilidad para la Vegetación secundaria alta del Hidrobioma Patía 55
Tabla 22. Índices de diversidad calculados para la Vegetación secundaria alta del Hidrobioma Patía 56
Tabla 23 Composición florística de Vegetación secundaria baja del Hidrobioma Patía 56
Tabla 24 Índice de regeneración natural- Vegetación secundaria baja del Hidrobioma Patía 58
Tabla 25 Categoría de tamaño de las especies de Regeneración Natural del Hidrobioma Patía 63
Tabla 26 Índices de Diversidad de Vegetación secundaria baja del Hidrobioma Patía65
Tabla 27 Composición florística en el Bosque ripario66
Tabla 28 Abundancia, frecuencia y dominancia relativas para el Bosque ripario68

CONCESIONARIA VIAL UNIÓN DEL SUR

Tabla 29 Composición Florística de la regeneración natural en el bosque ripario	_ 70
Tabla 30 Abundancia, frecuencia y categoría de tamaño para la regeneración natural del Bosque ripario	_ 71
Tabla 31 Índice de valor de importancia ampliado para el Bosque ripario	_ 73
Tabla 32 Grado de sociabilidad de las especies del Bosque ripario	_ 79
Tabla 33 Índices de diversidad para el Bosque ripario	_ 80
Tabla 34 Composición florística del Bosque denso bajo de tierra firme del Orobioma Andino Nudo de los	
pastos	_ 81
Tabla 35 Abundancia, dominancia y frecuencia para el Bosque denso bajo de tierra firme del Orobioma	
Andino Nudo de los pastos	_ 83
Tabla 36 Composición florística para regeneración natural en el Bosque denso alto andino.	_ 86
Tabla 37 Abundancia, Frecuencia y Categoría de tamaño para la Regeneración natural en el Bosque densalto andino	o _ 87
Tabla 38 Índice de Valor de importancia ampliado para el Bosque denso alto andino	_ 89
Tabla 39 Grado de Sociabilidad de las especies del Bosque denso alto andino	_ 93
Tabla 40 índices de diversidad para el Bosque denso bajo de tierra firme del Orobioma Andino Nudo de lo	S
pastos	_ 95
Tabla 41 Composición florística del Herbazal abierto rocoso del Orobioma Andino Nudo de los pastos	_ 96
Tabla 42 Frecuencia de las especies encontradas en el Herbazal abierto rocoso del Orobioma Andino Nude	o de
los Pastos	_ 97
Tabla 43 Estratificación vertical de la vegetación en Herbazal abierto rocoso del Orobioma Andino Nudo d	le
los Pastos	_ 99
Tabla 44 Índices de Diversidad de Herbazal abierto rocoso del Orobioma Azonal Andino Nudo de los Pasto	
	100
Tabla 45 Composición Florística de la vegetación secundaria alta del Orobioma Andino Nudo de los Pasto.	
	102
Tabla 46 Índice de valor de Importancia para la Vegetación secundaria alta	105
Tabla 47 Composición florística de la regeneración natural de la Vegetación secundaria alta	107
Tabla 48 Abundancia, frecuencia y categoría de tamaño para la regeneración natural de la Vegetación	400
secundaria alta	109
Tabla 49 Índice de valor de importancia ampliado para la Vegetación secundaria alta	110
Tabla 50 Grado de sociabilidad de las especies en la Vegetación secundaria alta	115
Tabla 51 Índices de Diversidad para la Vegetación secundaria alta	117
Tabla 52 Composición florística de la Vegetación secundaria baja del Orobioma Andino Nudo de los pasto	os 118
Tabla 53 Abundancia Frecuencia, Categoría de tamaño relativas e Índice de regeneración natural (Rn%) p	or
especie en la Vegetación secundaria baja del Orobioma Andino Nudo de los pastos	120
Tabla 54 Categoría de tamaño por especie para la Vegetación secundaria baja del Orobioma Andino Nude	o de
los pastos	124
Tabla 55 Índices de diversidad calculados para la Vegetación secundaria baja del Orobioma Andino Nudo	de
los pastos	126
Tabla 56 Composición florística del Bosque de galería y ripario del Orobioma Azonal Andino Nudo de los	
pastos	127
Tabla 57. Abundancia, dominancia y frecuencia para el Bosque ripario del Orobioma Azonal Andino Nudo	de
los pastos	129

CONCESIONARIA VIAL UNIÓN DEL SUR

Tabla 58 Composición florística de la regeneración natural en el Bosque Ripario del Orobioma Azonal Andino Nudo de los pastos
Tabla 59 Valores de Frecuencia, Abundancia, Categoría de tamaño e índice de Regeneración natural relativos
en el Bosque Ripario del Orobioma Azonal Andino Nudo de los pastos
Tabla 60 Valores de IVI% Posición sociológica Ps%, Índice de regeneración natural Rn% e IVI ampliado IVIA%
en el Bosque Ripario del Orobioma Azonal Andino Nudo de los pastos.
Tabla 61 Valores para índice de Sociabilidad por especie en el Bosque Ripario del Orobioma Azonal Andino
Nudo de los pastos.
Tabla 62. Índices de diversidad para el Bosque Ripario del Orobioma Azonal Andino Nudo de los pastos _ 139
Tabla 63 Composición florística del Herbazal abierto rocoso del orobioma Azonal Andino Nudo de los Pastos.
Tabla 64 Frecuencia de las especies encontradas en el Herbazal abierto rocoso del orobioma Azonal Andino Nudo de los Pastos
Tabla 65 Estratificación vertical de la vegetación en Herbazal abierto rocoso del orobioma Azonal Andino Nudo de los pastos146
Tabla 66 Índices de Diversidad de Herbazal rocoso del Orobioma Andino Nudo de los Pastos 148
Tabla 67 Composición florística de la vegetación secundaria alta del Orobioma Azonal Andino Nudo de los pastos 150
Tabla 68 Abundancia, dominancia y frecuencia para la vegetación secundaria alta del Orobioma Azonal
Andino Nudo de los pastos151
Tabla 69 Índice de sociabilidad por especie para la vegetación secundaria alta del Orobioma Azonal Andino
Nudo de los pastos
Tabla 70. Índices de diversidad para la vegetación secundaria alta del Orobioma Azonal Andino Nudo de los
pastos
Tabla 71 Composición florística de Vegetación secundaria baja del Orobioma Azonal Andino Nudo de los
Pastos158
Tabla 72 Índice de regeneración natural- Vegetación secundaria baja del Orobioma Azonal Andino Nudo de los Pastos.
Tabla 73 Categoría de tamaño de las especies de Regeneración Natural
Tabla 74 Índices de Diversidad de Vegetación secundaria baja del Orobioma Alto de los Andes 167
Tabla 75 Composición Florística de Vegetación Secundaria Alta en el Orobioma Medio de los Andes 168
Tabla 76 Estructura Horizontal en la Vegetación Secundaria Alta del Orobioma Azonal Andino Patía 169
Tabla 77 Posición Sociológica en Vegetación Secundaria Alta del Orobioma Medio de los Andes 172
Tabla 78 Índice de regeneración natural en Vegetación Secundaria Alta del Orobioma Azonal Andino Patía 176
Tabla 79 Índices de diversidad de la cobertura Vegetación Secundaria Alta del Orobioma Azonal Andino Patía 179
Tabla 80 Composición florística de Vegetación secundaria baja del Orobioma Azonal Andino Patía 180
Tabla 81 Índice de regeneración natural- Vegetación secundaria baja del Orobioma Azonal Andino Patía 182
Tabla 82 Categoría de tamaño de las especies de Regeneración Natural
Tabla 83 Índices de Diversidad de Vegetación secundaria baja del Orobioma Azonal Andino Patía 189
Tabla 84 Composición Florística de Vegetación Secundaria Alta en el Orobioma Medio de los Andes Error!
Bookmark not defined.
Tabla 85 Índice de valor de importancia para la Vegetación Secundaria Alta del Orobioma Azonal Subandino Patía Error! Bookmark not defined.

Tabia 86 Posicion Sociologica en Vegetación Secundaria Alta del Orobionia Azonal Subanamo Patia	EIIOI!
Bookmark not defined.	
Tabla 87 Latizal y regeneración natural de la Vegetación secundaria alta del Orobioma azonal Subandin	
Patía Error! Bookmark not de Tabla 88 Índices de diversidad de la cobertura Vegetación Secundaria Alta del Orobioma Azonal Subana	
Patía Error! Bookmark not de	,
Tabla 89. Composición Florística de Vegetación Secundaria Alta en el Orobioma Azonal Subandino Patía	
Tabla 90. Índice de Valor de Importancia (IVI) en Vegetación Secundaria Alta del Orobioma Azonal Suba	
Patía	_ 191
Subandino Patía	193 193
Tabla 92 Índices de diversidad para la cobertura Vegetación secundaria alta del Orobioma Azonal Subai	
Patía	196
Tabla 5.98 Especies vegetales amenazadas o en veda dentro del área de influencia del proyecto	_ 206
Tabla 5.99 Especies registradas en el área del proyecto que se encuentran en alguna categoría de amen	
	207
Tabla 5.100 Coordenadas de las parcelas caracterizadas en las 13 coberturas presentes en el Área del	_
proyecto	_ 207
Tabla 5.101 Índices de diversidad alfa aplicados a la flora epífita, rupícola y facultativo terrestre por	
cobertura y en toda el área del proyecto	_ 242
Tabla 5.103 Índice de similitud de Bray-Curtis expresando la diversidad beta vertical de las especies	
vasculares de hábito epífito registradas en el área del proyecto.	_ 244
Tabla 5.104 Índice de similitud de Bray-Curtis expresando la diversidad beta vertical de las especies no	
vasculares de hábito epífito registradas en el área del proyecto.	_ 245
Tabla 5.105 Índice de similitud de Bray-Curtis expresando la diversidad beta horizontal de las especies	
epífitas, rupícolas y terrestres vasculares y no vasculares registradas en el área del proyecto	_ 246
Tabla 5.105 Composición las especies vasculares de hábito epífito por cobertura y en toda el área del	
proyecto	_ 247
Tabla 5.106 Composición las especies no vasculares de hábito epífito por cobertura y en toda el Área de	
proyecto	_ 253
Tabla 5.108 Composición de las especies vasculares de hábito rupícola y facultativo terrestre por cobert	-
en toda el área del proyecto	_ 262
en el área del proyecto.	_ 266
Tabla 5.109 Especies registradas en el área del proyecto que se encuentran en alguna categoría de ame	naza. 271
Tabla 5.110 Usos de las especies identificadas en el Área de Influencia del proyecto	_ 272
Tabla 5.111 Coberturas de la tierra para los dos escenarios	_ 279
Tabla 5.112 Resultados de las métricas realizadas para cada escenario	_ 284
Tabla 5.113 Categorías de fragmentación identificadas para las coberturas naturales en los dos escenar	rios
analizados	_ 288
Tabla 5.114 Contexto paisajístico identificado para los parches de vegetación natural	_ _ 291

LISTA DE FIGURAS

Figura 1 Distribución de los grandes biomas en el área de influencia Figura 2 Distribución de los biomas en el área de influencia	
Figura 2 Distribución de los biomas en el área de influencia	
Figura 3 Distribución de los ecosistemas para el área de influencia (Fuente: INGETEC S.A.	., 2018)
Figura 4 Coberturas de la tierra presentes en el Área de influencia del Proyecto vial doble	
Rumichaca, tramo San Juan Pedregal	
Figura 5 Curva de acumulación cobertura Vegetación secundaria baja del Hidrobioma N	udo de los Pastos 1
Figura 6 Curva de acumulación cobertura Vegetación secundaria baja del Hidrobioma Po	atía 1
Figura 7 Curva de acumulación cobertura Herbazal abierto rocoso del Orobioma Andino	Nudo de los Pastos 1
Figura 8 Curva de acumulación cobertura Vegetación secundaria baja del Orobioma Ana Pastos	dino Nudo de los 2
Figura 9 Curva de acumulación cobertura Vegetación secundaria baja del Orobioma Azo	nal Andino Patía_ 2
Figura 10 Curva de acumulación cobertura Vegetación secundaria baja del Orobioma Az los Pastos	onal Andino Nudo d
Figura 11 Curva de acumulación cobertura Herbazal abierto rocoso del Orobioma Azona Pastos	l Andino Nudo de lo. 2
Figura 12 Distribución de géneros y especies por familia de la Vegetación secundaria alto	a del Hidrobioma
Nudo de los pastos	2
Figura 13 Abundancias, dominancias y frecuencias de la Vegetación secundaria alta del los pastos	Hidrobioma Nudo do 2
Figura 14 índice de posición sociológica Ps% por especies para la Vegetación secundaria Nudo de los pastos	alta del Hidrobioma 2
Figura 15 Perfil de vegetación secundaria alta del Hidrobioma Nudo de los pastos	
Figura 16 Frecuencias abundancias, categoría de tamaño e índice de regeneración natur Vegetación secundaria alta del Hidrobioma Nudo de los pastos	•
Figura 17 Índice de valor de importancia ampliado IVIA% para la Vegetación secundaria Nudo de los pastos	alta del Hidrobioma 3
Figura 18 Distribución por clases Diamétricas para la Vegetación secundaria alta del Hid pastos	robioma Nudo de lo 3
Figura 19 Distribución por clases Altimétricas para la Vegetación secundaria alta del Hid pastos	robioma Nudo de lo 3
Figura 20 Distribución de especies y géneros por familia en la Vegetación secundaria baj Nudo de los pastos.	ia del Hidrobioma 4
Figura 21 Abundancia Frecuencia y Categoría de tamaño relativo por especie en la Vege baja del Hidrobioma Nudo de los pastos.	
Figura 22 Perfil de vegetación secundaria baja del hidrobioma nudo de los pastos	
Figura 23 Número de individuos por clase diamétrica de la Vegetación secundaria baja a	del Hidrobioma Nudo
de los pastos.	4

CONCESIONARIA VIAL UNIÓN DEL SUR

Figura 24 Numero de individuos por clase altimétrica de la Vegetación secundaria baja del Hidrobioma Nudo
de los pastos 45
Figura 25. Distribución de géneros y especies por familia de la Vegetación secundaria alta del Hidrobioma
Patía 47
Figura 26. Abundancias, dominancias y frecuencias de la Vegetación secundaria alta del Hidrobioma Patía 48
Figura 27. Índice de posición sociológica Ps% por especies para la Vegetación secundaria alta del Hidrobioma
Patía49
Figura 28 Perfil de la vegetación secundaria alta del Hidrobioma Patía50
Figura 29 Índice de la regeneración natural de la Vegetación secundaria alta del Hidrobioma Patía 52
Figura 30 Índice de valor de importancia ampliado para las siete primeras especies de la Vegetación
secundaria alta del Hidrobioma Patía53
Figura 31. Distribución por clases Diamétricas para la Vegetación secundaria alta del Hidrobioma Patía 54
Figura 32. Distribución por clases Altimétricas para la Vegetación secundaria alta del Hidrobioma Patía 54
Figura 33 Riqueza de géneros y especies de la vegetación secundaria baja del hidrobioma Patía 57
Figura 34 Abundancia relativa de las especies de Vegetación secundaria baja del Hidrobioma Patía 59
Figura 35 Frecuencia relativa de las especies de Vegetación secundaria baja del Hidrobioma Patía 59
Figura 36 Índice de regeneración natural Vegetación secundaria baja del Hidrobioma Patía 60
Figura 37 Perfil de Vegetación Secundaria Baja del Hidrobioma Patía61
Figura 38 Distribución por clase diamétrica de la Vegetación secundaria baja del Hidrobioma Patía 62
Figura 39 Distribución por clases de altura en la vegetación secundaria baja del Hidrobioma Patía 63
Figura 40 Categoría de tamaño de las especies de la vegetación secundaria baja del Hidrobioma Patía 64
Figura 41 Distribución de géneros y especies por familia para el Bosque ripario 67
Figura 42 Índice de valor de importancia para el Bosque ripario69
Figura 43 Posición sociológica para las siete primeras especies del Bosque ripario70
Figura 44 Índice de regeneración natural del Bosque ripario 73
Figura 45 Índice de valor de importancia para las diez especies más importantes del Bosque Ripario del
Orobioma Andino Nudo de los Pastos76
Figura 46 Perfil de vegetación para el bosque de galería y ripario del Orobioma Andino Nudo de los pastos 77
Figura 47 Distribución diamétrica del Bosque ripario 78
Figura 48 Distribución altimétrica del Bosque ripario 78
Figura 49 Distribución de géneros y especies por familia para el Bosque denso bajo de tierra firme del
Orobioma Andino Nudo de los pastos82
Figura 50 Distribución del Índice de valor de importancia (IVI %) para el Bosque denso bajo de tierra firme del
Orobioma Andino Nudo de los pastos84
Figura 51 Posición sociológica para las siete primeras especies del Bosque denso alto andino85
Figura 52 Perfil de vegetación para el bosque denso del Orobioma andino nudo de los pastos 86
Figura 53 Índice de regeneración natural para el Bosque denso alto andino89
Figura 54 Índice de valor de importancia para las diez primeras especies en el Bosque denso alto andino _ 91
Figura 55 Número de individuos por clase diamétrica para el Bosque denso bajo de tierra firme del Orobioma
Andino Nudo de los pastos92
Figura 56 Número de individuos por clase altimétrica para el Bosque denso bajo de tierra firme del Orobioma
Andino Nudo de los pastos93
Figura 57 Distribución de géneros y especies por familia del Herbazal abierto rocoso del Orobioma Andino
Nudo de los Pastos 97

CONCESIONARIA VIAL UNIÓN DEL SUR

Figura 58 Especies con mayor Frecuencia relativa en el Herbazal abierto rocoso del Orobioma Andino Nuo de los Pastos	do 98
Figura 59 Estratificación vertical de la vegetación en Herbazal abierto rocoso del Orobioma Andino Nudo	_
los Pastos	99
Figura 60 Perfil del Herbazal abierto rocoso del Orobioma Andino Nudo de los Pastos	_ <i>99</i> 100
Figura 61 Distribución de género y especies por familia para la Vegetación secundaria alta	104
Figura 62 Índice de Valor de Importancia de la Vegetación secundaria alta	104
Figura 63 Posición sociológica para las siete primeras especies de la Vegetación secundaria alta	100
Figura 64 Índice de regeneración natural en la Vegetación secundaria alta	110
Figura 65 Índice de valor de importancia ampliado para las diez primeras especies de la Vegetación	110
secundaria alta	112
Figura 66 Perfil de vegetación para la vegetación secundaria alta del orobioma andino nudo de los pasto.	
Figura 67 Distribución por clase diamétrica en la Vegetación secundaria alta	114
Figura 68 Distribución altimétrica en la Vegetación secundaria alta	115
Figura 69 Distribución de especies y géneros por familia en la Vegetación secundaria baja del Orobioma	113
Andino Nudo de los Pastos	119
Figura 70 Abundancia, Frecuencia y Categoría de tamaño relativas por especie en la Vegetación secunda	
baja del Orobioma Andino Nudo de los pastos	121
Figura 71 Perfil para la Vegetación secundaria baja del Orobioma Andino Nudo de los Pastos	122
Figura 72 Número de individuos por clase diamétrica para la Vegetación secundaria baja del Orobioma	122
Andino Nudo de los pastos	123
Figura 73 Número de individuos por clase altimétrica para la Vegetación secundaria baja del Orobioma	123
Andino Nudo de los pastos	124
Figura 74. Distribución de géneros y especies por familia para el Bosque ripario del Orobioma Azonal Ana	
Nudo de los pastos	128
Figura 75 Distribución del Índice de valor de importancia (IVI%) por especies en el Bosque Ripario del	120
Orobioma Azonal Andino Nudo de los pastos	130
Figura 76 Posición sociológica por especie en el Bosque Ripario del Orobioma Azonal Andino Nudo de los	130
pastos	131
Figura 77 Perfil de vegetación para el Bosque de Galería de Orobioma Azonal Andino Nudo de los pastos	
Figura 78 Valores de Frecuencia, Abundancia, Categoría de tamaño e índice de Regeneración natural	
relativos en el Bosque Ripario del Orobioma Azonal Andino Nudo de los pastos.	134
Figura 79 Valores de IVI% Posición sociológica Ps%, Índice de regeneración natural Rn% e IVI ampliado IV	'IA%
en el Bosque Ripario del Orobioma Azonal Andino Nudo de los pastos.	136
Figura 80 Número de individuos por clase diamétrica para el Bosque Ripario del Orobioma Azonal Andino	
Nudo de los pastos	137
Figura 81 Número de individuos por clase altimétrica para el Bosque Ripario del Orobioma Azonal Andino	
Nudo de los pastos	138
Figura 82 Riqueza específica y genérica de las familias más representativas en el Herbazal abierto rocoso	del
orobioma Azonal Andino Nudo de los Pastos	142
- Figura 83 Especies con mayor Frecuencia relativa en el Herbazal abierto rocoso del orobioma Azona.	I
Andino Nudo de los Pastos	145
Figura 84 Estratificación vertical de la vegetación en Herbazal abierto rocoso del orobioma Azonal And	lino
Nudo de los pastos	145
Figura 85 Perfil del herbazal abierto rocoso del Orobioma Azonal Andino Nudo de los Pastos	148

CONCESIONARIA VIAL UNIÓN DEL SUR

Figura 86 Distribución de generos y especies por familia para la vegetación secundaria alta del Orobioma
Azonal Andino Nudo de los pastos
Figura 87 Distribución del Índice de valor de importancia (IVI%) por especies en la vegetación secundaria alto del Orobioma Azonal Andino Nudo de los pastos15
Figura 88 Posición sociológica por especie para la vegetación secundaria alta del Orobioma Azonal Andino
Nudo de los pastos 15
Figura 89 Perfil de vegetación para la vegetación secundaria alta del Orobioma Azonal Andino Nudo de los
Pastos15
Figura 90 Número de individuos por clase diamétrica para la vegetación secundaria alta del Orobioma Azonal
Figura 91 Número de individuos por clase altimétrica para la vegetación secundaria alta del Orobioma Azonal Andino Nudo de los pastos
Figura 92 Abundancia relativa de las especies de Vegetación secundaria baja del orobioma Azonal Andino Nudo de los Pastos 16
Figura 93 Frecuencia relativa de las especies de Vegetación secundaria baja del orobioma Azonal Andino
Nudo de los Pastos 16
Figura 94 Índice de regeneración natural Vegetación secundaria baja del orobioma Azonal Andino Nudo de los Pastos.
Figura 95 Perfil para la Vegetación secundaria baja del orobioma Azonal Andino Nudo de los Pastos 16
Figura 96 Distribución por clase diamétrica de la Vegetación secundaria baja del orobioma Azonal Andino
Nudo de los Pastos16
Figura 97 Distribución por clases de altura en la vegetación secundaria del orobioma Azonal Andino Nudo de
los Pastos 16
Figura 98 Categoría de tamaño de las especies de la vegetación secundaria del orobioma azonal andino
Nudo de los Pastos 16
Figura 99 Índice De Valor De Importancia de Fustales en Vegetación Secundaria Alta del Orobioma Azonal
Andino Patía 17
Figura 100 Distribución por clases diamétricas en Vegetación Secundaria Alta del Orobioma Azonal Andino
Patía17
Figura 101 Posición Sociológica de los fustales de la Vegetación Secundaria Alta del Orobioma Azonal Andino
Patía17
Figura 102 Estratificación arbórea de Vegetación Secundaria Alta del Orobioma Azonal Andino Patía 17 Figura 103 Perfil de Vegetación Secundaria Alta del Orobioma Azonal Andino Patía 17
<u></u>
Figura 104 Distribución altimétrica de los fustales de Vegetación Secundaria Alta del Orobioma Azonal Andino Patía
Figura 105 Grado de sociabilidad para la vegetación Secundaria Alta del Orobioma Azonal Andino Patía 17
Figura 106 Índice de regeneración natural en Vegetación Secundaria Alta del Orobioma Azonal Andino Patía 17 17
Figura 107 Abundancia de la regeneración natural en Vegetación Secundaria Alta del Orobioma Azonal Andino Patía 17
Figura 108 Frecuencia de la regeneración natural en Vegetación Secundaria Alta del Orobioma Azonal Andino Patía 17
Figura 109 Riqueza de géneros y familias de la vegetación secundaria baja del Orobioma Azonal Andino Patí
18

Versión 1 – agosto de 2018.

UNIÓN DEL SUPERIOR DE LA COMPANION DEL SUPERIOR DE LA COMPANION D

Figura 110 Abundancia relativa de las especies de Vegetación secundaria baja del orobioma Azonal Andino
Patía 183
Figura 111 Frecuencia relativa de las especies de Vegetación secundaria baja del orobioma Azonal Andino
Patía 183
Figura 112 Índice de regeneración natural Vegetación secundaria baja del orobioma Azonal Andino Patía 184
Figura 113 Distribución por clase diamétrica de la Vegetación secundaria baja del orobioma Azonal Andino
Patía 185
Figura 114 Distribución por clases de altura en la vegetación secundaria baja del orobioma Azonal Andino
Patía 186
Figura 115 Categoría de tamaño de las especies de la vegetación secundaria baja del orobioma azonal
andino Patía 187
Figura 116 Perfil de la Vegetación secundaria baja del orobioma azonal andino Patía 188
Figura 117 Índice De Valor De Importancia en Vegetación Secundaria Alta del Orobioma Azonal Subandino
Patía Error! Bookmark not defined.
Figura 118 Distribución por clases diamétricas en Vegetación Secundaria Alta del Orobioma Azonal
Subandino Patía Error! Bookmark not defined.
Figura 119 Posición Sociológica de los fustales de la Vegetación Secundaria Alta del Orobioma Azonal
Subandino Patía Error! Bookmark not defined.
Figura 120 Estratificación arbórea de Vegetación Secundaria Alta del Orobioma Azonal Subandino Patía
Error! Bookmark not defined.
Figura 121 Perfil de vegetación Secundaria Alta del Orobioma Azonal Subandino Patía_ Error! Bookmark not
defined.
Figura 122 Distribución altimétrica de los fustales de Vegetación Secundaria Alta del Orobioma Azonal
Subandino Patía Error! Bookmark not defined.
Subandino Patía Error! Bookmark not defined. Figura 123 Índice de sociabilidad en las especies de fustales del Orobioma Azonal Subandino Patía Error!
Figura 123 Índice de sociabilidad en las especies de fustales del Orobioma Azonal Subandino Patía Error!
Figura 123 Índice de sociabilidad en las especies de fustales del Orobioma Azonal Subandino Patía Error! Bookmark not defined. Figura 124Distribución de géneros y especies por familia en Vegetación Secundaria Alta del Orobioma Azonal Subandino Patía 190
Figura 123 Índice de sociabilidad en las especies de fustales del Orobioma Azonal Subandino Patía Error! Bookmark not defined. Figura 124Distribución de géneros y especies por familia en Vegetación Secundaria Alta del Orobioma Azonal
Figura 123 Índice de sociabilidad en las especies de fustales del Orobioma Azonal Subandino Patía Error! Bookmark not defined. Figura 124Distribución de géneros y especies por familia en Vegetación Secundaria Alta del Orobioma Azonal Subandino Patía 190 Figura 125Índice de Valor de Importancia (IVI) en Vegetación Secundaria Alta del Orobioma Azonal Subandino Patía 192
Figura 123 Índice de sociabilidad en las especies de fustales del Orobioma Azonal Subandino Patía Error! Bookmark not defined. Figura 124Distribución de géneros y especies por familia en Vegetación Secundaria Alta del Orobioma Azonal Subandino Patía 190 Figura 125Índice de Valor de Importancia (IVI) en Vegetación Secundaria Alta del Orobioma Azonal
Figura 123 Índice de sociabilidad en las especies de fustales del Orobioma Azonal Subandino Patía Error! Bookmark not defined. Figura 124Distribución de géneros y especies por familia en Vegetación Secundaria Alta del Orobioma Azonal Subandino Patía 190 Figura 125Índice de Valor de Importancia (IVI) en Vegetación Secundaria Alta del Orobioma Azonal Subandino Patía 192 Figura 126 Índice de Posición sociológica por especie en Vegetación secundaria alta del Orobioma Azonal Subandino Patía 193
Figura 123 Índice de sociabilidad en las especies de fustales del Orobioma Azonal Subandino Patía Error! Bookmark not defined. Figura 124Distribución de géneros y especies por familia en Vegetación Secundaria Alta del Orobioma Azonal Subandino Patía 190 Figura 125Índice de Valor de Importancia (IVI) en Vegetación Secundaria Alta del Orobioma Azonal Subandino Patía 192 Figura 126 Índice de Posición sociológica por especie en Vegetación secundaria alta del Orobioma Azonal
Figura 123 Índice de sociabilidad en las especies de fustales del Orobioma Azonal Subandino Patía Error! Bookmark not defined. Figura 124Distribución de géneros y especies por familia en Vegetación Secundaria Alta del Orobioma Azonal Subandino Patía 190 Figura 125Índice de Valor de Importancia (IVI) en Vegetación Secundaria Alta del Orobioma Azonal Subandino Patía 192 Figura 126 Índice de Posición sociológica por especie en Vegetación secundaria alta del Orobioma Azonal Subandino Patía 193
Figura 123 Índice de sociabilidad en las especies de fustales del Orobioma Azonal Subandino Patía Error! Bookmark not defined. Figura 124Distribución de géneros y especies por familia en Vegetación Secundaria Alta del Orobioma Azonal Subandino Patía 190 Figura 125Índice de Valor de Importancia (IVI) en Vegetación Secundaria Alta del Orobioma Azonal Subandino Patía 192 Figura 126 Índice de Posición sociológica por especie en Vegetación secundaria alta del Orobioma Azonal Subandino Patía 193 Figura 127 Perfil de vegetación Secundaria Alta del Orobioma Azonal Subandino Patía 194
Figura 123 Índice de sociabilidad en las especies de fustales del Orobioma Azonal Subandino Patía Error! Bookmark not defined. Figura 124Distribución de géneros y especies por familia en Vegetación Secundaria Alta del Orobioma Azonal Subandino Patía 190 Figura 125Índice de Valor de Importancia (IVI) en Vegetación Secundaria Alta del Orobioma Azonal Subandino Patía 192 Figura 126 Índice de Posición sociológica por especie en Vegetación secundaria alta del Orobioma Azonal Subandino Patía 193 Figura 127 Perfil de vegetación Secundaria Alta del Orobioma Azonal Subandino Patía 194 Figura 128 Distribución por clase diamétrica en Vegetación secundaria alta del Orobioma Azonal Subandino
Figura 123 Índice de sociabilidad en las especies de fustales del Orobioma Azonal Subandino Patía Error! Bookmark not defined. Figura 124Distribución de géneros y especies por familia en Vegetación Secundaria Alta del Orobioma Azonal Subandino Patía 190 Figura 125Índice de Valor de Importancia (IVI) en Vegetación Secundaria Alta del Orobioma Azonal Subandino Patía 192 Figura 126 Índice de Posición sociológica por especie en Vegetación secundaria alta del Orobioma Azonal Subandino Patía 193 Figura 127 Perfil de vegetación Secundaria Alta del Orobioma Azonal Subandino Patía 194 Figura 128 Distribución por clase diamétrica en Vegetación secundaria alta del Orobioma Azonal Subandino Patía 195
Figura 123 Índice de sociabilidad en las especies de fustales del Orobioma Azonal Subandino Patía Error! Bookmark not defined. Figura 124Distribución de géneros y especies por familia en Vegetación Secundaria Alta del Orobioma Azonal Subandino Patía 190 Figura 125Índice de Valor de Importancia (IVI) en Vegetación Secundaria Alta del Orobioma Azonal Subandino Patía 192 Figura 126 Índice de Posición sociológica por especie en Vegetación secundaria alta del Orobioma Azonal Subandino Patía 193 Figura 127 Perfil de vegetación Secundaria Alta del Orobioma Azonal Subandino Patía 194 Figura 128 Distribución por clase diamétrica en Vegetación secundaria alta del Orobioma Azonal Subandino Patía 195 Figura 129 Distribución por clase altimétrica en Vegetación secundaria alta del Orobioma Azonal subandino Patía 195
Figura 123 Índice de sociabilidad en las especies de fustales del Orobioma Azonal Subandino Patía Error! Bookmark not defined. Figura 124Distribución de géneros y especies por familia en Vegetación Secundaria Alta del Orobioma Azonal Subandino Patía 190 Figura 125Índice de Valor de Importancia (IVI) en Vegetación Secundaria Alta del Orobioma Azonal Subandino Patía 192 Figura 126 Índice de Posición sociológica por especie en Vegetación secundaria alta del Orobioma Azonal Subandino Patía 193 Figura 127 Perfil de vegetación Secundaria Alta del Orobioma Azonal Subandino Patía 194 Figura 128 Distribución por clase diamétrica en Vegetación secundaria alta del Orobioma Azonal Subandino Patía 195 Figura 129 Distribución por clase altimétrica en Vegetación secundaria alta del Orobioma Azonal subandino Patía 196 Figura 5-133 Curva de acumulación de especies epífitas vasculares en la cobertura Bosque denso en el área del proyecto 214
Figura 123 Índice de sociabilidad en las especies de fustales del Orobioma Azonal Subandino Patía Error! Bookmark not defined. Figura 124Distribución de géneros y especies por familia en Vegetación Secundaria Alta del Orobioma Azonal Subandino Patía 190 Figura 125Índice de Valor de Importancia (IVI) en Vegetación Secundaria Alta del Orobioma Azonal Subandino Patía 192 Figura 126 Índice de Posición sociológica por especie en Vegetación secundaria alta del Orobioma Azonal Subandino Patía 193 Figura 127 Perfil de vegetación Secundaria Alta del Orobioma Azonal Subandino Patía 195 Figura 128 Distribución por clase diamétrica en Vegetación secundaria alta del Orobioma Azonal Subandino Patía 195 Figura 129 Distribución por clase altimétrica en Vegetación secundaria alta del Orobioma Azonal subandino Patía 196 Figura 5-133 Curva de acumulación de especies epífitas vasculares en la cobertura Bosque denso en el área del proyecto 214 Figura 5-134 Curva de acumulación de especies epífitas no vasculares en la cobertura Bosque denso en el
Figura 123 Índice de sociabilidad en las especies de fustales del Orobioma Azonal Subandino Patía Error! Bookmark not defined. Figura 124Distribución de géneros y especies por familia en Vegetación Secundaria Alta del Orobioma Azonal Subandino Patía 190 Figura 125Índice de Valor de Importancia (IVI) en Vegetación Secundaria Alta del Orobioma Azonal Subandino Patía 192 Figura 126 Índice de Posición sociológica por especie en Vegetación secundaria alta del Orobioma Azonal Subandino Patía 193 Figura 127 Perfil de vegetación Secundaria Alta del Orobioma Azonal Subandino Patía 194 Figura 128 Distribución por clase diamétrica en Vegetación secundaria alta del Orobioma Azonal Subandino Patía 195 Figura 129 Distribución por clase altimétrica en Vegetación secundaria alta del Orobioma Azonal subandino Patía 196 Figura 5-133 Curva de acumulación de especies epífitas vasculares en la cobertura Bosque denso en el área del proyecto 214 Figura 5-134 Curva de acumulación de especies epífitas no vasculares en la cobertura Bosque denso en el área del proyecto 215
Figura 123 Índice de sociabilidad en las especies de fustales del Orobioma Azonal Subandino Patía Error! Bookmark not defined. Figura 124Distribución de géneros y especies por familia en Vegetación Secundaria Alta del Orobioma Azonal Subandino Patía 190 Figura 125Índice de Valor de Importancia (IVI) en Vegetación Secundaria Alta del Orobioma Azonal Subandino Patía 192 Figura 126 Índice de Posición sociológica por especie en Vegetación secundaria alta del Orobioma Azonal Subandino Patía 193 Figura 127 Perfil de vegetación Secundaria Alta del Orobioma Azonal Subandino Patía 194 Figura 128 Distribución por clase diamétrica en Vegetación secundaria alta del Orobioma Azonal Subandino Patía 195 Figura 129 Distribución por clase altimétrica en Vegetación secundaria alta del Orobioma Azonal subandino Patía 196 Figura 5-133 Curva de acumulación de especies epífitas vasculares en la cobertura Bosque denso en el área del proyecto 214 Figura 5-134 Curva de acumulación de especies epífitas no vasculares en la cobertura Bosque denso en el área del proyecto 215 Figura 5-135 Curva de acumulación de especies epífitas vasculares en la cobertura Bosque denso en el área del proyecto 215
Figura 123 Índice de sociabilidad en las especies de fustales del Orobioma Azonal Subandino Patía Error Bookmark not defined. Figura 124Distribución de géneros y especies por familia en Vegetación Secundaria Alta del Orobioma Azonal Subandino Patía 190 Figura 125Índice de Valor de Importancia (IVI) en Vegetación Secundaria Alta del Orobioma Azonal Subandino Patía 192 Figura 126 Índice de Posición sociológica por especie en Vegetación secundaria alta del Orobioma Azonal Subandino Patía 193 Figura 127 Perfil de vegetación Secundaria Alta del Orobioma Azonal Subandino Patía 195 Figura 128 Distribución por clase diamétrica en Vegetación secundaria alta del Orobioma Azonal Subandino Patía 195 Figura 129 Distribución por clase altimétrica en Vegetación secundaria alta del Orobioma Azonal subandino Patía 195 Figura 5-133 Curva de acumulación de especies epífitas vasculares en la cobertura Bosque denso en el área del proyecto 214 Figura 5-134 Curva de acumulación de especies epífitas no vasculares en la cobertura Bosque denso en el área del proyecto 215 Figura 5-135 Curva de acumulación de especies epífitas vasculares en la cobertura Bosque de galería en el área del proyecto 215
Figura 123 Índice de sociabilidad en las especies de fustales del Orobioma Azonal Subandino Patía Error! Bookmark not defined. Figura 124Distribución de géneros y especies por familia en Vegetación Secundaria Alta del Orobioma Azonal Subandino Patía 190 Figura 125Índice de Valor de Importancia (IVI) en Vegetación Secundaria Alta del Orobioma Azonal Subandino Patía 192 Figura 126 Índice de Posición sociológica por especie en Vegetación secundaria alta del Orobioma Azonal Subandino Patía 193 Figura 127 Perfil de vegetación Secundaria Alta del Orobioma Azonal Subandino Patía 194 Figura 128 Distribución por clase diamétrica en Vegetación secundaria alta del Orobioma Azonal Subandino Patía 195 Figura 129 Distribución por clase altimétrica en Vegetación secundaria alta del Orobioma Azonal subandino Patía 196 Figura 5-133 Curva de acumulación de especies epífitas vasculares en la cobertura Bosque denso en el área del proyecto 214 Figura 5-134 Curva de acumulación de especies epífitas no vasculares en la cobertura Bosque denso en el área del proyecto 215 Figura 5-135 Curva de acumulación de especies epífitas vasculares en la cobertura Bosque denso en el área del proyecto 215
Figura 123 Índice de sociabilidad en las especies de fustales del Orobioma Azonal Subandino Patía Error Bookmark not defined. Figura 124Distribución de géneros y especies por familia en Vegetación Secundaria Alta del Orobioma Azonal Subandino Patía 190 Figura 125Índice de Valor de Importancia (IVI) en Vegetación Secundaria Alta del Orobioma Azonal Subandino Patía 192 Figura 126 Índice de Posición sociológica por especie en Vegetación secundaria alta del Orobioma Azonal Subandino Patía 193 Figura 127 Perfil de vegetación Secundaria Alta del Orobioma Azonal Subandino Patía 195 Figura 128 Distribución por clase diamétrica en Vegetación secundaria alta del Orobioma Azonal Subandino Patía 195 Figura 129 Distribución por clase altimétrica en Vegetación secundaria alta del Orobioma Azonal subandino Patía 195 Figura 5-133 Curva de acumulación de especies epífitas vasculares en la cobertura Bosque denso en el área del proyecto 214 Figura 5-134 Curva de acumulación de especies epífitas no vasculares en la cobertura Bosque denso en el área del proyecto 215 Figura 5-135 Curva de acumulación de especies epífitas vasculares en la cobertura Bosque de galería en el área del proyecto 215

CONCESIONARIA VIAL UNIÓN DEL SUR

Figura 5-137 Curva de acumulación de especies epifitas vasculares en la cobertura Explotación de material
de construcción en el área del proyecto218
Figura 5-138 Curva de acumulación de especies epífitas no vasculares en la cobertura Explotación de
material de construcción en el área del proyecto218
Figura 5-139 Curva de acumulación de especies epífitas vasculares en la cobertura Mosaico de cultivos en el
área del proyecto219
Figura 5-140 Curva de acumulación de especies epífitas no vasculares en la cobertura Mosaico de cultivos en
el área del proyecto220
Figura 5-141 Curva de acumulación de especies epífitas vasculares en la cobertura Mosaico de pastos y
cultivos en el área del proyecto220
Figura 5-142 Curva de acumulación de especies epífitas no vasculares en la cobertura Mosaico de pastos y
cultivos en el área del proyecto221
Figura 5-143 Curva de acumulación de especies epífitas vasculares en la cobertura Plantación forestal en el
área del proyecto222
Figura 5-144 Curva de acumulación de especies epífitas no vasculares en la cobertura Plantación forestal en
el área del proyecto222
Figura 5-145 Curva de acumulación de especies epífitas vasculares en la cobertura Pastos limpios en el área
del proyecto 223
Figura 5-146 Curva de acumulación de especies epífitas no vasculares en la cobertura Pastos limpios en el
área del proyecto224
Figura 5-147 Curva de acumulación de especies epífitas vasculares en la cobertura Tejido urbano continúo en
el área del proyecto224
Figura 5-148 Curva de acumulación de especies epífitas no vasculares en la cobertura Tejido urbano continúo
en el área del proyecto 225
Figura 5-149 Curva de acumulación de especies epífitas vasculares en la cobertura Tejido urbano discontinúo
en el área del proyecto 226
Figura 5-150 Curva de acumulación de especies epífitas no vasculares en la cobertura Tejido urbano
discontinúo en el área del proyecto226
Figura 5-151 Curva de acumulación de especies epífitas vasculares en la cobertura Vegetación secundaria
alta en el área del proyecto227
Figura 5-152 Curva de acumulación de especies epífitas no vasculares en la cobertura Vegetación secundaria
alta en el área del proyecto228
Figura 5-153 Curva de acumulación de especies epífitas vasculares en la cobertura Vegetación secundaria
baja en el área del proyecto 228
Figura 5-154 Curva de acumulación de especies epífitas no vasculares en la cobertura Vegetación secundaria
baja en el área del proyecto
Figura 5-155 Curva de acumulación de especies rupícola y facultativo terrestre vasculares en la cobertura
Bosque denso en el área del proyecto230
Figura 5-156 Curva de acumulación de especies rupícola y facultativo terrestre vasculares en la cobertura
Bosque de galería en el área del proyecto230
Figura 5-157 Curva de acumulación de especies rupícola y facultativo terrestre no vasculares en la cobertura
Vegetación secundaria baja en el área del proyecto231
Figura 5-158 Curva de acumulación de especies rupícola y facultativo terrestre no vasculares en la cobertura
Mosaico de cultivos en el área del proyecto232

CONCESIONARIA VIAL UNIÓN DEL SUR

Figura 5-159 Curva de acumulación de especies rupícola y facultativo terrestre vasculares en la cobertura	7
Mosaico de pastos y cultivos en el área del proyecto	232
Figura 5-160 Curva de acumulación de especies rupícola y facultativo terrestre no vasculares en la cobert	ura
Mosaico de pastos y cultivos en el área del proyecto	233
Figura 5-161 Curva de acumulación de especies rupícola y facultativo terrestre vasculares en la cobertura	נ
Plantación forestal en el área del proyecto	234
Figura 5-162 Curva de acumulación de especies rupícola y facultativo terrestre no vasculares en la cobert	tura
Plantación forestal en el área del proyecto	234
Figura 5-163 Curva de acumulación de especies rupícola y facultativo terrestre vasculares en la cobertura	ד
Pastos limpios en el área del proyecto.	235
Figura 5-164 Curva de acumulación de especies rupícola y facultativo terrestre no vasculares en la obertu	ıra
Pastos limpios en el área del proyecto.	236
Figura 5-165 Curva de acumulación de especies rupícola y facultativo terrestre vasculares en la cobertura	ג
Tejido urbano continuo en el área del proyecto	236
Figura 5-166 Curva de acumulación de especies rupícola y facultativo terrestre no vasculares en la cobert	tura
Pastos limpios en el área del proyecto.	237
Figura 5-167 Curva de acumulación de especies rupícola y facultativo terrestre vasculares en la Vegetació	óη
secundaria baja en el área del proyecto.	238
Figura 5-168 Curva de acumulación de especies rupícola y facultativo terrestre no vasculares en la cobert	tura
Vegetación secundaria baja en el área del proyecto.	238
Figura 5-169 Curva de acumulación de especies rupícola y facultativo terrestre vasculares en la Vegetación	óη
secundaria alta en el área del proyecto.	239
Figura 5-170 Curva de acumulación de especies rupícola y facultativo terrestre no vasculares en la cobert	ura
Vegetación secundaria alta en el área del proyecto	240
Figura 5-171 Riqueza de especies epífitas, rupícolas y terrestres vasculares y no vasculares en el área del	
proyecto	241
Figura 5-172 Frecuencia/Abundancia de epífitas vasculares y no vasculares en el área del proyecto.	241
Figura 5-173 Dendrograma del comportamiento de la diversidad beta vertical de las especies vasculares	
registradas en el área del proyecto	245
Figura 5-174 Dendrograma del comportamiento de la diversidad beta vertical de las especies vasculares	
registradas en el área del proyecto	246
Figura 5-175 Dendrograma del comportamiento de la diversidad beta horizontal de las especies epífitas,	
rupícolas y terrestres vasculares y no vasculares registradas en el área del proyecto	247
Figura 5-176 Distribución de la riqueza de géneros y especies por familias de especies epífitas vasculares	
el área del proyecto	249
Figura 5-177 Abundancia de las especies vasculares de hábito epífito y facultativo terrestre en las cobertu	uras
del Área del proyecto	250
Figura 5-178 Abundancia de las especies vasculares de hábito epífito y facultativo terrestre en las cobertu	uras
del área del proyecto	251
Figura 5-179 Familias de especie epífitas no vasculares con la mayor riqueza en el área del proyecto	258
Figura 5-180 Frecuencia de las especies epífitas no vasculares en las coberturas del Área del proyecto	259
Figura 5-181 Frecuencia de las especies epífitas no vasculares registradas en el Área del proyecto.	260
Figura 5-182 Abundancia de las especies vasculares de hábito rupícola y facultativo terrestre y facultativo	0
terrestre en las coberturas del área del proyecto.	264

CONCESIONARIA VIAL UNIÓN DEL SUR

Versión 1 – agosto de 2018.

Figura 5-183 Abundancia de las especies vasculares de hábito rupícola y facultativo terrestre y facultativo	
terrestre en las coberturas del área del proyecto.	270
Figura 5-184 Coberturas de la tierra identificadas para el escenario Sin Proyecto (año 2017)	281
Figura 5-185 Coberturas de la tierra identificadas para el escenario Con Proyecto (área de intervención)_ 2	282
Figura 5-186 Procesos de cambio identificados entre los dos escenarios analizados (2017-proyecto)	283
Figura 5-187 Categorías de fragmentación identificadas para las coberturas naturales en el escenario sin	
proyecto	289
Figura 5-188 Categorías de fragmentación identificadas para las coberturas naturales en el escenario con	
proyecto	290

LISTA DE FOTOGRAFÍAS

	Pág
Fotografía 1 Estructura del Tejido urbano continúo para el área de influencia	5
Fotografía 2 Vía tipo 1 - Panamericana. Coordenadas: E: 955390 — N: 603185.	6
Fotografía 3 Estructura de los pastos limpios en el área de influencia del proyecto	
Fotografía 4 Estructura de los Mosaicos de cultivos en el área de influencia	
Fotografía 5 Estructura de los mosaicos de pastos y cultivos en el área de influencia	
Fotografía 6 Estructura del bosque ripario en el área de influencia	
Fotografía 7 Estructura del bosque denso alto andino	
Fotografía 8 Estructura de la plantación forestal para el área de influencia	
Fotografía 9 Estructura del herbazal abierto rocoso en el área de influencia	
Fotografía 10 Vegetación secundaria alta. Coordenadas: E: 956811 – N: 598817.	
Fotografía 11 Estructura de la vegetación secundaria baja para el área de influencia	12
Fotografía 12 Ríos presentes en el área de influencia	13
Fotografía 5-15 Pleurothallis pulchella (Kunth) Lindl. (Orchidaceae).	
Fotografía 5-16 Elleanthus sphaerocephalus Schltr. (Orchidaceae)	243
Fotografía 5-17 Usnea sp.2 (Parmeliaceae)	
Fotografía 5-18 Parmotrema dilatatum (Vain.) Hale (Parmeliaceae)	244
Fotografía 5-19 Tillandsia recurvata (L.) L. (Bromeliaceae).	
Fotografía 5-20 Tillandsia usneoides (L.). L. (Bromeliaceae).	
Fotografía 5-21 Tillandsia fendleri Griseb (Bromeliaceae).	
Fotografía 5-22 Tillandsia complanata Benth. (Bromeliaceae)	252
Fotografía 5-23 Usnea sp.2 (Parmeliaceae)	
Fotografía 5-24 Parmotrema dilatatum (Vain.) Hale (Parmeliaceae).	
Fotografía 5-25 Heterodermia sp. (Physciaceae).	261
Fotografía 5-26 Parmotrema sp. (Parmeliaceae).	
Fotografía 5-27 Usnea cf. rubicunda Stirt. (Parmeliaceae)	
Fotografía 5-28 Frullania ericoides (Nees ex Mart.) Mont. (Frullaniaceae).	
Fotografía 5-29 Pleurothallis pulchella (Kunth) Lindl (Orchidaceae).	264

CSH-1-AM-AM-EIA-G-0007-0 Versión 1 – agosto de 2018.

Fotografía 5-30 Elleanthus sphaerocephalus Schltr. (Orchidaceae).	264
Fotografía 5-31 Puya lehmanniana L.B. Sm. (Bromeliaceae).	265
Fotografía 5-32 Pleurothallis lamellaris Lindl. (Orchidaceae)	265
Fotografía 5-33 Epidendrum cf. colombianum A.D.Hawkes. (Orchidaceae).	265
Fotografía 5-34 Pleurothallis Iamellaris Lindl. (Orchidaceae)	265
Fotografía 5-35 Calymperes afzelii Sw. (Calymperaceae)	270
Fotografía 5-36 Rhizocarpon sp. (Rhizocarpaceae)	270
Fotografía 5-37 Calymperes cf. guildinguii Hook. & Grev. (Calymperaceae).	271
Fotografía 5-38 Acanthocoleus aberrans (Lindenb. & Gottsche) Kruijt (Lejeuneaceae)	271
Fotografía 5-13 Tala de Eucaliptos (Eucalyptus globulus) en la vereda El Culantro Municipio de Contadero	o (E:
950197 N: 594343)	277
Fotografía 5-14 Tutorado en cultivo de arveja (Pisum sativum L.), vereda Las Delicias Municipio de Conta	dero
(E: 593178 N: 950859).	277

Versión 1 – agosto de 2018.

5 CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA

5.2 MEDIO BIÓTICO

5.2.1 Ecosistemas

El análisis y la clasificación de las unidades ecosistémicas en el área de influencia del proyecto se realizó con base en el Mapa de Ecosistemas Continentales, Costeros y Marinos (MEC) escala 1:100.000 (IDEAM, 2017), en el cual se identificó la estructura jerárquica, es decir los Grandes Biomas, los Biomas, los Biomas -Unidades Bióticas (Bioma_IAvH) referenciados en el Manual de Compensaciones del Componente Biótico, y las coberturas de la Tierra del clasificadas según la metodología CORINE Land Cover adaptada para Colombia (IDEAM, 2010).

5.2.1.1 Grandes biomas

Los grandes biomas son definidos por Walter (1985) como ambientes uniformes que comparten similitudes en condiciones de temperatura, precipitación y altitud y pueden pertenecer a un zonobioma, orobioma o pedobioma. A partir del Mapa de Ecosistemas Continentales, Costeros y Marinos (MEC) escala 1:100.000 (IDEAM, IGAC, IAVH, Invemar, I.Sinchi e IIAP, 2017) se identifica que el territorio colombiano cuenta con la presencia de siete grandes biomas, registrándose en el área de área de influencia del proyecto tres de ellos, correspondientes al Orobioma Azonal del Zonobioma Húmedo Tropical, Orobioma del Zonobioma Humedo Tropical y Pedobioma del Zonobioma Humedo Tropical (Figura 1).

Los grandes biomas que registran una mayor representatividad en el área de influencia corresponden a los Orobiomas Azonal del Zonobioma Húmedo Tropical y Zonobioma Húmedo Tropical ocupando una proporción de 46,52% y 51,67% respectivamente. El el Pedobioma del Zonobioma Húmedo Tropical ocupa tan solo el 1,81% del área de influencia del proyecto (Tabla 1).

Tabla 1 Grandes Biomas identificados en el en Área de Influencia del Proyecto.

GRAN BIOMA	AREA (ha)	PROPORCIÓN (%)
Orobioma Azonal del Zonobioma Húmedo Tropical	1879,7	46,5
Orobioma del Zonobioma Humedo Tropical	2087,8	51,7
Pedobioma del Zonobioma Humedo Tropical	73,1	1,8
TOTAL	4040,6	100

Fuente: INGETEC S.A., 2018.

Versión 1 – agosto de 2018.

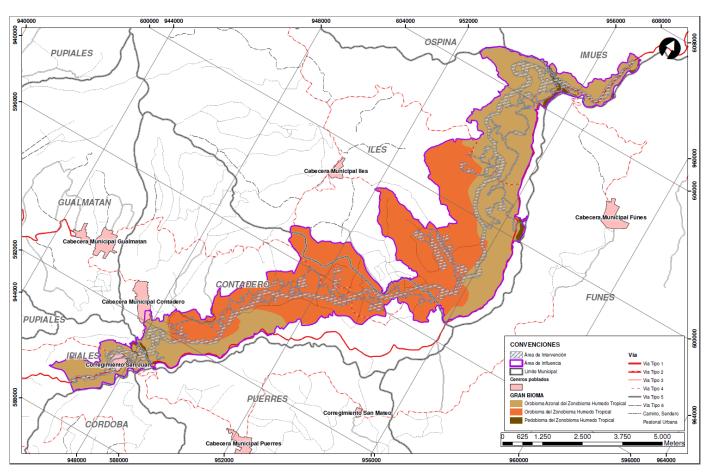


Figura 1 Distribución de los grandes biomas en el área de influencia

(Fuente: INGETEC S.A., 2018)

Versión 1 – agosto de 2018.

Biomas

Los biomas son definidos como grandes unidades bióticas que poseen una uniformidad fisonómica determinada por una formación madura y estable, siendo también diferenciables por factores climáticos como temperatura y pluviosidad (IDEAM, IGAC, IAVH, Invemar, I.Sinchi e IIAP, 2007).

La composición de biomas en el área de influencia del proyecto estuvo representada por siete categorías correspondientes a Hidrobioma Nudo de los Pastos, Hidrobioma Patía, Orobioma Andino Nudo de los Pastos, Orobioma Azonal Andino Nudo de los Pastos, Orobioma Azonal Andino Patía, Orobioma Azonal Subandino Nudo de los Pastos y Orobioma Azonal Subandino Patía. Para esta clasificación la mayor parte del territorio la ocupó el Orobioma Andino Nudo de los Pastos con una representatividad del 51,67%, seguido por el Orobioma Azonal Andino Nudo de los Pastos con el 40,50%; y en menor medida los biomas Hidrobioma Patía y Orobioma Azonal Subandino Nudo de los Pastos representado el 0,66% y 0,13% del área de influencia (Tabla 5.).

Tabla 5. Biomas identificados en el en Área de Influencia del Proyecto.

BIOMA	AREA (ha)	PROPORCIÓN (%)
Hidrobioma Nudo de los Pastos	46,34	1,15
Hidrobioma Patía	26,71	0,66
Orobioma Andino Nudo de los Pastos	2087,82	51,67
Orobioma Azonal Andino Nudo de los Pastos	1636,52	40,50
Orobioma Azonal Andino Patía	158,35	3,92
Orobioma Azonal Subandino Nudo de los Pastos	5,15	0,13
Orobioma Azonal Subandino Patía	79,69	1,97
TOTAL	4040,58	100

Fuente: INGETEC S.A., 2018

CSH-1-AM-AM-EIA-G-0007-0

Versión 1 – agosto de 2018.

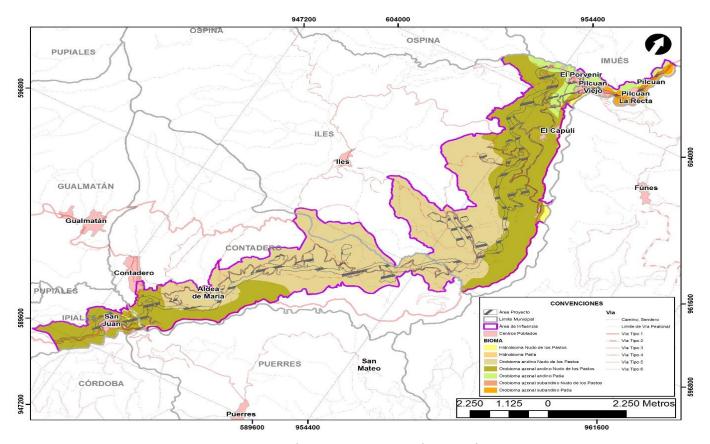


Figura 2 Distribución de los biomas en el área de influencia

(Fuente: INGETEC S.A., 2018)

Versión 1 – agosto de 2018.

Ecosistemas

El termino ecosistema ha presentado diferentes definicionesa través de los años, partiendo desde la definición de Frederick D. Clemments (1916) en la publicación "Plant Succesion: Ananalysis of the Development of Vegetation", y que constituyó el marco conceptual para el surgimiento del término ecosistema; sin embargo, Tansley (1935) es quien presenta por primera la definición de ecosistema, interpretándolo como el "complejo de organismos junto con los factores físicos de su medio ambiente". En la línea de tiempo intervinieron otros autores que realizaron aportes claves en la evolución del término ecosistema, entre los cuales se pueden mencionar Lindeman (1942), Whittaker (1962), Evans (1956), Margalef (1957), Odum (1953), Margalef (1963), Watt (1966), Jorgensen (1992), entre otros. Finalmente, para el desarrollo de este aparte se acoge la definición de ecosistema establecida por la Convención de Diversidad Biológica-CDB y adoptada en el Manual de Compensaciones del Componente Biótico (MINAMBIENTE, 2017), que considera al ecosistema como un "Complejo dinámico de comunidades vegetales, animales y de microorganismos en su medio no viviente, que interactúan como una unidad funcional materializada en un territorio, la cual se caracteriza por presentar una homogeneidad, en sus condiciones biofísicas y antrópicas".

La identificación de los ecosistemas realizada a partir del cruce entre las Unidades Bióticas (Bioma_IAVH) (IDEAM, IGAC, IAvH, Invemar, I.Sinchi e IIAP, 2017) y las Coberturas de la Tierra (IDEAM, 2010), permitió definir la presencia de 60 ecosistemas en el área de influencia del proyecto (Ver Figura 3, **Anexo Cartográfico, Mapa N° 22. Ecosistemas**).

De acuerdo con la distribución de los ecosistemas referenciados en el área de influencia, se pudo determinar que la mayor representación corresponde al Mosaico de Pastos y Cultivos del Orobioma Andino Nudo de los Pastos el cual cuenta con un superficie de 1818,04 ha y equivale al 44,99% del área de influencia total del proyecto; seguido se encuentra el Mosaico de Pastos y Cultivos del Orobioma Azonal Andino Nudo de los pastos con 970,71 ha, equivalentes al 24,02% y la Vegetación secundaria baja del Orobioma Azonal Andino Nudo de los pastos, la cual cuenta con 217,83 ha, que representan el 5,39%; siguiendo el orden de representación, se encuentra la Plantación forestal del Orobioma Azonal Andino Nudo de los Pastos que contribuye con 116,18 ha representado el 2,88% del espacio delimitado en el área de influencia. Los restantes ecosistemas identificados poseen áreas inferiores a las 100 ha y constituyen porcentajes inferiores al 2.1% (Ver Tabla 2).

Tabla 2. Distribución de los Ecosistemas identificados en el en Área de Influencia del Proyecto.

віома	ECOSISTEMA	AREA (ha)	PROPORCIÓN (%)
	Tejido urbano discontinuo del Hidrobioma Nudo de los pastos	2,97	0,07
	Pastos limpios del Hidrobioma Nudo de los pastos	0,96	0,02
	Mosaico de cultivos del Hidrobioma Nudo de los pastos	1,08	0,03
	Mosaico de pastos y cultivos del Hidrobioma Nudo de los pastos	4,46	0,11
Hidrobioma Nudo de	Plantación forestal del Hidrobioma Nudo de los pastos	7,51	0,19
los pastos	Ríos (50 m) del Hidrobioma Nudo de los pastos	9,08	0,22
	Red vial y territorios asociados del Hidrobioma Nudo de los pastos	1,43	0,04
	Explotación de materiales de construcción del Hidrobioma Nudo de los pastos	0,37	0,01
	Vegetación secundaria alta del Hidrobioma Nudo de los pastos	9,64	0,24
	Vegetación secundaria baja del Hidrobioma Nudo de los pastos	8,85	0,22

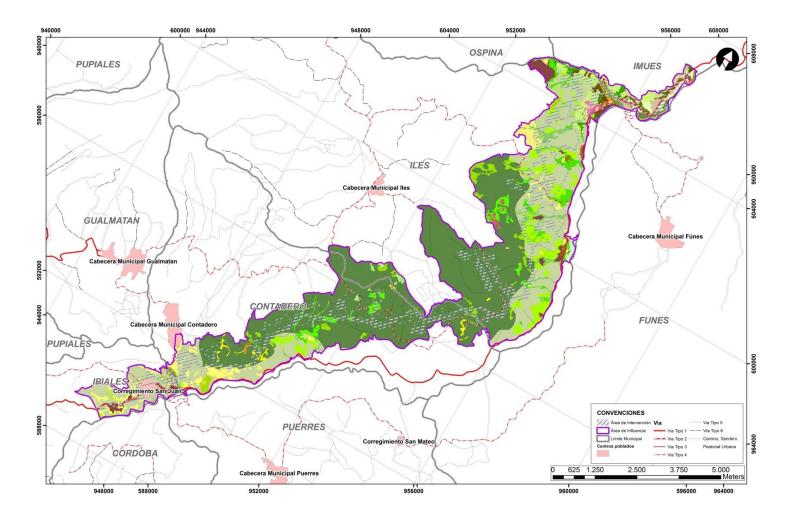
віома	ECOSISTEMA	AREA (ha)	PROPORCIÓN (%)
	Tejido urbano discontinuo del Hidrobioma Patía	7,27	0,18
	Mosaico de cultivos del Hidrobioma Patía	1,45	0,04
	Mosaico de pastos y cultivos del Hidrobioma Patía	1,72	0,04
Hidrobioma	Plantación forestal del Hidrobioma Patía	0,47	0,01
Patía	Ríos (50 m) del Hidrobioma Patía	4,98	0,12
	Red vial y territorios asociados del Hidrobioma Patía	0,26	0,01
	Vegetación secundaria alta del Hidrobioma Patía	0,93	0,02
	Vegetación secundaria baja del Hidrobioma Patía	9,63	0,24
	Tejido urbano discontinuo del Orobioma Andino Nudo de los pastos	3,1	0,08
	Pastos limpios del Orobioma Andino Nudo de los pastos	2,17	0,05
	Mosaico de cultivos del Orobioma Andino Nudo de los pastos	9,54	0,24
Orobioma	Mosaico de pastos y cultivos del Orobioma Andino Nudo de los pastos	1818,04	44,99
Andino	Bosque de galería y ripario del Orobioma Andino Nudo de los pastos	81,06	2,01
Nudo de	Plantación forestal del Orobioma Andino Nudo de los pastos	19,47	0,48
los pastos	Vegetación secundaria alta del Orobioma Andino Nudo de los pastos	67,7	1,68
	Vegetación secundaria baja del Orobioma Andino Nudo de los pastos	75,96	1,88
	Herbazal abierto rocoso del Orobioma Andino Nudo de los pastos	1,46	0,04
	Bosque denso altoandino del Orobioma Andino Nudo de los pastos	9,32	0,23
	Tejido urbano continuo del Orobioma Azonal Andino Nudo de los pastos	23,19	0,57
	Tejido urbano discontinuo del Orobioma Azonal Andino Nudo de los pastos	11,81	0,29
	Pastos limpios del Orobioma Azonal Andino Nudo de los pastos	50,33	1,25
	Mosaico de cultivos del Orobioma Azonal Andino Nudo de los pastos	55,14	1,36
	Mosaico de pastos y cultivos del Orobioma Azonal Andino Nudo de los pastos	970,71	24,02
Orobioma	Bosque de galería y ripario del Orobioma Azonal Andino Nudo de los pastos	64,42	1,59
Azonal	Plantación forestal del Orobioma Azonal Andino Nudo de los pastos	116,18	2,88
Andino – Nudo de	Ríos (50 m) del Orobioma Azonal Andino Nudo de los pastos	1,34	0,03
los pastos	Red vial y territorios asociados del Orobioma Azonal Andino Nudo de los pastos	19,87	0,49
	Explotación de materiales de construcción del Orobioma Azonal Andino Nudo de los pastos	5,58	0,14
	Vegetación secundaria alta del Orobioma Azonal Andino Nudo de los pastos	83,85	2,08
	Vegetación secundaria baja del Orobioma Azonal Andino Nudo de los pastos	217,83	5,39
	Herbazal abierto rocoso del Orobioma Azonal Andino Nudo de los pastos	16,28	0,4
	Tejido urbano discontinuo del Orobioma Azonal Andino Patía	17,36	0,43
	Pastos limpios del Orobioma Azonal Andino Patía	18,77	0,46
	Mosaico de pastos y cultivos del Orobioma Azonal Andino Patía	75,41	1,87
Orobioma	Plantación forestal del Orobioma Azonal Andino Patía	3,37	0,08
Azonal	Ríos (50 m) del Orobioma Azonal Andino Patía	0,5	0,01
Andino – Patía	Red vial y territorios asociados del Orobioma Azonal Andino Patía	0,01	0
7 4114	Explotación de materiales de construcción del Orobioma Azonal Andino Patía	5,65	0,14
	Vegetación secundaria alta del Orobioma Azonal Andino Patía	25,56	0,63
	Vegetación secundaria baja del Orobioma Azonal Andino Patía	11,72	0,29
Orobioma Azonal	Mosaico de pastos y cultivos del Orobioma Azonal Subandino Nudo de los pastos	3,58	0,09

Versión 1 – agosto de 2018.

ВІОМА	ECOSISTEMA	AREA (ha)	PROPORCIÓN (%)					
Subandino Nudo de los pastos	Ríos (50 m) del Orobioma Azonal Subandino Nudo de los pastos	1,57	0,04					
	Tejido urbano discontinuo del Orobioma Azonal Subandino Patía	19,86	0,49					
	Pastos limpios del Orobioma Azonal Subandino Patía	13,25	0,33					
Orobioma	Mosaico de cultivos del Orobioma Azonal Subandino Patía	2,12	0,05					
Azonal	Mosaico de pastos y cultivos del Orobioma Azonal Subandino Patía	12,27	0,3					
Subandino	Ríos (50 m) del Orobioma Azonal Subandino Patía	1,04	0,03					
Patía	Red vial y territorios asociados del Orobioma Azonal Subandino Patía	2,78	0,07					
	Vegetación secundaria alta del Orobioma Azonal Subandino Patía	1,83	0,05					
	Vegetación secundaria baja del Orobioma Azonal Subandino Patía	26,53	0,66					
·	TOTAL							

Fuente: INGETEC S.A., 2018.

De acuerdo con la composición de los biomas que conforman los ecosistemas en el área de influencia del proyecto, fue posible determinar que el Orobioma Azonal Andino y Azonal Subandino según datos presentados por el IDEAM (2017), registran el mayor grado de transformación en el territorio colombiano. En este sentido, el Orobioma Azonal Andino registra un 80,22% de área transformada, mientas el Orobioma Azonal Subandino alcanza un 78,87% de área transformada en Colombia, siendo la representatividad de los ecosistemas asociados a estas unidades bióticas en el área de influencia, equivalente a un total de 1879,71 ha, es decir el 46,52% de este espacio. Entre tanto, el Orobioma Andino también identificado en el área de análisis, posee un porcentaje de transformación alto en el territorio nacional del orden de 51,55%; representando en el área de influencia del proyecto una proporción el 51,67% con un área de 2087,81 ha. En contraste, en el área de influencia delimitada también se encuentra representado el bioma con menor grado de transformación en el territorio, y que corresponde a la categoría de Hidrobioma, cuya área de transformación solo presenta el 2,56% en Colombia; y que en el presente análisis está representado por las Unidades Bióticas Hidrobioma Nudo de los pastos e Hidrobioma Patía, conformando un área de 73,05 ha, equivalentes al 1,8% del área de influencia.


De lo anterior podemos inferir que el mayor porcentaje de área de influencia del proyecto, está representado por ecosistemas con alto grado de transformación y en un menor porcentaje por ecosistemas de áreas naturales, lo que es atribuible al alto grado de intervención antrópica en la zona, a causa del avance de actividades asociadas a la ampliación de la frontera agrícola, desarrollo de infraestructura y la extracción de materiales, entre otros.

CSH-1-AM-AM-EIA-G-0007-0

CSH-1-AM-AM-EIA-G-0007-0 Versión 1 – agosto de 2018.

Figura 3 Distribución de los ecosistemas para el área de influencia (Fuente: INGETEC S.A., 2018)

Fuente: INGETEC S.A., 2018

ESQUEMA APP N° 15 DE 2015

Versión 1 – agosto de 2018.

5.2.2 Flora.

Identificación y descripción de los diferentes tipos de coberturas de la tierra presentes en el área de estudio

La identificación y delimitación de las coberturas de la tierra presentes en el área de influencia del proyecto se realizó mediante la metodología *CORINE Land Cover* adaptada para Colombia (IDEAM, 2010), partiendo de las coberturas identificadas y clasificadas visualmente en una imagen WorldView capturada en enero 19 de 2015 con una resolución espectral de 4 bandas y espacial de 0.50 metros; en las zonas donde no había cobertura de esta imagen se usó como apoyo cuatro imágenes Rapideye tomadas en enero 27 de 2016 (tres imágenes) y febrero 21 de 2015 (una imagen), con una resolución espacial de 5 metros y espectral de 5 bandas, la fotointerpretación se realizó a una escala de trabajo 1: 8000.

Posteriormente, dichas coberturas identificadas fueron validadas y ajustadas por medio de recorridos al interior del área de influencia del proyecto vial.

Durante el desarrollo de la fase de campo fue necesario realizar algunas recolectas definitivas, con el fin de verificar con certeza la categoría taxonómica, los ejemplares fueron identificados y depositados en herbarios acreditados, los respectivos certificados se presentan en el **Anexo 9. Flora_Certificados de Herbario.**

En total, fueron identificados 14 tipos de coberturas de la tierra, en donde las unidades más representativas para el área de influencia corresponden a los Mosaicos de pastos y cultivos con un área de 2.886,197 ha (71.4%), seguido de la cobertura de Vegetación secundaria baja, con un área de 350,522 ha (8,6%) y vegetación secundaria alta con una extensión de 189,515 ha, es decir el 4,7% del área de influencia, la relación porcentual en cuanto a la representatividad de estas coberturas fue semejante para el área de intervención del proyecto vial (Ver Tabla 3).

A continuación, en la Tabla 3 se presentan las coberturas de la tierra identificadas para el área de influencia y de intervención del proyecto vial, así como su respectiva descripción. La espacialización de las mismas se observa en el Anexo Cartográfico, Mapa N° 23. Cobertura de la Tierra.

CSH-1-AM-AM-EIA-G-0007-0

Versión 1. agosto 2018

Tabla 3 Coberturas de la tierra presentes en el área de intervención y de influencia para el Tramo San Juan – Pedregal.

NIVEL 1	NIVEL 2	NIVEL 3	NIVEL 4	NIVEL 5	NIVEL 6	SIMBOLO	Área de intervención (ha)	% Área de Intervención	Área de Influencia (ha)	% Área de Influencia
	1.1. Zonas	1.1.1. Tejido urbano continuo				Tuc	3,110	0,484	23,186	0,574
	urbanizadas	1.1.2. Tejido urbano discontinuo				Tud	20,849	3,246	62,356	1,543
1. TERRITORIOS ARTIFICIALIZADOS	1.2. Zonas industriales o comerciales y redes de comunicación	1.2.2. Red vial, ferroviaria y terrenos	1.2.2.1. Red vial y territorios asociados			Rvta	7,681	1,196	24,353	0,603
	1.3. Zona extracción minera y escombreras	1.3.1. Zonas de extracción minera	1.3.1.5. Explotación de materiales de construcción			Emc	2,531	0,394	11,594	0,287
	2.3. Pastos	2.3.1. Pastos limpios				Pali	12,642	1,968	85,478	2,115
2. TERRITORIOS AGRÍCOLAS	2.4. Áreas	2.4.1. Mosaico de cultivos				Mcu	4,618	0,719	69,328	1,716
AGRICOLAS	agrícolas heterogéneas	2.4.2. Mosaico de pastos y cultivos				Мрс	484,236	75,393	2886,197	71,430
3. BOSQUES Y ÁREAS SEMINATURALES	2.1 Document	3.1.4. Bosque ripario				Br	8,198	1,276	145,480	3,600
	3.1. Bosques	3.1.1. Bosque denso	3.1.1.2. Bosque denso bajo	3.1.1.2.1. Bosque denso bajo	3.1.1.2.1.2. Bosque	Bda	0,298	0,046	9,319	0,231

CSH-1-AM-AM-EIA-G-0007-0

Versión 1. agosto 2018

NIVEL 1	NIVEL 2	NIVEL 3	NIVEL 4	NIVEL 5	NIVEL 6	SIMBOLO	Área de intervención (ha)	% Área de Intervención	Área de Influencia (ha)	% Área de Influencia
				de tierra firme	denso altoandino					
		3.1.5. Plantación forestal				Pf	25,217	3,926	147,006	3,638
	22 6	3.2.1. Herbazal	3.2.1.2. Herbazal abierto	3.2.1.2.2. Herbazal abierto rocoso		Har	0	0	17,74	0,439
	3.2. Áreas con vegetación herbácea y/o arbustiva	3.2.3. Vegetación	3.2.3.1. Vegetación secundaria alta			Vsa	26,615	4,144	189,515	4,690
	arbustiva	secundaria o en transición	3.2.3.2. Vegetación secundaria baja			Vsb	45,298	7,053	350,522	8,675
5. SUPERFICIES DE AGUA	5.1. Aguas continentales	5.1.1. Ríos (50m)				Ri	0,986	0,153	18,513	0,458
			TOTAL				642,28	100%	4.040,58	100%

Fuente: GEOCOL CONSULTORES S.A., 2017.

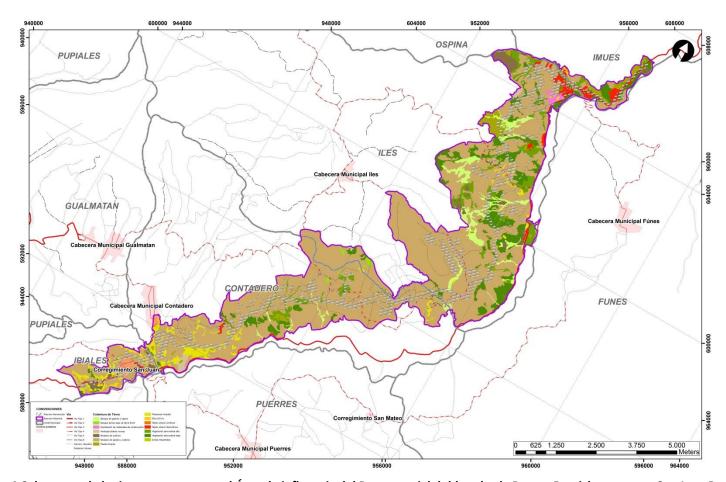


Figura 4 Coberturas de la tierra presentes en el Área de influencia del Proyecto vial doble calzada Pasto - Rumichaca, tramo San Juan Pedregal (Fuente: INGETEC S.A., 2018)

Versión 1 – agosto de 2018.

A continuación, se describen las coberturas de la tierra presentes en el área de influencia del Proyecto vial doble calzada Pasto - Rumichaca, tramo San Juan Pedregal.

Territorios artificializados

Los territorios artificializados comprenden las ciudades, poblaciones y áreas periféricas que se incorporan a las zonas urbanas debido a los procesos de expansión del territorio urbano y por cambio de uso del suelo para fines comerciales, industriales, de servicios y recreativos. En el área de influencia donde se realizó el estudio para el Proyecto vial se definieron varios territorios artificializados como Tejido urbano continuo y discontinuo, red vial con sus territorios asociados y áreas de explotación minera, dichas coberturas se describirán con mayor detalle a continuación.

Tejido urbano continuo (Tuc).

La ciudad de San Juan y la población de Pedregal se encuentra inmersas en este tramo de San Juan - Pedregal dentro del Proyecto vial doble calzada Pasto — Rumichaca. Esta unidad de cobertura representa el 0,574% del área de influencia, con un área de 23,186 ha., y 0,484% del área de intervención con 3,110 ha (Ver Fotografía 1).

Vereda el Porvenir Municipio de Imués. Coordenadas: E: 954297- N: 604925.

Tejido urbano continúo en Vereda el Porvenir Municipio de Imués. Coordenadas: E: 954309 – N: 604895.

Fotografía 1 Estructura del Tejido urbano continúo para el área de influencia

Fuente: GEOCOL CONSULTORES S.A., 2017.

Tejido urbano discontinuo (Tud).

El tejido urbano discontinuo representa los espacios conformados por edificaciones y zonas verdes, su distribución es de forma dispersa y discontinua, debido a que el resto de la matriz está conformada por vegetación. En el área de estudio el tejido urbano discontinuo corresponde a algunas casas y edificaciones

Versión 1 – agosto de 2018.

dispersas pertenecientes a las ciudades de San Juan y Pedregal del municipio de Ipiales. Corresponde al 1,543% del área de influencia (62,356 ha), 3,246 % del área de intervención (20,849 ha).

Red vial y territorios asociados (Rvta).

Dentro del área de estudio, esta categoría de cobertura incluye la infraestructura vial y territorios asociados a la vía Nacional Panamericana, descrita técnicamente en el Capítulo 3 del presente estudio. La cobertura de red vial y territorios asociados representó el 20,849 ha del área de influencia (0,603%) y 7,681 ha para el área de intervención (1,196%) (Fotografía 2).

Fotografía 2 Vía tipo 1 - Panamericana. Coordenadas: E: 955390 - N: 603185.

Fuente: GEOCOL CONSULTORES S.A., 2017

Explotación de materiales de construcción (Emc).

Esta unidad de cobertura comprende las zonas destinadas a la extracción y/o acumulación de materiales asociados con actividades de construcción. En el área de influencia, esta cobertura corresponde a un área de extracción de arena con una extensión de 11,594 ha (0,287%) en el área de influencia y 2,531 ha (0,394%) en el área de intervención.

Territorios agrícolas.

Los territorios agrícolas son áreas dedicadas a la producción de alimentos principalmente, ya sea que se encuentran con cultivos, con pastos o en rotación y/o descanso (barbecho). Dentro de esta categoría se encuentran las áreas dedicadas a cultivos permanentes, transitorios, áreas de pastos y zonas agrícolas heterogéneas, en las cuales también se pueden dar usos pecuarios además de los agrícolas.

Pastos limpios (Pali).

Las áreas de pastos limpios presentes en el área de influencia del estudio corresponden al 2,115% y comprende un área de 85,478 ha. Esta clase de cobertura se encuentra en zonas donde existían cultivos transitorios que se han dejado en descanso para que, al cabo de un tiempo, se usen de nuevo en otro tipo de cultivo. Es común encontrar esta cobertura asociada a cultivos, formando Mosaicos de cultivos y pastos, sin embargo, en algunas zonas se hallan en extensiones que pueden ser cartografiables. Para el área de intervención los pastos limpios representaron 1,968% con 12,642 ha (Fotografía 3).

Versión 1 – agosto de 2018.

Pastos limpios en áreas de descanso de cultivos transitorios.

Coordenadas: E: 953510 - N: 595838.

Pastos limpios en áreas de descanso de cultivos transitorios.

Coordenadas: E: 953510 - N: 595838.

Fotografía 3 Estructura de los pastos limpios en el área de influencia del proyecto

Fuente: GEOCOL CONSULTORES S.A., 2017.

Mosaico de cultivos (Mcu).

Esta clase de cobertura ocupó en el área de influencia 69,328 ha., correspondientes al 1,716% de la misma. Se caracteriza por incluir tierras ocupadas con cultivos transitorios y permanentes, en los cuales las parcelas son de tamaño pequeño con un patrón de distribución complejo, haciéndolo difícil de cartografiar individualmente. En dichos mosaicos se reportaron cultivos de arveja, papa, maíz y tomate de árbol entre otros. Para el área de intervención del proyecto vial, representó el 0,719% con 4,618 ha. (Ver Fotografía 4).

Mosaico de cultivos de cebolla y maíz. Coordenadas: E: 953995,3981 – N: 601298,7602.

Mosaico de cultivos de arveja y papa. Coordenadas: E: 952300,4298 N: 595959,3926.

Fotografía 4 Estructura de los Mosaicos de cultivos en el área de influencia

Versión 1 – agosto de 2018.

Fuente: GEOCOL CONSULTORES S.A., 2017.

Mosaico de pastos y cultivos (Mpc).

Los Mosaicos de pastos y cultivos, son la unidad de cobertura que mayor representación tiene en el área de estudio del proyecto vial en el tramo San Juan – Pedregal, ocupando un área de 2886,197 ha (71,430%) en el área de influencia. Esta clase de cobertura, está representada por cultivos de papa principalmente, cebolla, maíz y arveja (Ver Fotografía 5).

Cultivo de papa en medio de áreas de pastos limpios.

Coordenadas: E: 952154,866 - N: 596171,6132

Mosaico de pastos y cultivos. Coordenadas: E: 952085,6504 – N: 596334,0618

Fotografía 5 Estructura de los mosaicos de pastos y cultivos en el área de influencia

Fuente: GEOCOL CONSULTORES S.A., 2017.

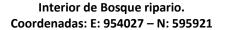
Bosques y áreas seminaturales.

Comprende las áreas naturales o seminaturales, constituidas principalmente por elementos arbóreos de especies nativas o exóticas. De acuerdo con la FAO, esta cobertura comprende los bosques naturales y las plantaciones.

Bosque ripario (Br).

Los bosques riparios corresponden a las coberturas de vegetación arbórea ubicada en las márgenes de los cursos de agua permanentes o temporales. Este tipo de cobertura está limitada por su amplitud, ya que bordea los cursos de agua y los drenajes naturales. En el área de influencia del proyecto vial, esta cobertura se presenta muy intervenida debido a la cercanía a las áreas urbanas. Esta unidad de cobertura cuenta con 145,480 ha representado el 3,6% del área de influencia, y 8,198 ha (1,27%) en el área de intervención del proyecto vial.

Algunas de las especies reportadas y que se destacaron durante los monitoreos de esta cobertura son: Weinmannia cochensis (encenillo) y Lafoensia acuminata (guayacán) (Ver Fotografía 6).



Versión 1 – agosto de 2018.

Vista de Bosque ripario en la Vereda Tablón alto del Municipio de Iles. Coordenadas: E: 954892 - N: 599222

Fotografía 6 Estructura del bosque ripario en el área de influencia

Fuente: GEOCOL CONSULTORES S.A., 2017.

Bosque denso altoandino (Bda).

El Bosque denso altoandino, ocupa 9,319 ha (0,231%) del área de influencia del estudio y 0,298 ha del área de intervención (0,046%). Está representado por pequeños relictos aislados que no presentan conexión entre sí, inmersos sobre una matriz de Mosaicos de pastos y cultivos, cobertura que domina en la zona. Estos relictos de bosque presentan especies vegetales de gran importancia ecológica y sirven como refugio para algunas especies de fauna silvestre.

Dentro de las especies vegetales halladas se reportaron como *Styrax* sp. (hojarasco), *Cestrum buxifolium* (tinto) y *Aegiphila odontophylla* (cedrillo). En la Fotografía 7 se observan los relictos de dicha cobertura.

Versión 1 – agosto de 2018.

Relicto de bosque denso altoandino. Coordenadas: E: 951754 – N: 595931

Relicto de bosque denso altoandino. Coordenadas: E: 952675 – N: 596988

Fotografía 7 Estructura del bosque denso alto andino

Fuente: GEOCOL CONSULTORES S.A., 2017.

Plantación forestal (Pf).

En el área de influencia del proyecto vial se reportó una cobertura 147,006 ha (3,638% del área de influencia), con plantaciones forestales de coníferas como Ciprés (*Cupressus lusitanica*) y Pino (*Pinus patula*) y de latifoliadas como el Eucalipto (*Eucalyptus* spp.). Estas plantaciones están establecidas con fines de reforestación protectora y se hallan a lo largo del área de estudio, muchas veces se encuentran combinadas con áreas de coberturas naturales. (Fotografía 8). Para el área de intervención las plantaciones forestales abarcaron 25,217 ha., equivalentes al 3,926% de la misma.

Plantación forestal en la vereda San francisco del Municipio Contadero. Coordenadas: E: 948957 – N: 591883.

Plantación forestal en la vereda San francisco del Municipio Contadero. Coordenadas: E: 948704 – N: 591564.

Fotografía 8 Estructura de la plantación forestal para el área de influencia

Versión 1 – agosto de 2018.

Fuente: GEOCOL CONSULTORES S.A., 2017.

Herbazal abierto rocoso (Har).

Corresponde a las áreas dominadas por vegetación natural de porte herbáceo, cuyo desarrollo acontece sobre sustratos rocosos y pedregosos que no retienen humedad (IDEAM, 2010). Se reportaron algunas especies como *Epidendrum* sp.1 (guamilche), *Pterocaulon virgatum* (falso frailejón) y *Monnina aestuans* (uvilán) (Fotografía 9). Dentro del área de influencia del proyecto, esta cobertura cuenta con 17,74 ha que corresponden al 0,439%. No se va a realizar intervención en esta cobertura.

Vegetación presente en el Herbazal abierto rocoso en la vereda La providencia del Municipio de Contadero.

Coordenadas: E: 949158 - N: 591452.

Vista del Herbazal abierto rocoso en la vereda La providencia del Municipio de Contadero.

Coordenadas: E: 949066 – N: 591447.

Fotografía 9 Estructura del herbazal abierto rocoso en el área de influencia

Fuente: GEOCOL CONSULTORES S.A., 2017.

Vegetación secundaria alta (Vsa).

La vegetación secundaria alta se halló en el 4,69% del área de influencia con una extensión de 189,515 ha. Se caracteriza por ser vegetación de porte arbóreo con dosel irregular por su estado sucesional intermedio con presencia de algunos individuos de porte arbustivo, lianas y enredaderas. Esta cobertura generalmente surge luego del estadio de vegetación secundaria baja, que a su vez se desarrolla luego de procesos de deforestación de bosques (Ver Fotografía 10). En el área de intervención representó el 4,14%, con 26,615 ha.

Versión 1 – agosto de 2018.

Fotografía 10 Vegetación secundaria alta. Coordenadas: E: 956811 - N: 598817.

Fuente: GEOCOL CONSULTORES S.A., 2017.

Vegetación secundaria baja (Vsb).

La vegetación secundaria baja se caracteriza por presentar individuos de porte arbustivo y herbáceo de ciclo corto, con presencia ocasional de árboles; esta corresponde a estados sucesionales iniciales después de procesos de deforestación de bosques. En el área de influencia del estudio se delimitó un área de 350,522 ha., la cual correspondió al 8,675%, mientras que para el área de intervención abarcó 45,298 ha (7,053%) (Fotografía 11).

Vegetación secundaria baja. Coordenadas: E: 955197 – N: 604916.

Vegetación secundaria baja. Coordenadas: E: 955280 – N: 604914.

Fotografía 11 Estructura de la vegetación secundaria baja para el área de influencia

Fuente: GEOCOL CONSULTORES S.A., 2017.

Versión 1 – agosto de 2018.

Superficies de agua.

Las superficies de agua están definidas según CORINE Land Cover (IDEAM, 2010) como cuerpos de aguas permanentes, intermitentes y estacionales que comprenden lagos, lagunas, ciénagas, depósitos y estanques naturales o artificiales de agua dulce, embalses y cuerpos de agua en movimiento, como los ríos y canales.

Ríos (Ri).

En el área de influencia del Proyecto vial se encuentra el Río Guáitara el cual hace parte de la gran cuenca del río Patía (orden 1) y esta a su vez pertenece al área hidrográfica del pacífico. Este cuenta con un área de 18,513 ha que corresponden al 0,458% del área de influencia y presenta un ancho de cauce de aproximadamente 14 m; (Ver Fotografía 12).

Río Guáitara Vereda Capulí del Municipio de Iles. Coordenadas: E: 955223,62 – N:603704,76

Río Guáitara Vereda Capulí del Municipio de lles. Coordenadas: E: 950513,94 – N: 592492,77.

Fotografía 12 Ríos presentes en el área de influencia

Fuente: GEOCOL CONSULTORES S.A., 2017.

Caracterización de los ecosistemas para el área de influencia

El levantamiento de información de campo de la vegetación se realizó a partir del análisis florístico y estructural, permitiendo conocer la composición de las especies, la estructura biológica, los rasgos físicos y su relación con el número de individuos, generando características particulares de la vegetación mediante el análisis de la estructura horizontal y vertical.

La estructura de la vegetación se entiende como el patrón espacial de distribución de las plantas (Barkman, 1979); cabe resaltar que la caracterización de una unidad vegetal se consigue mediante el análisis de su ordenamiento vertical y horizontal, que sigue un patrón de comportamiento de acuerdo con la cobertura estudiada; al igual que el análisis de su regeneración natural, que permite complementar el estudio.

El análisis estructural de cada una de las comunidades evaluadas pretende apreciar sociológicamente una muestra representativa. Mediante la estructura horizontal se busca evaluar el comportamiento de los arboles

Versión 1 – agosto de 2018.

individuales mediante el uso de índices y factores que expresan la ocurrencia de cada una de las especies, al igual que su importancia ecológica dentro del ecosistema. La estructura vertical indica la estratificación de cada cobertura, su categoría de acuerdo con su altura y su ordenación y distribución de acuerdo a su vista de perfil.

Estos criterios también permiten evaluar el estado actual de las coberturas vegetales naturales y sus tendencias, así como las especies que se desarrollan de acuerdo con los cambios zonales ocurridos, los ecosistemas sensibles y las actividades que más generan presión sobre el recurso, de tal manera que se brindan criterios para el manejo y pautas para su restauración.

Error de muestreo para los ecosistemas naturales y seminaturales caracterizados

Error de muestreo para los ecosistemas en el área de influencia

El muestreo forestal se desarrolló conforme los lineamientos establecidos en los Términos de referencia enmarcados en la Resolución 0751 de 2015, dando especial énfasis en el error de muestreo solicitado donde la probabilidad debe ser del 95% y el error de muestreo inferior al 15%.

Para el desarrollo de los inventarios se empleó un muestreo simple al azar, donde se dividió la población en las unidades correspondientes a ecosistemas, de los cuales se tomaron muestras aleatorias; para ello fue empleado el mapa de coberturas mediante el cual se seleccionaron preliminarmente, los sitios potenciales para el levantamiento de parcelas durante la salida de campo. Posteriormente, se realizó una selección completamente al azar, de los puntos para el levantamiento de las parcelas en la fase de campo.

De acuerdo con Melo y Vargas (2003), este tipo de muestreo se emplea "cuando se está contemplado la utilización de variables aleatorias de tipo continuo (x = Alturas, diámetros, área basal, volumen, etc.), es decir, que los eventos son independientes y por lo tanto no tienen efectos sobre los demás". En este sentido, para comprobar que la información es representativa de la muestra, se tomó como variable el volumen total, con el fin de procesar la información a una probabilidad del 95% y error de muestreo inferior al 15% para dar cumplimiento a los requerimientos estadísticos de los términos de referencia. Ver

Tabla 4 y Anexo 9. Flora_Base de Datos.

Tabla 4 Error de muestreo en el área de influencia por ecosistema para el Proyecto doble calzada Pasto – Rumichaca, Tramo San Juan – Pedregal.

Ecosistema	Nº DE PARCELAS	ERROR MÁXIMO	DESVIACIÓN ESTANDAR	COEFICIENTE DE VARIACIÓN	T DE STUDENT	ERROR OBTENIDO
Vegetacion secundaria alta del Orobioma Andino Nudo de los Pastos	8	15	0,35	13	2,36	10,87
Bosque denso altoandino del Orobioma Andino Nudo de los Pastos	6	15	1,33	13,5	2,57	14,17

CSH-1-AM-AM-EIA-G-0007-0

Versión 1 – agosto de 2018.

Ecosistema	Nº DE PARCELAS	ERROR MÁXIMO	DESVIACIÓN ESTANDAR	COEFICIENTE DE VARIACIÓN	T DE STUDENT	ERROR OBTENIDO	
Bosque de Galería y/o Ripario del Orobioma Andino Nudo de los Pastos	7	15	0,32	14,55	2,45	13,46	
Vegetación secundaria alta del Orobioma Azonal Andino Nudo de los Pastos	5	15	0,26	12,07	2,78	14,99	
Bosque de Galeria y/o ripario del Orobioma Azonal Andino Nudo de Ios Pastos	7	15	0,47	15,93	2,45	14,74	
Vegetación secundaria alta Hidrobioma Nudo de los Pastos	9	15	0,33	18,51	2,31	14,23	
Vegetación secundaria alta del Orobioma Azonal Andino Patía	7	15	0,39 13,15		2,45	12,16	
Vegetación secundaria alta Hidrobioma Patía	5	15	0,24	11,18	2,78	13,88	
Herbazal abierto rocoso del Orobioma Andino Nudo de los Pastos	10	-	Curva de Acumulación				
Vegetación secundaria o en transición del Orobioma Andino Nudo de los Pastos	25	-		Curva de Acui	mulación		
Vegetación secundaria o en transicióno del Hidrobioma Nudo de los Pastos	10	-		Curva de Acui	mulación		
Vegetación secundaria o en transición del Hidrobioma Patía	15	-		Curva de Acui	mulación		
Herbazal abierto rocoso del Orobioma Azonal Andino Nudo de los Pastos	19	-	Curva de Acumulación				
Vegetación secundaria o en transición del Orobioma Azonal Andino Nudo de los Pastos	17	-	Curva de Acumulación				
Vegetación Secundaria o en transición del Orobioma Azonal Andino Patía	13	-	Curva de Acumulación				

Versión 1 – agosto de 2018.

Ecosistema	Nº DE PARCELAS	ERROR MÁXIMO	DESVIACIÓN ESTANDAR	COEFICIENTE DE VARIACIÓN	T DE STUDENT	ERROR OBTENIDO	
Vegetación Secundaria o en transición del Orobioma Azonal Subandino Patía	18	-	Curva de Acumulación				
Vegetacíon secundaria alta del Orobioma Azonal Subandino Patía	-	-	Inventario 100%				

Fuente: INGETEC S.A., 2018

Curvas de acumulación de especies

Dentro del área de influencia se registraron ecosistemas naturales con estructura dominante herbácea y arbórea juvenil, por lo que para evaluar la representatividad de dichos ecosistemas se graficaron curvas de acumulación Las curvas de acumulación se realizaron en el software *EstimateS* 9.1 ® (orden de las parcelas aleatorizado 100 veces) de acuerdo con los datos recolectados para cada cobertura.

Para estimar la riqueza en vegetación secundaria baja se calcularon los índices *Chao 1, ACE y Cole,* estimadores que se utilizan cuando se obtiene abundancia, de los cuales CHAO1 es el más riguroso (Villareal *et al.*, 2004).

Para la cobertura de herbazales se tienen datos de presencia-ausencia, motivo por el cual se usaron métodos no paramétricos, calculando los siguientes estimadores:

CHAO 2: Estima el número de especies esperadas considerando la relación entre el número de especies únicas (que sólo aparecen en una muestra) y el número de especies duplicadas (que aparecen compartidas en dos muestras).

Jacknife (Jack 1 y 2): Estima el número de especies esperadas, considerando el número de especies que solamente ocurren en una muestra o/además de las que ocurren solamente en dos muestras.

Bootstrap: Estima la riqueza de especies partir de la proporción de muestras que contienen a cada especie. (Villareal et al., 2004).

Para evaluar la representatividad del muestreo se cálculo el **índice de completitud (IC)** (Colín *et al.* 2016) que es la relación entre las especies observadas y las especies estimadas:

$$IC = S(obs)/S(est)$$

Se presenta a continuación los resultados obtenidos para las curvas de acumulación de especies a partir de los estimadores mencionados.

Vegetación secundaria baja del Hidrobioma Nudo de los Pastos

Versión 1 – agosto de 2018.

La riqueza de especies observadas en la Vsb del Hidrobioma Nudo de los Pastos fue de 17 especies en 10 parcelas. Esto indica que el muestreo fue representativo, ya que el número de especies estimado es menor que el observado.

El esfuerzo de muestreo para la vegetación secundaria baja del Hidrobioma Nudo de los Pastos, en la cual se utilizaron los estimadores ACE y Chao 1 arrojó como resultado que el estimador ACE, el cual está basado en datos de abundancia, fue representativo en un 74,6% y 77.41%, por lo tanto, debido a la baja riqueza de especies registrada en esta cobertura, esta no logra estabilizarse en una asíntota, sin embargo, al ser una cobertura altamente intervenida y que queda al borde de la carretera, facilitado su intervención, su diversidad se ha visto afectada y así se llegase a aumentar el esfuerzo de muestreo, es poco probable que se aumenten los valores de diversidad y se logre la estabilización de la curva de acumulación;

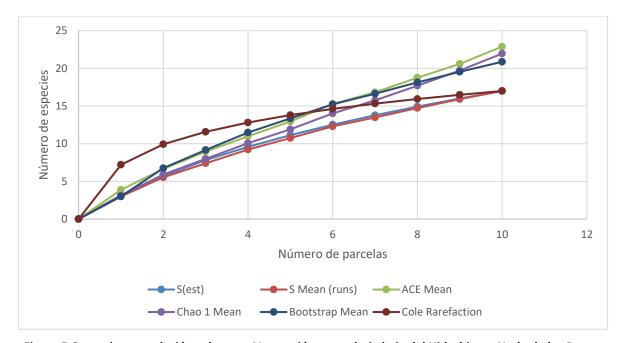


Figura 5 Curva de acumulación cobertura Vegetación secundaria baja del Hidrobioma Nudo de los Pastos

Fuente: INGETEC S.A., 2018

Vegetación secundaria baja del Hidrobioma Patía

La riqueza de especies observada en la Vegetación secundaria baja del Hidrobioma Patía fue de 13 especies en 15 parcelas.

El esfuerzo de muestreo para la vegetación secundaria baja del Hidrobioma Patía, en la cual se utilizaron los estimadores ACE y Chao 1 arrojó como resultado que el estimador ACE, el cual está basado en datos de abundancia, fue representativo en un 83,3%, donde se registraron 13 especies de las 15,6 estimadas, en cuanto al índice Chao 1 se registrarón 13 especies de las 14,9 estimadas, por lo tanto, la curva empieza a estabilizarse a partir del muestreo 13.

Versión 1 – agosto de 2018.

En la Figura 6 se presenta la curva de acumulación de especies para esta cobertura vegetal.

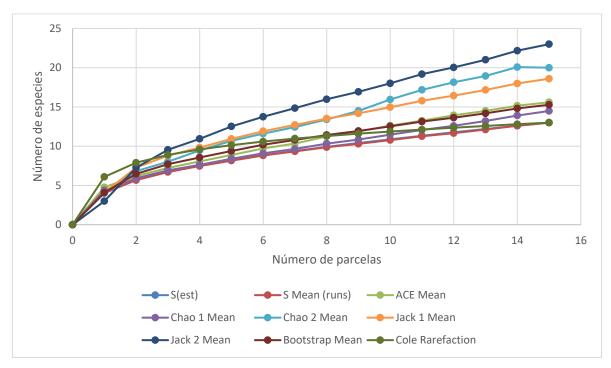


Figura 6 Curva de acumulación cobertura Vegetación secundaria baja del Hidrobioma Patía

Fuente: INGETEC S.A., 2018

Herbazal abierto rocoso del Orobioma Andino Nudo de los Pastos

La riqueza de especies observadas en los herbazales abiertos rocosos del Orobioma Andino Nudo de los Pastos fue de 16 especies en 10 parcelas. (véase **Error! Reference source not found.** y Figura 7).

El esfuerzo de muestreo para el Herbazal abierto rocoso del Orobioma Andino Nudo de los Pastos, en la cual se utilizaron los estimadores S(est) el cual muestra una representatividad del 100%, donde se registraron 16 especies de las 16 estimadas, el inide ACE fue representativo en un 49,38%, donde se registraron 16 especies de las 32,4 estimadas. Esta diferencia entre los indicadores y que la curva no logre estabilizarse completamente, se debe a que el área del ecosistema muestreado se encuentra intervenida, y se evidencia la presencia de cultivos de pasto para ganadería, lo que ha impactado drásticamente en la diversidad de las especies.

Versión 1 – agosto de 2018.

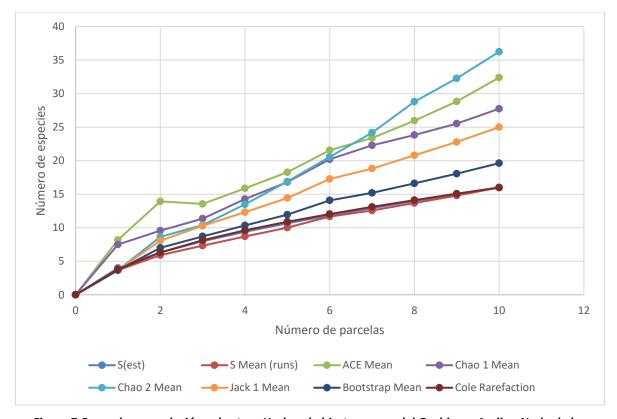


Figura 7 Curva de acumulación cobertura Herbazal abierto rocoso del Orobioma Andino Nudo de los Pastos

Fuente: INGETEC S.A., 2018

Vegetación secundaria baja del Orobioma Andino Nudo de los Pastos

La riqueza de especies observadas en la vegetación secundaria baja del Orobioma Andino Nudo de los Pastos fue de 24 especies en 25 parcelas.

La curva se estabiliza en los índices analizados ACE, Chao 1, Chao 2 y Jack 1; Para el ACE que mide la abundancia de las espcies en las parcelas la representatividad del muestreo es del 95,12%, donde se registraron 24 especies de las 25,2 estiamdas. Ebn cuanto a Chao 1 y 2 la representatividad es del 98.96% y el 96.50% y finalmente el índice Jak que da como resultado una representatividad del 83,33%, lo que ratifica el buen esfuezo de muestreo realizado.

Versión 1 – agosto de 2018.

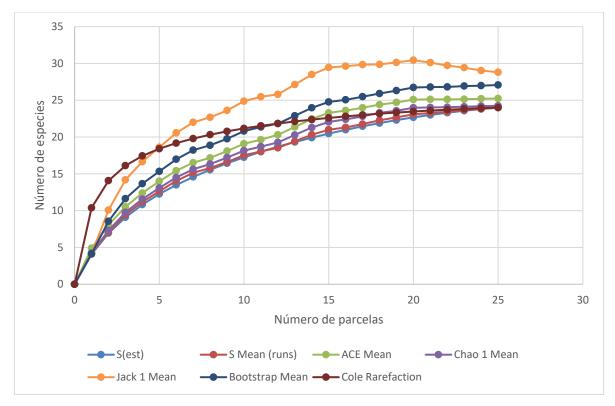


Figura 8 Curva de acumulación cobertura Vegetación secundaria baja del Orobioma Andino Nudo de los Pastos

Fuente: INGETEC S.A., 2018

Vegetación secundaria baja del Orobioma Azonal Andino Patía

La riqueza de especies observadas en la Vegetación secundaria baja del Orobioma Azonal Andino Patía fue de 10 especies en 13 parcelas.

Como se puede observar en la grafica a continuación la curva se logra estabilizar en los índices evaluados, de esta manera el estimador ACE fue representativo en un 100% al igual que Chao 1, donde se registrarón 10 especies de las 10 estimadas, observando como se estabiliza en una asíntota en la curva de acumulación, indicando el buen muestreo.

Versión 1 – agosto de 2018.

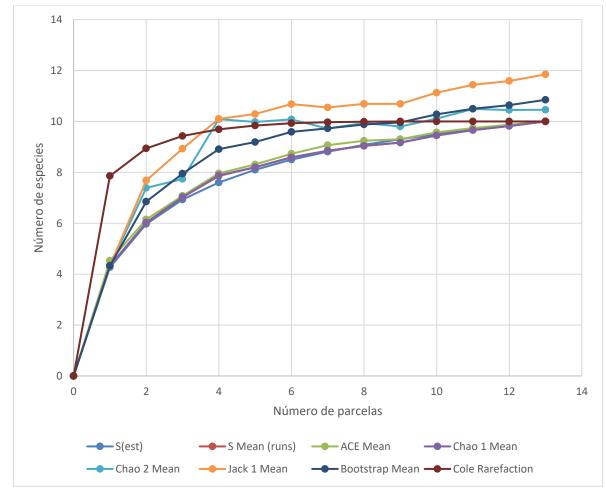


Figura 9 Curva de acumulación cobertura Vegetación secundaria baja del Orobioma Azonal Andino Patía

Fuente: INGETEC S.A., 2018

Vegetación secundaria baja del Orobioma Azonal Andino Nudo de los Pastos

La riqueza de especies observadas en la Vsb del Orobioma Azonal Andino Nudo de los Pastos fue de 22 especies en 17 parcelas.

Por su parte, el esfuerzo de muestreo de Vegetación secundaria baja del Orobioma Azonal Andino Nudo de los Pastos, fue representativo en un 100% para el estimador Cole Rarefaction, donde se registraron 22 especies de las 22 estimadas, observando cómo se estabiliza en una asíntota en la curva de acumulación los estimadores.

Versión 1 – agosto de 2018.

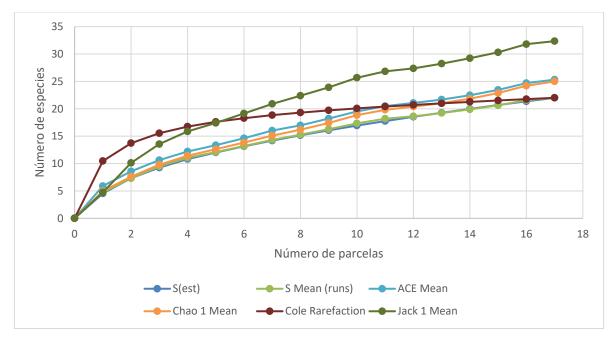


Figura 10 Curva de acumulación cobertura Vegetación secundaria baja del Orobioma Azonal Andino Nudo de los Pastos

Fuente: INGETEC S.A., 2018

Herbazal abierto rocoso del Orobioma Azonal Andino Nudo de los Pastos

La riqueza de especies observadas en los herbazales abiertos rocosos del Orobioma Azonal Andino Nudo de los Pastos fue de 42 especies en 19 parcelas.

El esfuerzo de muestreo en el ecosistema Herbazal abierto rocoso del Orobioma Azonal Andino Nudo de los Pastos, en la cual se utilizaron los estimadores S(est) y Cole Rerefaction, el resultado de estos estimadores fue representativo en un 100% donde se registraron 42 especies de las 42 estimadas, lo que ratifica un buen esfuerzo de muestreo.

Versión 1 – agosto de 2018.

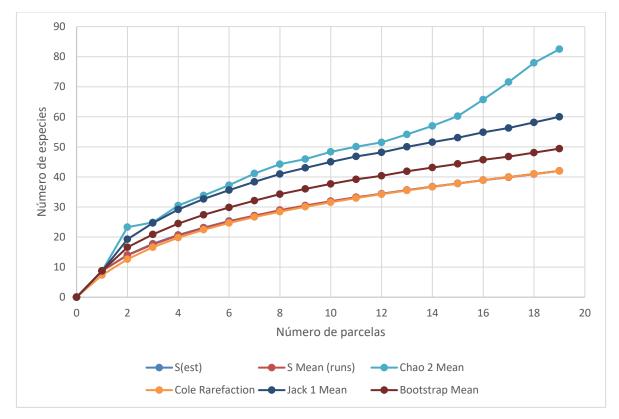


Figura 11 Curva de acumulación cobertura Herbazal abierto rocoso del Orobioma Azonal Andino Nudo de los Pastos.

Fuente: INGETEC S.A., 2018

5.2.2.1 Resultados

Hidrobioma Nudo de los pastos

Caracterización florística de la Vegetación secundaria alta del Hidrobioma Nudo de los pastos

El ecosistema Vegetación secundaria alta del Hidrobioma Nudo de los pastos presenta un área de 9,63 ha que representan el 0,24% del área total, la vegetación secundaria alta se define como la cobertura vegetal pionera del proceso sucesional de la vegetación natural generado después de una fuertes intervención y consecuente destrucción de la vegetación primaria, es decir el primer estadio hacia la recuperación del ecosistema original, se encuentra en áreas sometidas a cambios en el uso del suelo con diferentes usos como el agrícola y que posteriormente fueron abandonadas permitiendo el desarrollo de vegetación pionera, esta se caracteriza por la dominancia de elementos arbóreos un dosel irregular y presencia ocasional de arbustos palmas y enredaderas (IDEAM, 2010).

Versión 1 – agosto de 2018.

Para la caracterización de este ecosistema se levantaron un total de 8 unidades de muestreo, que dejaron como resultado un total de 332 individuos, de los cuales 118 pertenecen a la categoría fustales, 102 a latizales y 112 a brinzales.

- Composición Florística

Los resultados de composición florística para el ecosistema analizado indican un total de 332 individuos distribuidos en 23 familias 31 géneros y 31 especies, de las cuales *Lafoensia acuminata* fue la más abundante con 60 individuos que representan el 18,07% del total encontrado, seguida por *Myrsine guianensis* y *Allophylus* sp. con 37 (11,14%) y 25 (7,53%) individuos respectivamente (ver Tabla 5)

En la Figura 12 se encontró que la cantidad de especies y géneros por familia, donde la familia Asteraceae presenta la mayor cantidad de géneros con un total de 3, las demás familias presentaron entre 1 y 2 géneros. Respecto a la cantidad de especies, Asteraceae y Melastomataceae fueron las familias que reportaron un mayor número de especies con 3 cada una, el resto de familias reportaron entre 1 y 2 especies, la familia más abundante es Lythraceae con 60 individuos, seguida por las familias Primulaceae y Melastomataceae con 38 y 34 individuos respectivamente.

Tabla 5. Composición florística de la Vegetación secundaria alta del Hidrobioma Nudo de los pastos

Familia	Especie	Común	N° de individuos
LAMIACEAE	Aegiphila odontophylla Donn.Sm.	Cedrillo	16
ASTERACEAE	Ageratina tinifolia (Kunth) R.M.King & H.Rob.	Chilca roja	1
SAPINDACEAE	Allophylus sp.	Caspirosario	25
BETULACEAE	Alnus acuminata Kunth	Aliso	1
ASTERACEAE	Baccharis latifolia (Ruiz & Pav.) Pers.	Chilca blanca	2
SCROPHULARIACEAE	Buddleja americana L.	Salvia blanca	1
MALPIGHIACEAE	Byrsonima crassifolia (L.) Kunth	Mora	5
POACEAE	Chusquea lehmannii Pilg.	Carrizo	20
MYRTACEAE	Eugenia sp2	Arrayán 2	5
EUPHORBIACEAE	Euphorbia laurifolia Juss. ex Lam.	Lechero	13
PRIMULACEAE	Geissanthus sp.	Charmolan	1
ROSACEAE	Hesperomeles obtusifolia (DC.) Lindl.	Cerote	1
AQUIFOLIACEAE	<i>Ilex</i> sp.	León	3
JUGLANDACEAE	Juglans neotropica Diels.	Nogal	1
LYTHRACEAE	Lafoensia acuminata (Ruiz & Pav.) DC.	Guayacán	60
MELASTOMATACEAE	Leandra acutiflora (Naudin) Cogn.	Monchiro	10
SABIACEAE	Meliosma caucana Cuatrec. & Idrobo	Aguacatillo	2
MELASTOMATACEAE	Miconia sp1	Amarillo	4
MELASTOMATACEAE	Miconia versicolor Naudin.	Morochillo	20

Versión 1 – agosto de 2018.

Familia	Especie	Común	N° de individuos
MYRICACEAE	Morella pubescens (Humb. & Bonpl. ex Willd.) Wilbur	Laurel	9
MYRTACEAE	Myrcianthes rhopaloides (Kunth) McVaugh	Arrayán	6
PRIMULACEAE	Myrsine guianensis (Aubl.) Kuntze	Cucharo	37
RUBIACEAE	Palicourea guianensis Aubl.	Majua	25
ROSACEAE	Prunus serotina Ehrh.	Capulí	4
RUBIACEAE	Psychotria sp1	Cafetillo	1
ACTINIDIACEAE	Saurauia ursina Triana & Planch.	Moquillo	7
FABACEAE	Senna pistaciifolia (Kunth) H.S.Irwin & Barneby	Pichuelo	1
BIGNONACEAE	Tecoma stans (L.) Juss. ex Kunth	Quillotocto	22
ELEOCARPACEAE	Vallea stipularis L.f.	Roso	10
ASTERACEAE	Verbesina arborea Kunth	Colla	1
ADOXACEAE	Viburnum sp1	Pelotillo	18

Fuente: INGETEC S.A., 2018

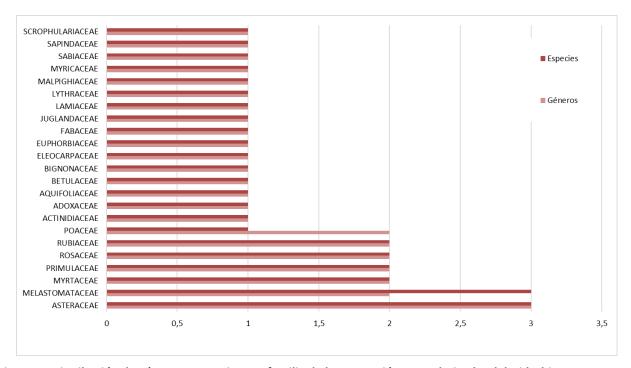


Figura 12 Distribución de géneros y especies por familia de la Vegetación secundaria alta del Hidrobioma Nudo de los pastos

Versión 1 – agosto de 2018.

Índice de valor de importancia IVI% (abundancia, frecuencia y dominancia)

Como se observa en la Tabla 6 para el análisis de la estructura horizontal el IVI% presenta el máximo valor para la especie *Lafoensia acuminata* con 87,77% seguida de *Euphorbia laurifolia* con 26,67% y *Aegiphila odontophylla* con 20,18%, esta última especie solo se presentó en 3 unidades de muestreo, no obstante su abundancia y dominancia fueron superiores a las de *Myrsine guianensis* lo que la ubico en el tercer escalafón del IVI%, asimismo se evidencia una clara dominancia de *Lafoensia acuminata* que presento los máximos valores de dominancia (41,9%), frecuencia (12,82%) y abundancia (33,05%) (Ver Figura 13).

Para la frecuencia se tiene que *Lafoensia acuminata* fue la especie que se presentó en más unidades muestreales con un total de 5, seguida de *Euphorbia laurifolia* y *Myrsine guianensis* presentes en 4 cada una, otra especie importante fue *Aegiphila odontophylla* presente en 3 unidades muestreales. Las demás especies se presentaron en una o dos unidades muestreales.

Con respecto a la abundancia se encontró que la especie *Lafoensia acuminata* presento un total de 39 individuos que representan el 33,05% del total, seguida por *Euphorbia laurifolia* y *Morella pubescens* con 11 y 9 individuos respectivamente, esta última especie se posiciono en la quinta posición del IVI% a pesar de tener una abundancia y dominancia alta, esto se explica por su baja frecuencia puesto que se encontró en una sola unidad muestreal lo que le asignó un valor relativo de 2,56% el más bajo para este ecosistema.

La dominancia presentó un valor máximo de 0,79 m² que representan el 41,9% registrados para la especie *Lafoensia acuminata*, seguida por *Morella pubescens* con 0,136 m² (7,22%) y *Euphorbia laurifolia* con 0,134 m² (7,09%) la cual a pesar de presentar un mayor número de individuos que *Morella pubescens* concentró individuos con menores diámetros, también es de resaltar el valor registrado para *Myrcianthes rhopaloides* con 0,109 m² acumulando el 5,13% del área basal y situándolo en el cuarto puesto de esta variable con tan solo 6 individuos.

Tabla 6 Abundancias, dominancias y frecuencias de la Vegetación secundaria alta del Hidrobioma Nudo de los pastos

Nombre científico	Frecuencia relativa	Abundancia Relativa	Dominancia Relativa	IVI%
Lafoensia acuminata (Ruiz & Pav.) DC.	12,82%	33,05%	41,90%	87,77%
Euphorbia laurifolia Juss. ex Lam.	10,26%	9,32%	7,09%	26,67%
Aegiphila odontophylla Donn.Sm.	7,69%	6,78%	5,71%	20,18%
Myrsine guianensis (Aubl.) Kuntze	10,26%	5,08%	3,86%	19,20%
Morella pubescens (Humb. & Bonpl. ex Willd.) Wilbur	2,56%	7,63%	7,22%	17,41%
Myrcianthes rhopaloides (Kunth) McVaugh	5,13%	5,08%	5,79%	16,01%
Saurauia ursina Triana & Planch.	5,13%	4,24%	3,63%	12,99%
Allophylus sp.	2,56%	5,93%	4,31%	12,81%
Vallea stipularis L.f.	5,13%	3,39%	3,34%	11,86%
Tecoma stans (L.) Juss. ex Kunth	5,13%	3,39%	2,32%	10,84%
Ilex sp.	5,13%	2,54%	2,69%	10,36%

Versión 1 – agosto de 2018.

Nombre científico	Frecuencia relativa	Abundancia Relativa	Dominancia Relativa	IVI%
Viburnum sp1	5,13%	2,54%	2,08%	9,75%
Prunus serotina Ehrh.	2,56%	2,54%	2,69%	7,79%
Meliosma caucana Cuatrec. & Idrobo	2,56%	1,69%	1,94%	6,20%
Leandra acutiflora (Naudin) Cogn.	2,56%	1,69%	1,17%	5,43%
Buddleja americana L.	2,56%	0,85%	1,26%	4,67%
Alnus acuminata Kunth	2,56%	0,85%	0,93%	4,34%
Byrsonima crassifolia (L.) Kunth	2,56%	0,85%	0,67%	4,08%
Verbesina arborea Kunth	2,56%	0,85%	0,55%	3,96%
Hesperomeles obtusifolia (DC.) Lindl.	2,56%	0,85%	0,43%	3,84%
Palicourea guianensis Aubl.	2,56%	0,85%	0,43%	3,84%

Fuente: INGETEC S.A., 2018

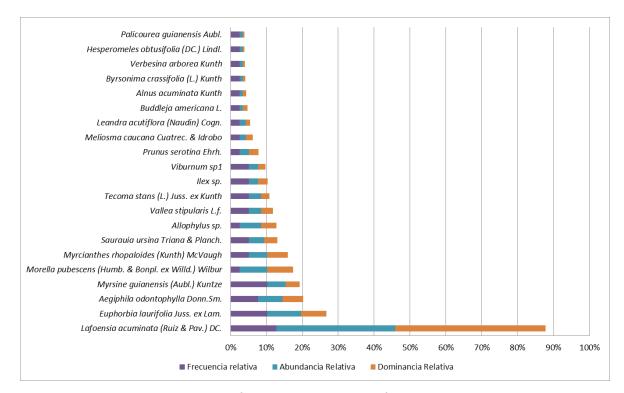


Figura 13 Abundancias, dominancias y frecuencias de la Vegetación secundaria alta del Hidrobioma Nudo de los pastos

Versión 1 – agosto de 2018.

Posición sociológica

Para los subestratos considerados en la posición sociológica se encontraron un total de 64 individuos en el estrato inferior, 46 en el medio y 8 en el superior, como se observa en la Figura 14. La especie *Lafoensia acuminata* es la especie con el máximo valor de Ps% con 29,22%, representada por 17 individuos del subestrato inferior 15 del medio y 7 del superior, seguida por *Euphorbia laurifolia* (9,78%) con 6 individuos en el estrato inferior y 5 en el medio, otra especie importante en esta variable fue *Morella pubescens* (9,18%) con 9 individuos en el estrato inferior, es importante considerar que por sus características de desarrollo esta última especie no se desarrolla en estratos más altos. En el estrato superior solo se presentan 2 especies a saber *Lafoensia acuminata* y *Aegiphila odontophylla*, este índice nos indica que las especies mencionadas anteriormente son las más importantes a nivel de estructura vertical, y que por su distribución tienen asegurada su permanencia en el tiempo.

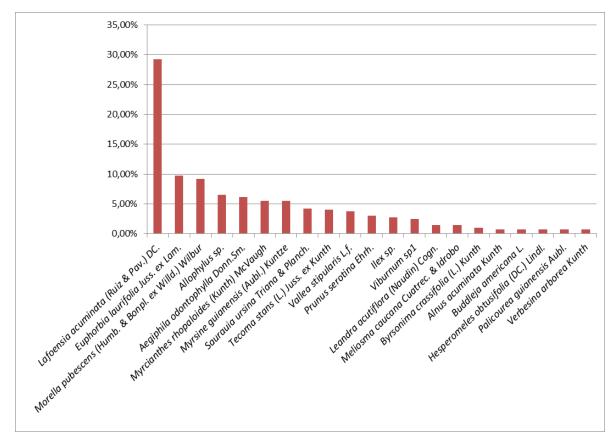


Figura 14 índice de posición sociológica Ps% por especies para la Vegetación secundaria alta del Hidrobioma Nudo de los pastos.

Versión 1 – agosto de 2018.

- Perfil de vegetación

En este ecosistema predominan el estrato medio e inferior, siendo el estrato inferior aquel que se destaca en mayor medida. Esta estructura se encuentra relacionada con el alto grado de intervención a causa de la expansión de la frontera agrícola; aunque se evidencia la presencia de especies característica de estas zonas que han fortalecido el avance y llegada de especies propias de este ecosistema, como es el caso de *Miconia versicolor* y *Myrsine guianensis* (Figura 15). Como es de esperar la dominancia de estas especies se encuentra relacionada con la facilidad de acceso a la zona y el alto grado de intervención que se registra.

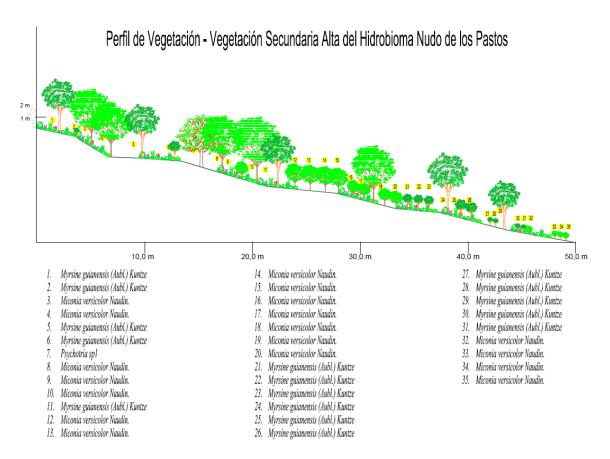


Figura 15 Perfil de vegetación secundaria alta del Hidrobioma Nudo de los pastos

Versión 1 – agosto de 2018.

Análisis de Regeneración natural

La composición florística de la regeneración natural para el bosque ripario presento un total de 214 individuos distribuidos en 23 familias 30 géneros 31 especies, para la categoría latizal se registraron 112 individuos mientras que para brinzal 102, donde *Myrsine guianensis* y *Palicourea guianensis* son las especies más abundantes con 31 y 24 individuos respectivamente, en la Tabla 7 se pueden detallar la cantidad de individuos por especie.

Tabla 7 composición florística por estrato de la Vegetación secundaria alta del Hidrobioma Nudo de los pastos

F 11 .	Name to the first of the same	Namehora as make	No. Inc	dividuos	Total
Familia	Nombre científico sin autor	Nombre común	Latizal	Brinzal	Total
LAMIACEAE	Aegiphila odontophylla Donn.Sm.	Cedrillo	3	5	8
ASTERACEAE	Ageratina tinifolia (Kunth) R.M.King & H.Rob.	Chilca roja	0	1	1
SAPINDACEAE	Allophylus sp.	Caspirosario	12	6	18
ASTERACEAE	Baccharis latifolia (Ruiz & Pav.) Pers.	Chilca blanca	2	0	2
MALPIGHIACEAE	Byrsonima crassifolia (L.) Kunth	Mora	2	2	4
POACEAE	Chusquea lehmannii Pilg.	Carrizo	5	15	20
MYRTACEAE	Eugenia sp2	Arrayán 2	0	5	5
EUPHORBIACEAE	Euphorbia laurifolia Juss. ex Lam.	Lechero	1	1	2
PRIMULACEAE	Geissanthus sp.	Charmolan	1	0	1
JUGLANDACEAE	Juglans neotropica Diels.	Nogal	0	1	1
LYTHRACEAE	Lafoensia acuminata (Ruiz & Pav.) DC.	Guayacán	12	9	21
MELASTOMATACEAE	Leandra acutiflora (Naudin) Cogn.	Monchiro	7	1	8
MELASTOMATACEAE	Miconia sp1	Amarillo	0	4	4
MELASTOMATACEAE	Miconia versicolor Naudin.	Morochillo	13	7	20
PRIMULACEAE	Myrsine guianensis (Aubl.) Kuntze	Cucharo	19	12	31
RUBIACEAE	Palicourea guianensis Aubl.	Majua	11	13	24
ROSACEAE	Prunus serotina Ehrh.	Capulí	0	1	1
RUBIACEAE	Psychotria sp1	Cafetillo	0	1	1
ACTINIDIACEAE	Saurauia ursina Triana & Planch.	Moquillo	0	2	2
FABACEAE	Senna pistaciifolia (Kunth) H.S.Irwin & Barneby	Pichuelo	0	1	1
BIGNONACEAE	Tecoma stans (L.) Juss. ex Kunth	Quillotocto	13	5	18
ELEOCARPACEAE	Vallea stipularis L.f.	Roso	5	1	6
ADOXACEAE	Viburnum sp1	Pelotillo	6	9	15
Total			112	102	214

Versión 1 – agosto de 2018.

En términos de la abundancia las especies más importantes son *Myrsine guianensis* con 31 individuos (14,49%) seguida de *Palicourea guianensis* con 24 (11,21%) y *Lafoensia acuminata* con 21 (9,81%), con respecto a la frecuencia se observa que *Viburnum* sp1 , *Aegiphila odontophylla*, *Tecoma stans* , *Myrsine guianensis y Lafoensia acuminata*, son las especies con el máximo valor en esta variable de 7,5% dado por presentarse en 3 unidades muestreales, para este caso *Palicourea guianensis* solo se presentó en 2 unidades de muestreo.

Para el índice de regeneración natural (Rn%) las especies más relevantes son *Myrsine guianensis* (12,29%) *Lafoensia acuminata* (9,08%) y *Palicourea guianensis* (9,01%), especies que se presentan en la categoría fustal (Tabla 8), estos valores indican que es son especies con mayor éxito en la tasa de renovación de sus individuos, es decir que a pesar de perder individuos en categorías más altas la sobrevivencia y recambio de la especie está asegurada por sus primeros estadios, otra especie relevante es *Tecoma stans* que presento un valor 8,1% ya que es otra especie presente en la categoría fustal, la Figura 16 detalla los valores de Rn% para cada una de las especies encontradas.

Tabla 8 Frecuencias abundancias, categoría de tamaño e índice de regeneración natural para la Vegetación secundaria alta del Hidrobioma Nudo de los pastos.

Nombre científico	Nombre común	Frecuencia relativa	Abundancia Relativa	Ct %	Rn%
Myrsine guianensis (Aubl.) Kuntze	Cucharo	7,50%	14,49%	14,89%	12,29%
Lafoensia acuminata (Ruiz & Pav.) DC.	Guayacán	7,50%	9,81%	9,92%	9,08%
Palicourea guianensis Aubl.	Majua	5,00%	11,21%	10,80%	9,01%
Tecoma stans (L.) Juss. ex Kunth	Quillotocto	7,50%	8,41%	8,39%	8,10%
Miconia versicolor Naudin.	Morochillo	5,00%	9,35%	9,52%	7,95%
Chusquea lehmannii Pilg.	Carrizo	5,00%	9,35%	8,60%	7,65%
Viburnum sp1	Pelotillo	7,50%	7,01%	6,79%	7,10%
Allophylus sp.	Caspirosario	2,50%	8,41%	8,55%	6,49%
Aegiphila odontophylla Donn.Sm.	Cedrillo	7,50%	3,74%	3,77%	5,00%
Vallea stipularis L.f.	Roso	5,00%	2,80%	3,10%	3,63%
Leandra acutiflora (Naudin) Cogn.	Monchiro	2,50%	3,74%	4,16%	3,47%
Byrsonima crassifolia (L.) Kunth	Mora	5,00%	1,87%	1,94%	2,94%
Eugenia sp2	Arrayán 2	2,50%	2,34%	2,20%	2,35%
Euphorbia laurifolia Juss. ex Lam.	Lechero	5,00%	0,93%	0,97%	2,30%
Saurauia ursina Triana & Planch.	Moquillo	5,00%	0,93%	0,85%	2,26%
Miconia sp1	Amarillo	2,50%	1,87%	1,76%	2,04%
Baccharis latifolia (Ruiz & Pav.) Pers.	Chilca blanca	2,50%	0,93%	1,06%	1,50%
Geissanthus sp.	Charmolan	2,50%	0,47%	0,53%	1,17%
Prunus serotina Ehrh.	Capulí	2,50%	0,47%	0,44%	1,14%
Ageratina tinifolia (Kunth) R.M.King & H.Rob.	Chilca roja	2,50%	0,47%	0,44%	1,14%
Juglans neotropica Diels.	Nogal	2,50%	0,47%	0,44%	1,14%

Versión 1 – agosto de 2018.

Nombre científico	Nombre común	Frecuencia relativa	Abundancia Relativa	Ct %	Rn%
Psychotria sp1	Cafetillo	2,50%	0,47%	0,44%	1,14%
Senna pistaciifolia (Kunth) H.S.Irwin & Barneby	Pichuelo	2,50%	0,47%	0,44%	1,14%

Fuente: INGETEC S.A., 2018

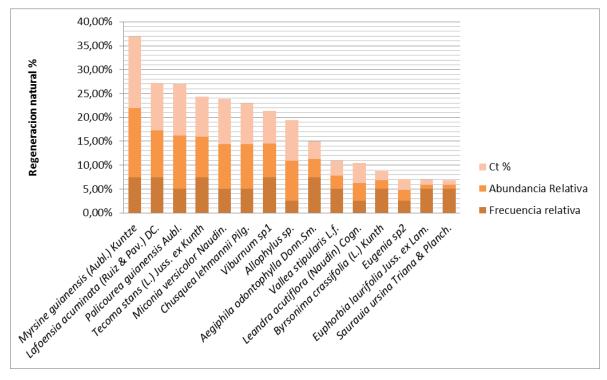


Figura 16 Frecuencias abundancias, categoría de tamaño e índice de regeneración natural para la Vegetación secundaria alta del Hidrobioma Nudo de los pastos.

Fuente: INGETEC S.A., 2018

Índice de valor de importancia ampliado

Para el completo análisis de la distribución en los diferentes estratos se hace necesario utilizar el IVIA% como expresión de la estructura horizontal (IVI%), vertical PS% y la capacidad de regeneración (Rn%) con tal suerte que nos indicara la importancia de una especie en los diferentes estadios de crecimiento permitiéndonos un análisis integral de su importancia en el bosque y de su capacidad ocupar los diferentes estratos del bosque así como de renovar su población, en la Tabla 9 y Figura 17 se discriminan los valores hallados para la vegetación secundaria alta del Hidrobioma Nudo de los pastos, encontrando que *Lafoensia acuminata* es la especie más importante con un valor de 126,07% que además fue la especie más importante en el IVI%, Ps% y la segunda en Rn%, seguida en importancia está *Euphorbia laurifolia* con 38,75% y *Myrsine guianensis* con 37,04%. Con respecto a las posiciones del IVI% podemos observar como esta última subió hasta el puesto 3

Versión 1 – agosto de 2018.

desplazando a *Aegiphila odontophylla*, principalmente por su valor de Rn% es más importante en cuanto a que presenta una mayor tasa de renovación.

Tabla 9 Índice de valor de importancia ampliado IVIA% para la Vegetación secundaria alta del Hidrobioma Nudo de los pastos

Nombre científico	Nombre común	I.V.I	Ps %	Rn%	I.V.I.A
Lafoensia acuminata (Ruiz & Pav.) DC.	Guayacán	87,77%	29,22%	9,08%	126,07%
Euphorbia laurifolia Juss. ex Lam.	Lechero	26,67%	9,78%	2,30%	38,75%
Myrsine guianensis (Aubl.) Kuntze	Cucharo	19,20%	5,54%	12,29%	37,04%
Aegiphila odontophylla Donn.Sm.	Cedrillo	20,18%	6,12%	5,00%	31,30%
Morella pubescens (Humb. & Bonpl. ex Willd.) Wilbur	Laurel	17,41%	9,18%	0,00%	26,59%
Allophylus sp.	Caspirosario	12,81%	6,56%	6,49%	25,86%
Tecoma stans (L.) Juss. ex Kunth	Quillotocto	10,84%	4,08%	8,10%	23,02%
Myrcianthes rhopaloides (Kunth) McVaugh	Arrayán	16,01%	5,54%	0,00%	21,55%
Saurauia ursina Triana & Planch.	Moquillo	12,99%	4,24%	2,26%	19,49%
Viburnum sp1	Pelotillo	9,75%	2,49%	7,10%	19,33%
Vallea stipularis L.f.	Roso	11,86%	3,79%	3,63%	19,28%
Palicourea guianensis Aubl.	Majua	3,84%	0,73%	9,01%	13,58%
Ilex sp.	León	10,36%	2,77%	0,00%	13,14%
Prunus serotina Ehrh.	Capulí	7,79%	3,06%	1,14%	11,99%
Leandra acutiflora (Naudin) Cogn.	Monchiro	5,43%	1,47%	3,47%	10,36%
Byrsonima crassifolia (L.) Kunth	Mora	4,08%	1,02%	2,94%	8,04%
Miconia versicolor Naudin.	Morochillo	0,00%	0,00%	7,95%	7,95%
Meliosma caucana Cuatrec. & Idrobo	Aguacatillo	6,20%	1,47%	0,00%	7,67%
Chusquea lehmannii Pilg.	Carrizo	0,00%	0,00%	7,65%	7,65%
Buddleja americana L.	Salvia blanca	4,67%	0,73%	0,00%	5,40%
Alnus acuminata Kunth	Aliso	4,34%	0,73%	0,00%	5,07%
Verbesina arborea Kunth	Colla	3,96%	0,73%	0,00%	4,69%
Hesperomeles obtusifolia (DC.) Lindl.	Cerote	3,84%	0,73%	0,00%	4,58%
Eugenia sp2	Arrayán 2	0,00%	0,00%	2,35%	2,35%
Miconia sp1	Amarillo	0,00%	0,00%	2,04%	2,04%
Baccharis latifolia (Ruiz & Pav.) Pers.	Chilca blanca	0,00%	0,00%	1,50%	1,50%
Geissanthus sp.	Charmolan	0,00%	0,00%	1,17%	1,17%
Ageratina tinifolia (Kunth) R.M.King & H.Rob.	Chilca roja	0,00%	0,00%	1,14%	1,14%
Juglans neotropica Diels.	Nogal	0,00%	0,00%	1,14%	1,14%
Psychotria sp1	Cafetillo	0,00%	0,00%	1,14%	1,14%

Versión 1 - agosto de 2018.

Nombre científico	Nombre común	I.V.I	Ps %	Rn%	I.V.I.A
Senna pistaciifolia (Kunth) H.S.Irwin & Barneby	Pichuelo	0,00%	0,00%	1,14%	1,14%

Fuente: INGETEC S.A., 2018

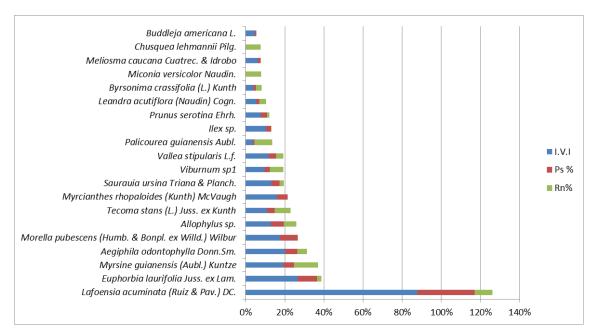


Figura 17 Índice de valor de importancia ampliado IVIA% para la Vegetación secundaria alta del Hidrobioma Nudo de los pastos

Fuente: INGETEC S.A., 2018

- Clases diamétricas

La distribución por clases diamétricas presento un total de 8 clases con una amplitud de clase de 2,28 cm, la distribución de los datos dio una tendencia hacia la "J" invertida para las cual tenemos las mayores abundancias en las clases más pequeñas y una clara disminución en la cantidad de individuos a medida que la clase presenta diámetros mayores, se destacan las clases V y VII que presentaron un solo individuo cada una siendo este el menor valor registrado, por otra parte las categorías I y II presentaron la mayor cantidad de individuos con 47 (39,83%) y 33 (27,97%) respectivamente, *Lafoensia acuminata* es la única especie presente en las categorías V, VI. VII y VIII lo que denota su clara dominancia en la distribución horizontal, la disminución de individuos en las categorías V, VI y VII puede deberse a un aprovechamiento selectivo de la especie (ver Figura 18).

Versión 1 – agosto de 2018.

Amplit	tud del	Clase
inte	rvalo	diamétrica
10,03	12,31	I
12,31	14,60	II
14,60	16,89	III
16,89	19,18	IV
19,18	21,47	V
21,47	23,75	VI
23,75	26,04	VII
26,04	28,33	VIII

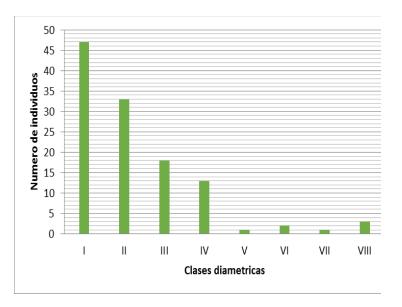


Figura 18 Distribución por clases Diamétricas para la Vegetación secundaria alta del Hidrobioma Nudo de los pastos

Fuente: INGETEC S.A., 2018

- Clases altimétricas

Para las clases altimétricas se obtuvieron 8 rangos con una amplitud de 2,25m, como se detalla en la Figura 19 las mayores densidades fueron presentadas por las clases II y III con 27 y 32 individuos respectivamente, acumulando el 42,37% del total, la gráfica nos muestra una fuerte presencia de individuos jóvenes, sin embargo las clases V y VII evidencian una clara disminución con respecto a la tendencia coincidiendo con lo encontrado en las clases diamétricas, Lafoensia acuminata es la única especie en las categorías VII y VIII dominando el dosel superior, se puede diferenciar una continuidad del dosel entre las clases más jóvenes.

Versión 1 – agosto de 2018.

Amplitud del intervalo		Clase altimétrica
4	6,25	Ι
6,25	8,5	II
8,5	10,75	III
10,75	13	IV
13	15,25	٧
15,25	17,5	VI
17,5	19,75	VII
19,75	22	VIII

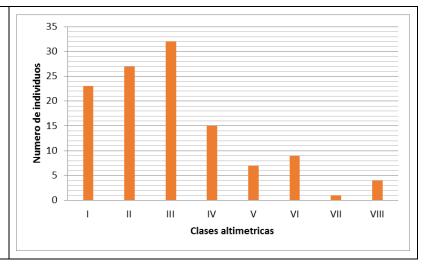


Figura 19 Distribución por clases Altimétricas para la Vegetación secundaria alta del Hidrobioma Nudo de los pastos

Fuente: INGETEC S.A., 2018

Grado de sociabilidad (IS%)

El índice de sociabilidad nos indica el grado de agregación de las especies, para el caso del ecosistema descrito tenemos que *Morella pubescens* es la especie que más tiende a agregarse con un valor de 9, seguida de *Lafoensia acuminata* con 7,8 y *Allophylus* sp. con 7 estas tres especies presentan una fuerte tendencia la agrupación de sus individuos, las demás especies presentaron valores por debajo de 3indicando así una baja tendencia a la agrupación o en algunos casos que su presencia es ocasional (ver Tabla 10).

Tabla 10 Índice de Sociabilidad para la Vegetación secundaria alta del Hidrobioma Nudo de los pastos

Especie	Frecuencia %	Abundancia media	Índice de sociabilidad
Morella pubescens (Humb. & Bonpl. ex Willd.) Wilbur	12,50%	1,125	9
Lafoensia acuminata (Ruiz & Pav.) DC.	62,50%	4,875	7,8
Allophylus sp.	12,50%	0,875	7
Myrcianthes rhopaloides (Kunth) McVaugh	25,00%	0,75	3
Prunus serotina Ehrh.	12,50%	0,375	3
Euphorbia laurifolia Juss. ex Lam.	50,00%	1,375	2,75
Aegiphila odontophylla Donn.Sm.	37,50%	1	2,66666667
Saurauia ursina Triana & Planch.	25,00%	0,625	2,5
Leandra acutiflora (Naudin) Cogn.	12,50%	0,25	2
Meliosma caucana Cuatrec. & Idrobo	12,50%	0,25	2

Versión 1 – agosto de 2018.

Especie	Frecuencia %	Abundancia media	Índice de sociabilidad
Tecoma stans (L.) Juss. ex Kunth	25,00%	0,5	2
Vallea stipularis L.f.	25,00%	0,5	2
llex sp.	25,00%	0,375	1,5
Myrsine guianensis (Aubl.) Kuntze	50,00%	0,75	1,5
Viburnum sp1	25,00%	0,375	1,5
Alnus acuminata Kunth	12,50%	0,125	1
Buddleja americana L.	12,50%	0,125	1
Byrsonima crassifolia (L.) Kunth	12,50%	0,125	1
Hesperomeles obtusifolia (DC.) Lindl.	12,50%	0,125	1
Palicourea guianensis Aubl.	12,50%	0,125	1
Verbesina arborea Kunth	12,50%	0,125	1

Fuente: INGETEC S.A., 2018

- Índices de diversidad

El índice de Simpson nos permite determinar la heterogeneidad o dominancia de una especie sobre un ecosistema siendo este la probabilidad de encontrar la misma especie en dos extracciones al azar, para este caso el valor arrojado fue de 0,9209 lo que indica un ecosistema tendiente a la homogeneidad es decir que las especies están representadas en proporciones similares y no existe una clara dominancia de alguna especie, el índice de Shannon adquiere su máximo valor en Ln S (siendo S el número total de especies) este valor indica que todas las especies se encuentran representadas por la misma cantidad de individuos así pues este índice nos indica la incertidumbre para predecir de una muestra aleatoria la especie extraída, en el caso del ecosistema evaluado nos dio un valor de 2,847 siendo Ln 30 = 3,4 lo que indica que las abundancias de las especies tienden a una distribución homogénea (ver Tabla 11).

Respecto a la equitatividad tenemos que los valores cercanos a 1 nos indican una distribución equilibrada en la abundancia de las especies, para el ecosistema analizado este valor fue de 0,83 lo que indica un distribución homogénea de las abundancia entre especies, finalmente el índice de riqueza especifica de Margalef da un valor de 4,99 donde el valor mínimo es 0 este indicador es una medida de la relación entre la cantidad de especies y la cantidad de individuos (ver Tabla 11).

Tabla 11 Índices de diversidad calculados para la Vegetación secundaria alta del Hidrobioma Nudo de los pastos

Estimador	Resultado
N° de especies	30
N° de individuos	332
Simpson_1-D	0,9209

Versión 1 – agosto de 2018.

Estimador	Resultado
Shannon_H	2,847
Margalef	4,996
Equitability_J	0,8372

Fuente: INGETEC S.A., 2018

Caracterización florística de la Vegetación secundaria baja del Hidrobioma Nudo de los pastos

El ecosistema Vegetación secundaria baja del Hidrobioma Nudo de los pastos presenta un área de 8,85 ha representado el 0,22% del área total, la vegetación secundaria se define como la cobertura vegetal pionera del proceso sucesional de la vegetación natural, generado después de una fuerte intervención y consecuente destrucción de la vegetación original, es el primer estadio hacia la recuperación del ecosistema original, se encuentra en áreas sometidas a cambios en el uso del suelo con diferentes usos como el agrícola y que posteriormente fueron abandonadas permitiendo el establecimiento de especies pioneras, para el caso de la vegetación secundaria baja esta se caracteriza por la dominancia de vegetación arbustiva y herbácea principalmente, un dosel irregular y presencia ocasional de árboles y enredaderas (IDEAM, 2010).

Para la caracterización de este ecosistema se levantaron un total de 10 unidades de muestreo, que dejaron como resultado un total de 132 individuos, de los cuales 18 pertenecen a la categoría brinzal y 114 a latizal.

- Composición Florística

El ecosistema Vegetación secundaria baja del Hidrobioma Nudo de los pastos estuvo representado por un total de 132 individuos, distribuidos en 14 familias 17 géneros y 17 especies, el número de especies encontrado es un poco bajo para el esperado en este tipo de ecosistemas, donde una gran cantidad de especies se establecen en las zonas desprovistas de vegetación por presión antrópica, especialmente aquellas que por sus características de desarrollo necesitan gran cantidad de luz y presentan altas tasas reproductivas, como *Baccharis latifolia y Tecoma stans*, también se pueden encontrar individuos remanentes de especies como *Allophylus*, propias de estados sucesionales más avanzados. En la Tabla 12 se encuentran discriminados las abundancias por especie, así como las familias y especies presentes en el ecosistema.

La Figura 20 presenta los valores de géneros y especies por familia donde Asteraceae presento el mayor número de géneros, registrando 3 génros y 3 especies, seguida de la familia Rosaceae con 2 géneros y 2 especies, las demás familias solo estuvieron representadas por un género y una especie. En cuanto a abundancia Asteraceae fue la especie con mayor número de individuos con 33, seguida de Primulaceae con 20 y Bignoniaceae con 19; estas familias presentan individuos de especies pioneras que como se mencionó anteriormente son típicas de estos estados sucesionales de la vegetación.

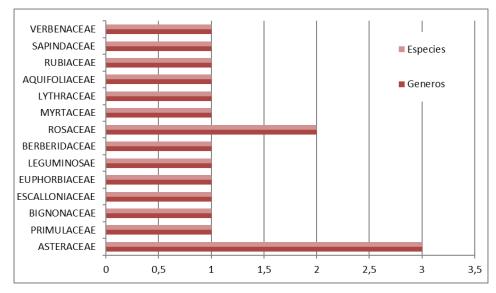

Versión 1 – agosto de 2018.

Tabla 12 Composición florística de la Vegetación secundaria baja del Hidrobioma Nudo de los pastos

Familia	Especie	Nombre común	N° de individuos
LEGUMINOSAE	Acacia decurrens Willd.	Acacia	10
ASTERACEAE	Ageratina tinifolia (Kunth) R.M.King & H.Rob.	Chilca roja	3
SAPINDACEAE	Allophylus sp.	Caspirosario	1
ASTERACEAE	Baccharis latifolia (Ruiz & Pav.) Pers.	Chilca blanca	29
BERBERIDACEAE	Berberis hallii Hieron.	Espina amarilla	6
ESCALLONIACEAE	Escallonia paniculata (Ruiz & Pav.) Schult.	Chilco	14
EUPHORBIACEAE	Euphorbia laurifolia Juss. ex Lam.	Lechero	14
ROSACEAE	Hesperomeles obtusifolia (DC.) Lindl.	Cerote	3
AQUIFOLIACEAE	Ilex sp.	León	1
LYTHRACEAE	Lafoensia acuminata (Ruiz & Pav.) DC.	Guayacán	3
VERBENACEAE	Lantana camara L.	Venturosa	1
PRIMULACEAE	Myrsine guianensis (Aubl.) Kuntze	Cucharo	20
RUBIACEAE	Palicourea guianensis Aubl.	Majua	1
ROSACEAE	Prunus serotina Ehrh.	Capulí	2
MYRTACEAE	Psidium guajava L.	Guayabilla	4
BIGNONACEAE	Tecoma stans (L.) Juss. ex Kunth	Quillotocto	19
ASTERACEAE	Verbesina arborea Kunth	Colla	1
	Total		132

Versión 1 – agosto de 2018.

Figura 20 Distribución de especies y géneros por familia en la Vegetación secundaria baja del Hidrobioma Nudo de los pastos.

Fuente: INGETEC S.A., 2018

Índice de regeneración natural (Rn%) (Abundancia, Frecuencia y Categoría de tamaño)

Por la naturaleza de los individuos en este ecosistema, se presentan principalmente en la categoría de regeneración natural, por lo que se utilizará el índice de regeneración natural para determinar la importancia de las especies a nivel estructural, la especie *Baccharis latifolia* presentó el máximo valor para esta variable con 17,49% destacando por su abundancia y categoría de tamaño donde obtuvo los valores más altos, seguida por *Tecoma stans* y *Myrsine guianensis* con valores de 16,2% y 12,57% respectivamente, la dominancia de especies pioneras heliofitas confirman un primer estadio de la sucesión ecológica en el ecosistema (ver Tabla 13).

Tabla 13 Abundancia Frecuencia, Categoría de tamaño relativas e Índice de regeneración natural (Rn%) por especie en la Vegetación secundaria baja del Hidrobioma Nudo de los pastos.

Nombre científico	Frecuencia relativa	Abundancia Relativa	Ct %	Rn
Baccharis latifolia (Ruiz & Pav.) Pers.	9,38%	21,97%	21,12%	17,49%
Tecoma stans (L.) Juss. ex Kunth	18,75%	14,39%	15,45%	16,20%
Myrsine guianensis (Aubl.) Kuntze	9,38%	15,15%	13,19%	12,57%
Euphorbia laurifolia Juss. ex Lam.	6,25%	10,61%	11,81%	9,56%
Acacia decurrens Willd.	12,50%	7,58%	8,41%	9,50%
Escallonia paniculata (Ruiz & Pav.) Schult.	3,13%	10,61%	10,52%	8,08%
Psidium guajava L.	6,25%	3,03%	3,07%	4,12%
Berberis hallii Hieron.	3,13%	4,55%	3,88%	3,85%
Lafoensia acuminata (Ruiz & Pav.) DC.	6,25%	2,27%	2,18%	3,57%
Ageratina tinifolia (Kunth) R.M.King & H.Rob.	3,13%	2,27%	2,67%	2,69%
Hesperomeles obtusifolia (DC.) Lindl.	3,13%	2,27%	2,67%	2,69%
Prunus serotina Ehrh.	3,13%	1,52%	1,62%	2,09%
Ilex sp.	3,13%	0,76%	0,89%	1,59%
Lantana camara L.	3,13%	0,76%	0,89%	1,59%
Allophylus sp.	3,13%	0,76%	0,73%	1,54%
Verbesina arborea Kunth	3,13%	0,76%	0,73%	1,54%

Versión 1 – agosto de 2018.

Nombre científico	Frecuencia relativa	Abundancia Relativa	Ct %	Rn
Palicourea guianensis Aubl.	3,13%	0,76%	0,16%	1,35%

Fuente: INGETEC S.A., 2018

Para la frecuencia se tiene que *Tecoma stans* se registra en 6 unidades muestreales (18,75%) y es la especie con mayor frecuencia, seguida por *Acacia decurrens* y *Baccharis latifolia* presentes en 4 (12,5%) y 3 (9,38%) unidades muestreales respectivamente. La aparición de una especies exótica como *Acacia decurrens* es una clara señal de la acción antrópica, a pesar de presentarse solo en 3 unidades muestreales *Baccharis latifolia* es la especies más importante en el IVI principalmente por sus valores de abundancia y categoría de tamaño (ver Figura 21), lo que evidencia su habilidad para colonizar rápidamente espacios desprovistos de vegetación.

En cuanto a la abundancia *Baccharis latifolia* con 29 individuos (21,97%) es las especies más abundante, seguida por *Myrsine guianensis y Tecoma stans* con valores de 20 (15,15%) y 19 (14,39%) individuos respectivamente, estas tres especies acumulan el 51% de los individuos registrados lo que evidencia su facilidad para colonizar estas áreas.

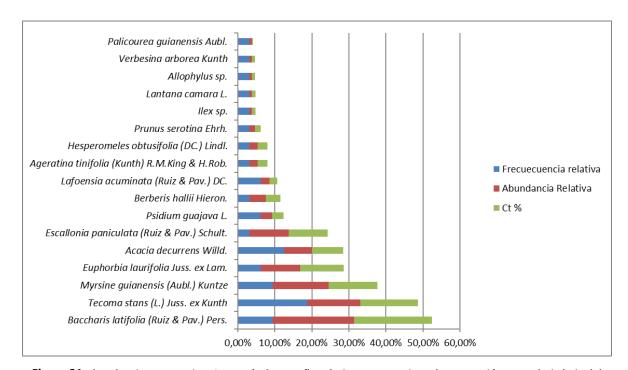


Figura 21 Abundancia Frecuencia y Categoría de tamaño relativo por especie en la Vegetación secundaria baja del Hidrobioma Nudo de los pastos.

Versión 1 – agosto de 2018.

Posición sociológica

La categoría de tamaño utilizada en la regeneración natural nos indica la importancia de la especies en los estratos horizontales presentes, en la

Tabla 14 se discriminan los valores por especie para esta variable donde *Baccharis latifolia* se presenta como la especie más importante con un valor de 21,12% representada por 4 individuos en el estrato bajo, 14 en el estrato medio y 11 en el superior, le sigue *Tecoma stans y Myrsine guianensis* con valores de 15,45% y 13,19% respectivamente. A pesar de esto, *Baccharis latifolia* solo presento mayor número de individuos en el estrato medio con 14, *Myrsine guianensis* domino el estrato bajo con 5 individuos y *Escallonia paniculata* el estrato superior con 12, el estrato más importante fue el medio concentrando el 50% de los individuos, como se puede observar no existe una clara dominancia de los estratos, sin embargo, Baccharis *latifolia* se encuentra presente en todos los estratos, con abundancias significativas.

Tabla 14 Posición sociológica por especie Abundancia Frecuencia, de la Vegetación secundaria baja del Hidrobioma Nudo de los pastos.

Nombre Científico	Estrato I	Estrato II	Estrato III	Categoria de tamaño absoluta	Ct %
Baccharis latifolia (Ruiz & Pav.) Pers.	4	14	11	118,6364	21,12%
Tecoma stans (L.) Juss. ex Kunth	0	10	9	86,8182	15,45%
Myrsine guianensis (Aubl.) Kuntze	5	9	6	74,0909	13,19%
Euphorbia laurifolia Juss. ex Lam.	0	10	4	66,3636	11,81%
Escallonia paniculata (Ruiz & Pav.) Schult.	0	2	12	59,0909	10,52%
Acacia decurrens Willd.	0	7	3	47,2727	8,41%
Berberis hallii Hieron.	2	4	0	21,8182	3,88%
Psidium guajava L.	0	1	3	17,2727	3,07%
Ageratina tinifolia (Kunth) R.M.King & H.Rob.	0	3	0	15,0000	2,67%
Hesperomeles obtusifolia (DC.) Lindl.	0	3	0	15,0000	2,67%
Lafoensia acuminata (Ruiz & Pav.) DC.	0	0	3	12,2727	2,18%
Prunus serotina Ehrh.	0	1	1	9,0909	1,62%
Ilex sp.	0	1	0	5,0000	0,89%
Lantana camara L.	0	1	0	5,0000	0,89%
Allophylus sp.	0	0	1	4,0909	0,73%
Verbesina arborea Kunth	0	0	1	4,0909	0,73%
Palicourea guianensis Aubl.	1	0	0	0,9091	0,16%

Versión 1 – agosto de 2018.

- Perfil de vegetación

Este ecosistema presenta un estado de transición entre la vegetación secundaria baja y alta, el cual puede estar relacionado con la reducción en la intensidad de intervención de estas coberturas por el avance de la frontera agrícola. En este caso en particular, aunque predomina el estrato inferior, se evidencian especies de porte medio que han facilitado la llegada de especies con un desarrollo altimétrico mayor, entre las especies que allí se desarrollan se destacan *Baccharis latifolia* y *Myrsine guianensis*, las cuales dominan actualmente dentro de la cobertura (Figura 22).

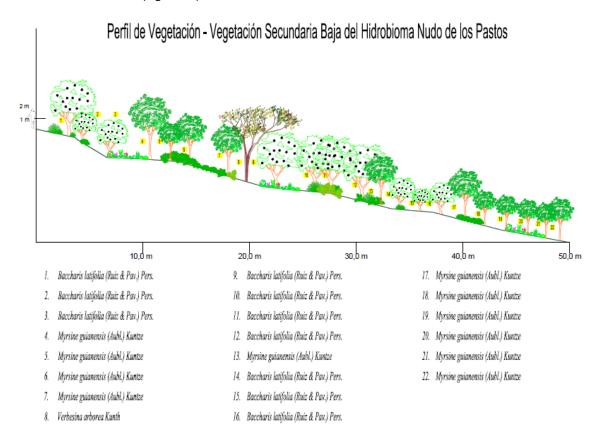


Figura 22 Perfil de vegetación secundaria baja del hidrobioma nudo de los pastos

Fuente: INGETEC S.A., 2018

- Clases diamétricas

El análisis de clases diamétricos se realizó en 8 categorías con una amplitud de intervalo de 1,03 cm, como se evidencia en la Figura 22. La gráfica tiene un comportamiento tendiente a la "J" invertida con una fuerte

Versión 1 – agosto de 2018.

disminución de individuos en la clase II, si bien es posible una explicación por tensiones externas, también debe ser considerado el hecho de que estos estados sucesionales presentan distribuciones estructurales irregulares, las categorías I y III presentan la mayor cantidad de individuos con 34 y 32 que representan el 50% de la muestra si agregamos la clase II este valor sube hasta el 58,33%, es decir que casi el 60% de los individuos no superan los 4,058 cm de DAP(ver Figura 23).

Amplitud del intervalo		Clase diamétrica
0,955	1,989	Ī
1,989	3,024	II
3,024	4,058	III
4,058	5,093	IV
5,093	6,127	٧
6,127	7,162	VI
7,162	8,196	VII
8,196	9,231	VIII

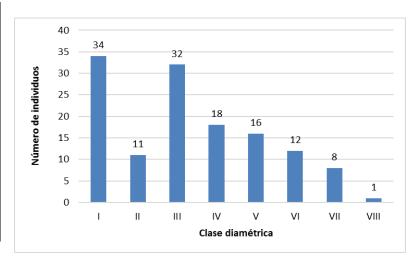


Figura 23 Número de individuos por clase diamétrica de la Vegetación secundaria baja del Hidrobioma Nudo de los pastos.

Fuente: INGETEC S.A., 2018

- Clases altimétricas

En cuanto a las clases altimétricas se fijaron 8 categorías con una amplitud de intervalo de 0,66 m, como se observa en la Figura 24. L abundancias por categoría no presentan un patrón definido, lo cual confirma el carácter irregular del dosel en esta vegetación, las categorías II, III y IV acumularon la mayor cantidad de individuos representando el 53% del total, existe una disminución de la clase I respecto a las clases siguientes lo que puede indicar las altas tasas de crecimiento que presentan las especies permaneciendo muy poco tiempo en las primeras categorías de altura, y considerando que estas especies centran su esfuerzo en el crecimiento horizontal para asegurar la disponibilidad de luz.

Versión 1 – agosto de 2018.

Amplitud d	Clase altimétrica	
0,5	1,1625	1
1,1625	1,825	Ш
1,825	2,4875	III
2,4875	3,15	IV
3,15	3,8125	V
3,8125	4,475	VI
4,475	5,1375	VII
5,1375	5,8	VIII

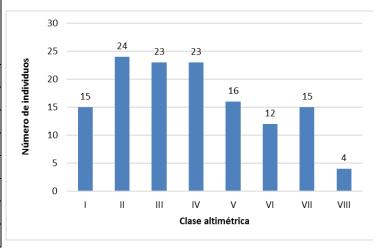


Figura 24 Número de individuos por clase altimétrica de la Vegetación secundaria baja del Hidrobioma Nudo de los pastos.

Fuente: INGETEC S.A., 2018

- Índices de diversidad

El índice de Simpson como medida de la dominancia da mayor importancia a las especies dominantes del ecosistema, siendo este la probabilidad de encontrar la misma especie en dos extracciones al azar, para el ecosistema estudiado el valor arrojado fue de 0,87, indicando así que no existen especies dominantes en el ecosistema y que por el contrario las abundancias de las especies tienden a tener una distribución homogénea.

Para el índice de Shannon se calculó un valor de 2,32 siendo Ln 17= 2,83 (máximo valor posible), lo que nos indica una alta incertidumbre en predecir que especie saldrá en una extracción al azar, en otras palabras, la distribución de la abundancia entre especies tiende a ser homogénea.

La equitatividad presento un valor de 0,81 lo que se interpreta como una distribución equitativa de los individuos entre especies, finalmente el índice de Margalef arrojo un valor de 3,277 siendo este un indicador de alta diversidad en la relación entre número de individuos y especies según lo acotado por Moreno *et al* (2015), estos valores corresponden a un ecosistema perturbado como el evaluado donde múltiples especies de herbáceas y arbustos llegan a colonizar espacios abiertos dejados por fuertes intervenciones antrópicas, como el primer estadio de una sucesión ecológica (ver Tabla 15).

Versión 1 – agosto de 2018.

Tabla 15 Índices de diversidad calculados para la Vegetación secundaria baja del Hidrobioma Nudo de los pastos.

Estimador Resultado	
N° de especies	17
N° de individuos	132
Simpson_1-D	0,8748
Shannon_H	2,322
Margalef	3,277
Equitability_J	0,8196

Fuente: INGETEC S.A., 2018

Hidrobioma Patía

Caracterización florística de la Vegetación secundaria alta del Hidrobioma Patía

El ecosistema Vegetación secundaria alta del Hidrobioma Patía presenta un área de 9,63 ha que representan el 0,24% del área total, como se mencionó, la cobertura correspondiente a la vegetación secundaria evidencia una regeneración posterior a una intervención natural o antrópica sobre la vegetación primaria alguna vez existente; usualmente corresponden a áreas que tuvieron un cambio en el uso del suelo con fines productivos.

Para la caracterización de este ecosistema se levantaron un total de 8 unidades de muestreo, que dejaron como resultado un total de 181 individuos, de los cuales 68 pertenecen a la categoría fustales, 46 a latizales y 67 a brinzales.

- Composición Florística

La vegetación secundaria alta en el Hidrobioma Patía está conformado por 181 individuos que corresponden a 68 fustales, 46 latizales y 67 brinzales, como se observa en la Figura 25, están agrupados en 10 familias, 10 géneros y 10 especies es decir la composición florística es homogénea no hay ninguna familia que predomine. De acuerdo a lo reportado en la Tabla 16, la familia que tiene mayor número de individuos es Lythraceae con 76 registrados en el muestreo, seguida de Primulaceae con 32 individuos de la especie *Myrsine guianensis*. Las familias menos representativas para la zona de estudio son Rubiaceae y Scrophulariaceae con solo un individuo registrado para cada una.

Tabla 16. Composición florística de la Vegetación secundaria alta del Hidrobioma Patía

Familia	Especie	Común	N° de individuos
LYTHRACEAE	Lafoensia acuminata (Ruiz & Pav.) DC. Guayacán		76
PRIMULACEAE	Myrsine guianensis (Aubl.) Kuntze	Cucharo	32

5. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA	Página 46
---	-------------

Versión 1 – agosto de 2018.

Familia	Especie	Común	N° de individuos
BIGNONACEAE	Tecoma stans (L.) Juss. ex Kunth	Quillotocto	20
MELASTOMATACEAE	Miconia versicolor Naudin.	Morochillo	19
SAPINDACEAE	Allophylus sp.	Caspirosario	18
EUPHORBIACEAE	Euphorbia laurifolia Juss. ex Lam.	Lechero	7
BETULACEAE	Alnus acuminata Kunth	Aliso	4
PIPERACEAE	Piper sp1	Cordoncillo	3
RUBIACEAE	Psychotria sp1	Cafetillo	1
SCROPHULARIACEAE	Buddleja americana L.	Salvia blanca	1
	Total		181

Fuente: INGETEC S.A., 2018

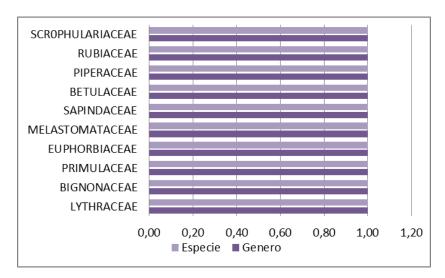


Figura 25. Distribución de géneros y especies por familia de la Vegetación secundaria alta del Hidrobioma Patía

Fuente: INGETEC S.A., 2018

- Índice de valor de importancia IVI% (abundancia, frecuencia y dominancia)

El índice de valor de importancia, indica el valor ecológico que tienen las especies dentro de una comunidad vegetal, definidos por parámetros de abundancia, frecuencia y dominancia, de esta manera de acuerdo a lo registrado en la Tabla 17 la especie *Lafoensia acuminata* tiene la mayor importancia ecológica en la Vegetación secundaria alta del Hidrobioma Patía con el 162% con abundancia relativa del 62%, presencia del 28% y una dominancia del 72% del total de registros; la siguiente especie de importancia ecológica es *Tecoma stans* con una abundancia del 10%, frecuencia del 22% y dominancia del 8%. En la Figura 26 se presenta la

Versión 1 – agosto de 2018.

importancia ecológica de cada una de las especies muestreadas, se incluye de esta manera *Myrsine guianensis* con un valor del 33%, sin embargo la especie que predomina en este índice sobre las demás es *Lafoensia acuminata*.

Tabla 17. Abundancias, dominancias y frecuencias de la Vegetación secundaria alta del Hidrobioma Patía

Nombre científico	Frecuencia relativa	Abundancia Relativa	Dominancia Relativa	IVI%
Lafoensia acuminata (Ruiz & Pav.) DC.	28%	62%	72%	162%
Tecoma stans (L.) Juss. ex Kunth	22%	10%	8%	40%
Myrsine guianensis (Aubl.) Kuntze	17%	9%	7%	33%
Allophylus sp.	11%	10%	7%	28%
Euphorbia laurifolia Juss. ex Lam.	11%	6%	3%	20%
Piper sp1	6%	1%	1%	9%
Buddleja americana L.	6%	1%	1%	8%
Total	100%	100%	100%	300%

Fuente: INGETEC S.A., 2018

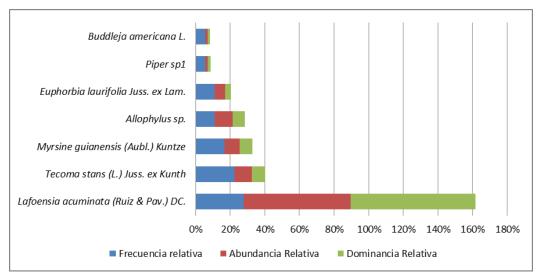


Figura 26. Abundancias, dominancias y frecuencias de la Vegetación secundaria alta del Hidrobioma Patía

Fuente: INGETEC S.A., 2018

Posición sociológica

La posición sociológica dentro del bosque establece la permanencia de las especies en los diferentes estratos de desarrollo del mismo, de esta manera de acuerdo a lo presentado en la Figura 27, se tiene que *Lafoensia*

acuminata tiene un valor del 61,64%, debido a que esta especie se encuentra en los tres estratos, para el E. inferior presenta 29 individuos, en el E. medio 11 y en el superior 2, la siguiente especie en posición sociológica es *Tecoma stans*, con el 11,8%, con presencia de 6 individuos en el estrato inferior , 1 en el medio y ausencia en el estrato superior, *Myrsine guianensis* presenta únicamente individuos en el estrato inferior con un valor del 11,09%. Por el contrario, *Piper* sp1 y *Buddleja americana* aunque presentan individuos en solo un estrato no tiene mayor relevancia en posición ecológica con menos del 2%.

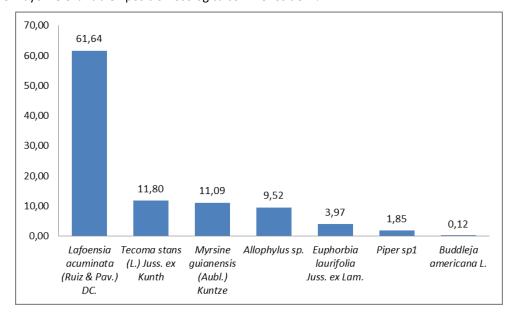


Figura 27. Índice de posición sociológica Ps% por especies para la Vegetación secundaria alta del Hidrobioma Patía

Fuente: INGETEC S.A., 2018

Perfil de la vegetación

De forma semejante a otros ecosistemas intervenidos presentes en el área, predominan en este ecosistema los estratos medios e inferior, siendo clara la dominancia del estrato medio con especies características de superficies en proceso de recuperación como es el caso de *Tecoma stans* y *Lafoensia acuminata* (Figura 28). Estos resultados coinciden con los presentados más adelante en cuanto a distribución en clases diamétricas y altimétricas.

Versión 1 – agosto de 2018.

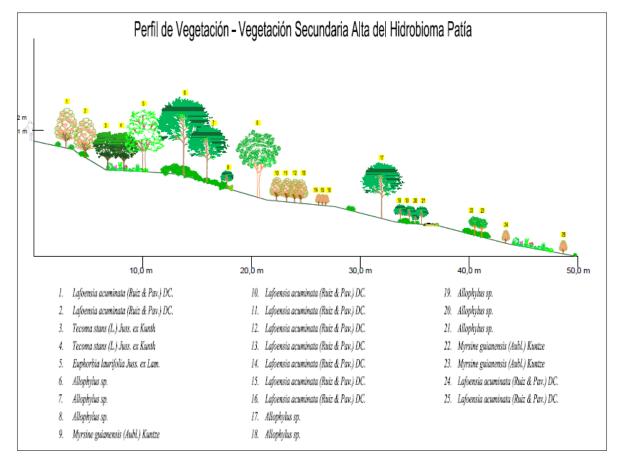


Figura 28 Perfil de la vegetación secundaria alta del Hidrobioma Patía.

Fuente: INGETEC S.A., 2018

- Regeneración natural

La regeneración natural de la vegetación secundaria alta del Hidrobioma Patía está compuesta por 113 individuos, que corresponden a 67 latizales y 46 brinzales, agrupados en 9 familias, 9 géneros y 9 especies, de esta manera no hay ninguna familia que sobresalga en composición florística sobre las demás. Como se muestra en la Tabla 18, las familias más representativas de acuerdo al número de individuos registrados son Lythraceae, Primulaceae y Melastomataceae, siendo la primera la de mayor representación con 34 individuos.

Tabla 18 Composición florística de la Regeneración natural de la vegetación secundaria alta del Hidrobioma Patía

Familia	Nombre científico sin autor	Nombre común	No. Individuos		Total
			Latizal	Brinzal	
LYTHRACEAE	Lafoensia acuminata (Ruiz & Pav.) DC.	Guayacán	18	16	34

5. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA	Página 50
---	-------------

Versión 1 – agosto de 2018.

Familia	Nombre científico sin autor	Nombre común	No. Individuos		Total
			Latizal	Brinzal	
PRIMULACEAE	Myrsine guianensis (Aubl.) Kuntze	Cucharo	15	11	26
MELASTOMATACEAE	Miconia versicolor Naudin.	Morochillo	14	5	19
BIGNONACEAE	Tecoma stans (L.) Juss. ex Kunth	Quillotocto	7	6	13
SAPINDACEAE	Allophylus sp.	Caspirosario	8	3	11
BETULACEAE	Alnus acuminata Kunth	Aliso	4	0	4
EUPHORBIACEAE	Euphorbia laurifolia Juss. ex Lam.	Lechero	0	3	3
PIPERACEAE	Piper sp1	Cordoncillo	1	1	2
RUBIACEAE	Psychotria sp1	Cafetillo	0	1	1
	Total		67	46	113

Fuente: INGETEC S.A., 2018

Según lo reportado en la Tabla 19 de acuerdo a la composición florística de la vegetación secundaria alta y el análisis de regeneración natural que abarca parámetros como abundancia, frecuencia y categoría de tamaño, se identifica entonces *Lafoensia acuminata* con un valor de regeneración del 27%, que registra también una frecuencia del 15%, abundancia del 30% y una categoría de tamaño del 35%, registrándose en todos los estratos, con 8 individuos en el E. inferior, 20 en el E. medio y 6 en el superior, garantizando su permanencia en el bosque. La especie *Myrsine guianensis* representa el 19% de la regeneración, con presencia de individuos en todas las categorías de tamaño. En la Figura 29 se presenta el comportamiento de las diferentes especies de acuerdo a los parámetros establecidos, entre otras especies que vale la pena mencionar en la regeneración son *Miconia versicolor* con el 15%, *Allophylus* sp. y *Tecoma stans* con el 12%.

Tabla 19 Abundancia, frecuencia y categoría de tamaño de la regeneración natural de la vegetación secundaria alta del Hidrobioma Patía

Nombre científico	Nombre común	Frecuencia relativa	Abundancia Relativa	Ct %	Rn%
Lafoensia acuminata (Ruiz & Pav.) DC.	Guayacán	15%	30%	35%	27%
Myrsine guianensis (Aubl.) Kuntze	Cucharo	15%	23%	18%	19%
Miconia versicolor Naudin.	Morochillo	15%	17%	13%	15%
Allophylus sp.	Caspirosario	10%	10%	17%	12%
Tecoma stans (L.) Juss. ex Kunth	Quillotocto	15%	12%	8%	12%
Alnus acuminata Kunth	Aliso	10%	4%	1%	5%
Piper sp1	Cordoncillo	10%	2%	3%	5%
Euphorbia laurifolia Juss. ex Lam.	Lechero	5%	3%	3%	4%
Psychotria sp1	Cafetillo	5%	1%	1%	2%
Total		100%	100%	100%	100%

Versión 1 – agosto de 2018.

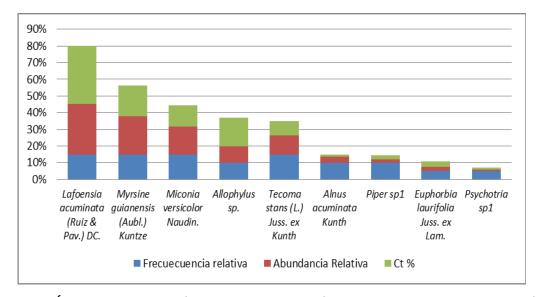


Figura 29 Índice de la regeneración natural de la Vegetación secundaria alta del Hidrobioma Patía

Fuente: INGETEC S.A., 2018

Índice de valor de importancia ampliado para la Vegetación secundaria alta del Hidrobioma Patía

El índice de valor de importancia ampliado, involucra todos los estratos del bosque desde los individuos fustales hasta la regeneración natural para indicar que especies tienen mayor importancia ecológica en el ecosistema de estudio, de esta manera la especie *Lafoensia acuminata* presenta el 250% del valor ecológico de la vegetación secundaria con una importancia ecológica para fustales que corresponde a 162%, con representación en todos los estratos de posición sociológica y una importancia en la regeneración del 27%. Las siguientes especies de valor de IVIA es *Tecoma stans* y *Myrsine guianensis* con el 63%. La especie de menor importancia ecológica en esta cobertura es *Psychotria* sp1 (Ver Figura 30).

Tabla 20 Índice de valor de importancia ampliado para la Vegetación secundaria alta del Hidrobioma Patía

Nombre científico	Nombre común	I.V.I	Ps %	Rn%	I.V.I.A
Allophylus sp.	Caspirosario	28%	10%	12%	50%
Alnus acuminata Kunth	Aliso	0%	0%	5%	5%
Buddleja americana L.	Salvia blanca	8%	0%	0%	8%
Euphorbia laurifolia Juss. ex Lam.	Lechero	20%	4%	4%	28%
Lafoensia acuminata (Ruiz & Pav.) DC.	Guayacán	162%	62%	27%	250%
Miconia versicolor Naudin.	Morochillo	0%	0%	15%	15%

Versión 1 – agosto de 2018.

Nombre científico	Nombre común	I.V.I	Ps %	Rn%	I.V.I.A
Myrsine guianensis (Aubl.) Kuntze	Cucharo	33%	11%	19%	63%
Piper sp1	Cordoncillo	9%	2%	5%	15%
Psychotria sp1	Cafetillo	0%	0%	2%	2%
Tecoma stans (L.) Juss. ex Kunth	Quillotocto	40%	12%	12%	63%
Total		300%	100%	100%	500%

Fuente: INGETEC S.A., 2018

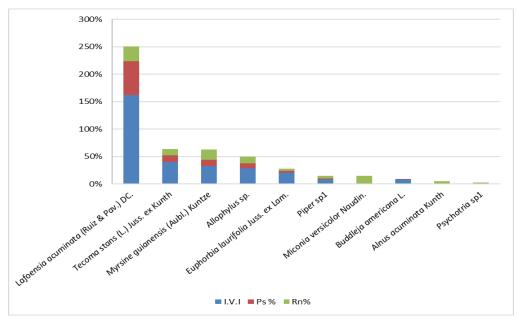


Figura 30 Índice de valor de importancia ampliado para las siete primeras especies de la Vegetación secundaria alta del Hidrobioma Patía

Fuente: INGETEC S.A., 2018

Clases diamétricas

Para el cálculo de las clases diamétricas se definieron ocho intervalos con una amplitud de 3,05 cm (véase Figura 31). Los organismos se encuentran distribuidos a lo largo de todas las clases diamétricas siendo la clase I (12,41 cm – 15,47 cm) la que registra más abundancia de individuos equivalente al 36,7% del total evaluado. Se evidencia además en la distribución de individuos por clase diamétrica una tendencia a la "J" invertida, esta distribución es típica de coberturas naturales en las cuales se ven las dinámicas de competencia, registrándose más individuos en las clases iniciales y disminuyendo hacia las clases superiores.

Versión 1 – agosto de 2018.

Amplitud de l	Amplitud de Intervalo (cm)	
12,414	15,470	I
15,470	18,525	П
18,525	21,581	III
21,581	24,636	IV
24,636	27,692	V
27,692	30,747	VI
30,747	33,803	VII
33,803	36,858	VIII

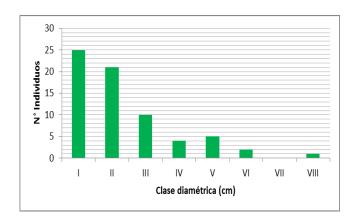


Figura 31. Distribución por clases Diamétricas para la Vegetación secundaria alta del Hidrobioma Patía.

Fuente: INGETEC S.A., 2018

- Clases altimétricas

Para las clases altimétricas se definieron ocho intervalos con una amplitud de 1,41 m (ver Figura 32), tomando como base 5 m de altura y como tope el individuo más grande dentro del muestreo (15 m). El 83% de los individuos muestreados de la cobertura boscosa se encuentran dentro de las clases I a III, que corresponden a las especies en etapas del desarrollo más temprana y algunas genéticamente determinadas a ocupar los estratos más bajos dentro de la estructura del bosque: aquellos tolerantes a la sombra, mayores temperaturas y humedad relativa. Por su parte las categorías con menor cantidad de individuos corresponden a las clases de la VI a la VIII con tan solo el 4,41% de representatividad que corresponden a los arboles emergentes del dosel.

Amplitud de	Clase diamétrica	
5,000	6,412	I
6,412	7,823	П
7,823	9,235	III
9,235	10,647	IV
10,647	12,058	V
12,058	13,470	VI
13,470	14,882	VII
14,882	16,293	VIII

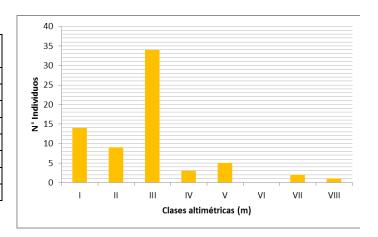


Figura 32. Distribución por clases Altimétricas para la Vegetación secundaria alta del Hidrobioma Patía.

Versión 1 – agosto de 2018.

- Grado de sociabilidad (IS%)

A partir del cálculo del grado de sociabilidad se obtienen el nivel de agregación que tiene las especies. Para esta cobertura *Lafoensia acuminata* fue la que presento mayor grado con 15,2, seguida por *Miconia versicolor* y *Allophylus* sp. con 9,5 y 9 respectivamente. Las especies restantes disminuyen el grado de sociabilidad paulatinamente (ver Tabla 21).

Tabla 21. Índice de Sociabilidad para la Vegetación secundaria alta del Hidrobioma Patía.

Especie	Frecuencia %	Abundancia media	Índice de sociabilidad
Lafoensia acuminata (Ruiz & Pav.) DC.	100%	15,2	15,20
<i>Miconia versicolor</i> Naudin.	40%	3,8	9,50
Allophylus sp.	40%	3,6	9,00
Myrsine guianensis (Aubl.) Kuntze	80%	6,4	8,00
Tecoma stans (L.) Juss. ex Kunth	80%	4	5,00
Alnus acuminata Kunth	20%	0,8	4,00
Piper sp1	20%	0,6	3,00
Euphorbia laurifolia Juss. ex Lam.	60%	1,4	2,33
Buddleja americana L.	20%	0,2	1,00
Psychotria sp1	20%	0,2	1,00

Fuente: INGETEC S.A., 2018

Índices de diversidad

El índice de Simpson nos permite determinar la heterogeneidad o dominancia de una especie sobre un ecosistema siendo este la probabilidad de encontrar la misma especie en dos extracciones al azar, para este caso el valor arrojado fue de 0,757 lo que indica un ecosistema tendiente a la homogeneidad es decir que las especies están representadas en proporciones similares y no existe una clara dominancia de alguna especie.

El índice de Shannon expresa la uniformidad de los valores de importancia a través de todas las especies de la muestra, mide el grado promedio de incertidumbre en predecir a que especie pertenecerá un individuo tomado al azar de la muestra. El valor obtenido para la comunidad evaluada fue de 1,716 (ver Tabla 22). Teniendo en cuenta que el valor máximo calculado con el logaritmo natural de la cantidad de especies registradas es 2,30; se puede inferir que es una comunidad que presenta equidad en tanto el valor está más cercano al máximo por encima del valor medio y por consiguiente indica un medio de diversidad.

La equitatividad expresa la homogeneidad o heterogeneidad en la distribución de las especies en una determinada comunidad. Cuando todas las especies de una muestra son igualmente abundantes, se puede pensar intuitivamente que los índices de equitatividad tienen valores máximos, y decrecen cuando las

Versión 1 – agosto de 2018.

abundancias relativas de las especies varían; así, si hay una especie dominante el valor de este disminuye; mide la uniformidad en la que los individuos se dividen en los taxones presentes. En este caso, el valor de Equitatividad encontrado fue 0,74 (ver Tabla 22), este valor tiende más 1 que a 0, presentando una tendencia marcada a la equidad.

Tabla 22. Índices de diversidad calculados para la Vegetación secundaria alta del Hidrobioma Patía.

Estimador	Resultado
N° de especies	10
N° de individuos	181
Simpson_1-D	0,757
Shannon_H	1,716
Margalef	1,731
Equitability_J	0,7451

Fuente: INGETEC S.A., 2018

Caracterización florística de la Vegetación secundaria baja del Hidrobioma Patía

En el ecosistema de vegetación secundaria baja del Hidrobioma Patía se levantaron 15 unidades de muestreo. Por el tipo de cobertura presente no se existen individuos en estado fustal, es decir que el muestreo consta de Latizales y brinzales, obteniendo 108 y 83 individuos respectivamente. Es importante resaltar, que debido al tamaño de las unidades de muestreo realizadas para esta unidad de cobertura solo se tomó una coordenada, la del punto medio de cada parcela.

Composición Florística

La vegetación secundaria baja del hidrobioma Patía presentó una riqueza de 13 especies distribuidas en 13 géneros y 11 familias (Tabla 23).

Las familias con mayor riqueza fueron Asteraceae y Leguminosae con dos géneros y dos especies cada una. Las familias restantes estas representadas por un solo género y una especie (Figura 33).

Tabla 23 Composición florística de Vegetación secundaria baja del Hidrobioma Patía

Familia	Especie	Común	N° de individuos
ASPARAGACEAE	Furcraea cabuya Trel.	Fique	4
ASTERACEAE	Baccharis latifolia (Ruiz & Pav.) Pers.	Chilca blanca	23
	Barnadesia spinosa L.f.	Pilampo	1

Versión 1 – agosto de 2018.

Familia	Especie	Común	N° de individuos
BIGNONIACEAE	Tecoma stans (L.) Juss. ex Kunth	Quillotocto	40
EUPHORBIACEAE	Euphorbia laurifolia Juss. ex Lam.	Lechero	17
LECTIVATION	Acacia decurrens Willd.	Acacia	5
LEGUMINOSAE	Mimosa quitensis Benth.	Guarango	6
LYTHRACEAE	Lafoensia acuminata (Ruiz & Pav.) DC.	Guayacán	44
MELASTOMATACEAE	Miconia versicolor Naudin.	Morochillo	14
MYRTACEAE	Psidium guajava L.	Guayabilla	2
PRIMULACEAE	Myrsine guianensis (Aubl.) Kuntze	Cucharo	33
SAPINDACEAE	Allophylus sp.	Caspirosario	1
VERBENACEAE	Lantana camara L.	Venturosa	1

Fuente: INGETEC S.A., 2018

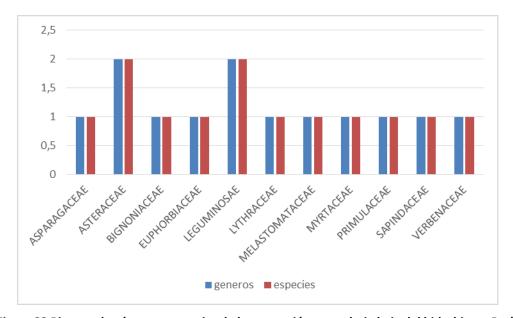


Figura 33 Riqueza de géneros y especies de la vegetación secundaria baja del hidrobioma Patía

Fuente: INGETEC S.A., 2018

- Índice de regeneración natural para la vegetación secundaria baja del hidrobioma Patía

Por tratarse de una cobertura que cuenta con Latizales y brinzales únicamente, el análisis estructural del ecosistema tiene su base principalmente, en parámetros relacionados con el proceso de regeneración natural.

Versión 1 – agosto de 2018.

En la Tabla 24 se resumen la abundancia, frecuencia, categoría de tamaño e índice de regeneración natural para las especies encontradas en la cobertura vegetación secundaria baja del Hidrobioma Patía.

Tabla 24 Índice de regeneración natural- Vegetación secundaria baja del Hidrobioma Patía

ESPECIE	NOMBRE COMUN	Abun	Frec	Abun %	Frec %	Ct%	RN %
Acacia decurrens Willd.	Acacia	5	2	2,6	3,3	2,96	2,97
Allophylus sp.	Caspirosario	1	1	0,5	1,7	0,33	0,84
Baccharis latifolia (Ruiz & Pav.) Pers.	Chilca blanca	23	6	12,0	10,0	10,84	10,96
Barnadesia spinosa L.f.	Pilampo	1	1	0,5	1,7	0,66	0,95
Euphorbia laurifolia Juss. ex Lam.	Lechero	17	6	8,9	10,0	9,36	9,42
Furcraea cabuya Trel.	Fique	4	1	2,1	1,7	1,97	1,91
Lafoensia acuminata (Ruiz & Pav.) DC.	Guayacán	44	13	23,0	21,7	23,32	22,67
Lantana camara L.	Venturosa	1	1	0,5	1,7	0,66	0,95
Miconia versicolor Naudin.	Morochillo	14	3	7,3	5,0	7,06	6,46
Mimosa quitensis Benth.	Guarango	6	1	3,1	1,7	3,12	2,64
Myrsine guianensis (Aubl.) Kuntze	Cucharo	33	11	17,3	18,3	16,91	17,51
Psidium guajava L.	Guayabilla	2	1	1,0	1,7	1,31	1,34
Tecoma stans (L.) Juss. ex Kunth	Quillotocto	40	13	20,9	21,7	21,51	21,37
Total		191	60	100,0	100,0	100,0	100,0

Fuente: INGETEC, 2018.

Abundancia

La especie más abundante fue *Lafoensia acuminata* con una representatividad del 23%, seguida por *Tecoma stans* con 20,9 % y *Myrsine guianensis* con 17,3%. Estas tres especies en conjunto agrupan el 61,3% de los individuos registrados (Figura 34). Las especies *Tecomas stans y Lafoensia acuminata* son cultivadas, lo cual evidencia el grado de intervención de la cobertura.

Versión 1 – agosto de 2018.

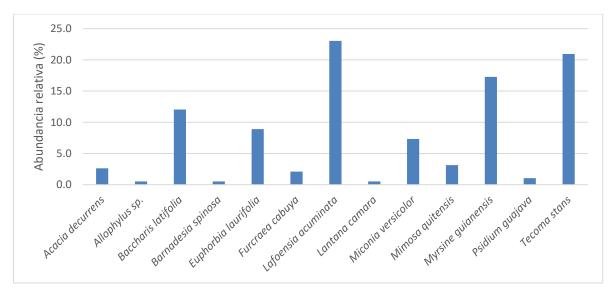


Figura 34 Abundancia relativa de las especies de Vegetación secundaria baja del Hidrobioma Patía

Fuente: INGETEC S.A., 2018

-Frecuencia

Las especies más frecuentes fueron *Tecoma stans y Lafoensia acuminata*, presentándose en 13 de los 15 muestreos; en tercer lugar aparece *Myrsine guianensis* presentándose en 11 parcelas (Figura 35).

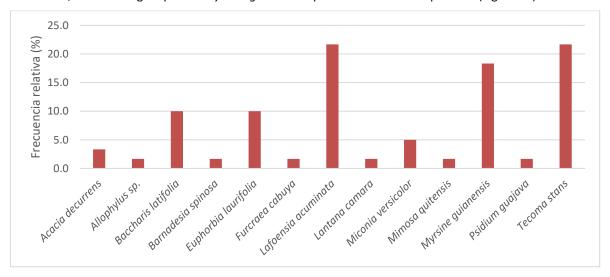


Figura 35 Frecuencia relativa de las especies de Vegetación secundaria baja del Hidrobioma Patía

Versión 1 – agosto de 2018.

En cuanto al índice de regeneración natural la especie *Lafoensia acuminata* posee el valor más alto (22,7%), siendo la de mayor importancia en el proceso de sucesión de la vegetación secundaria baja del Hidrobioma Patía. Le siguen en importancia las especies *Tecoma stans* con un índice de 21,4% y *Myrsine guianensis* con 17,5%. Estas tres especies tienen una alta influencia en la dinámica del ecosistema, ya que las tres suman el 61,6% de la regeneración natural.

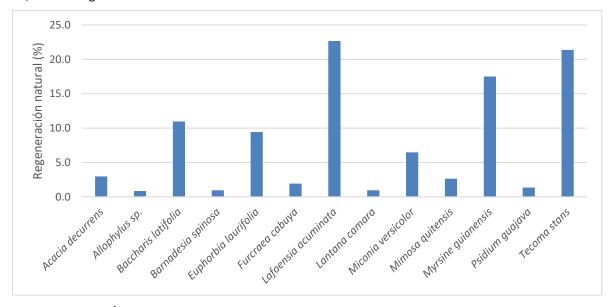


Figura 36 Índice de regeneración natural Vegetación secundaria baja del Hidrobioma Patía

Fuente: INGETEC S.A., 2018

- Perfil de la vegetación

Como se observa en la Figura 37, la vegetación predominante en este ecosistema corresponde al estrato medio con individuos que no superan los 5 metros de altura, los cuales se caracterizan por un hábito arbustivo y la presencia de individuos de porte arbóreo en estado juvenil que han sido plantados para procesos de restauración. En general esta cobertura se encuentra estructurada como un paso intermedio hacia la conformación de un ecosistema de mayor madurez, por la presencia de especies arbóreas y arbustivas que propician ambientes adecuados para el establecimiento de especies propias de ecosistemas menos intervenidos.

Versión 1 – agosto de 2018.

Perfil de Vegetación - Vegetación Secundaria Baja del Hidrobioma Patía

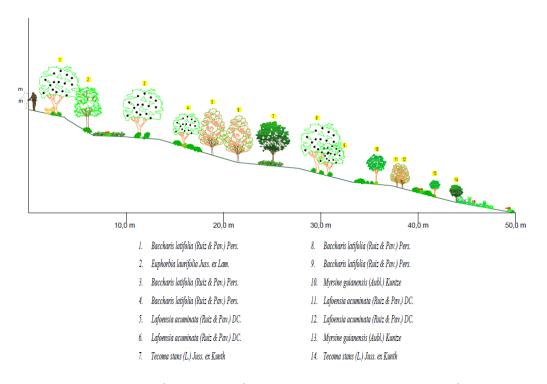


Figura 37 Perfil de Vegetación Secundaria Baja del Hidrobioma Patía

Fuente: INGETEC S.A., 2018

Clases diamétricas

Para el análisis de distribución por clase diamétrica, se clasificaron los latizales y brinzales en 9 clases diamétricas que van de 0,64 a 8,59 cm de diámetro en las cuales se incluyeron los 191 individuos registrados.

En la Figura 38, se consigna la distribución por clases diamétricas para esta cobertura. De acuerdo con la información encontrada, la mayor abundancia de individuos se concentra en la clase I, que corresponde al rango entre los 0,6 y 1,5 cm de DAP. El 74,9% de los individuos se registran en las primeras cuatro categorías, es decir que no superan los 4,2 cm de DAP. Esto significa que la regeneración natural presenta un estado de desarrollo temprano, en donde aparecen plántulas y renuevos de especies arbóreas.

Versión 1 – agosto de 2018.

Amplit inter		Clase diamétrica
0,6	1,5	I
1,5	2,4	=
2,4	3,3	Ш
3,3	4,2	IV
4,2	5,1	V
5,1	5,9	VI
5,9	6,8	VII
6,8	7,7	VIII
7,7	8,6	IX

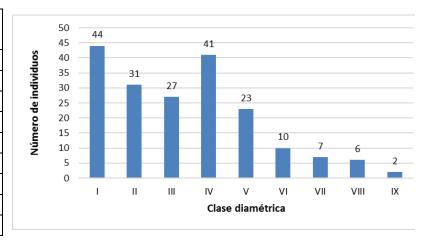


Figura 38 Distribución por clase diamétrica de la Vegetación secundaria baja del Hidrobioma Patía

Fuente: INGETEC S.A., 2018

Clases altimétricas

Para la elaboración de la distribución por clase de altura, se clasificaron los latizales y brinzales en 9 clases que van de 0,3 a 6 m de altura en las cuales se incluyeron los 191 individuos registrados.

En la Figura 39 se pueden observar los valores de abundancia de individuos para las categorías de tamaño presentes. De acuerdo con la información encontrada las clases con mayor abundancia fueron la clase I con el 23,6% de los individuos y la clase II con el 19,9%. Por lo tanto, el 43,5% de los individuos no sobrepasan 0,9 m de altura. En los estratos altos los individuos son más escasos, de manera que en las clases VII, VIII y IX solo se presentan cuatro individuos en cada una. Esto indica que la zona estuvo sometida a un alto grado de intervención humana (Figura 39).

Versión 1 – agosto de 2018.

Amplit inter	tud del rvalo	Clase altimétrica
0,3	0,9	_
0,9	1,6	II
1,6	2,2	III
2,2	2,8	IV
2,8	3,5	V
3,5	4,1	VI
4,1	4,7	VII
4,7	5,4	VIII
5,4	6,0	IX

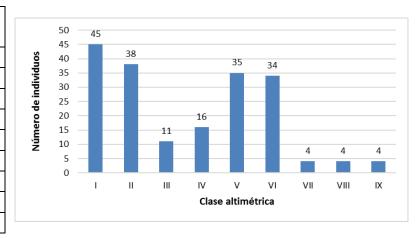


Figura 39 Distribución por clases de altura en la vegetación secundaria baja del Hidrobioma Patía

Fuente: INGETEC S.A., 2018

En el análisis de la estructura vertical efectuado para el presente ecosistema se tuvo en cuenta la categoría de tamaño de la regeneración natural (posición sociológica) por especie y la estratificación vertical, variables relacionadas con el arreglo de las especies y el consecuente aprovechamiento de luz solar y desarrollo vegetativo de los individuos.

- Categoría de tamaño en la regeneración natural

Con el fin de conocer el dominio aéreo de las especies se determinó la categoría de tamaño de las mismas. La especie *Lafoensia acuminata* obtuvo el mayor porcentaje con 23,3%, seguida por *Tecoma stans* con 21,5% y *Myrsine guianensis* con 16,9%, acorde con el índice de regeneración natural (Tabla 25 y Figura 40).

Tabla 25 Categoría de tamaño de las especies de Regeneración Natural del Hidrobioma Patía

Especie	Abunda	ncia por Cat tamaño	Ct Abs	Ct%		
·	ı	1 11 11				
Acacia decurrens Willd.	0	4	1	18,0	2,96	
Allophylus sp.	0	0	1	2,0	0,33	
Baccharis latifolia (Ruiz & Pav.) Pers.	10	5	8	66,0	10,84	
Barnadesia spinosa L.f.	0	1	0	4,0	0,66	
Euphorbia laurifolia Juss. ex Lam.	9	7	1	57,0	9,36	
Furcraea cabuya Trel.	4	0	0	12,0	1,97	

Versión 1 – agosto de 2018.

Especie	Abunda	Abundancia por Categoria de tamaño			Ct%	
·	ı	II	II			
Lafoensia acuminata (Ruiz & Pav.) DC.	8	23	13	142,0	23,32	
Lantana camara L.	0	1	0	4,0	0,66	
Miconia versicolor Naudin.	9	3	2	43,0	7,06	
Mimosa quitensis Benth.	1	3	2	19,0	3,12	
Myrsine guianensis (Aubl.) Kuntze	11	13	9	103,0	16,91	
Psidium guajava L.	0	2	0	8,0	1,31	
Tecoma stans (L.) Juss. ex Kunth	11	20	9	131,0	21,51	
Total por categoria	63	82	46			
valor fitosociológico por estrato %	33,0	42,9	24,1			
valor fitosociológico por simplificado	3	4	2			
Total	191			609,0	100,00	

Fuente: INGETEC S.A., 2018

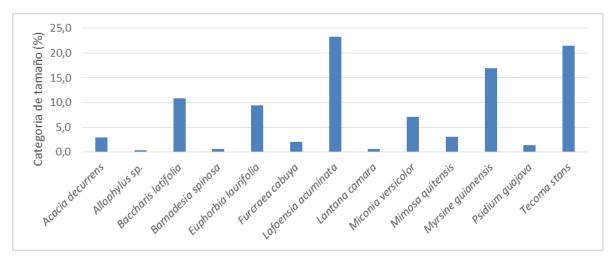


Figura 40 Categoría de tamaño de las especies de la vegetación secundaria baja del Hidrobioma Patía

Fuente: INGETEC S.A., 2018

- Índices de diversidad

Versión 1 – agosto de 2018.

A continuación, se presentan los índices de diversidad del ecosistema, calculados a partir de todos los individuos muestreados, considerando la variedad de especies y familias (Tabla 26).

Tabla 26 Índices de Diversidad de Vegetación secundaria baja del Hidrobioma Patía

Índice	Valor
N° de especies	4,00
N° de individuos	12,73
Dominance_D	0,31
Simpson_1-D	0,69
Shannon_H	1,26
Margalef	1,20
Equitability_J	0,93

Fuente: INGETEC S.A., 2018

En los 15 muestreos se identificó un total de 11 familias, 13 géneros y 13 especies, con una abundancia total de 191 individuos, con un promedio de 4 especies y 12,73 individuos por parcela. Estos valores son menores que en otras coberturas con mayor grado de conservación, lo cual es coherente teniendo en cuenta que se trata de una cobertura en una etapa muy temprana de desarrollo.

El índice de diversidad de Margalef presentó un valor de 1,20, lo cual implica que la diversidad es baja, considerando que valores inferiores a dos son considerados como zonas de baja biodiversidad (en general resultado de efectos antropogénicos) y valores cercanos a cinco son indicativos de alta biodiversidad.

De igual forma el índice de Shannon muestra una baja diversidad (1,26), considerando que su valor máximo es cercano a 5, en ecosistemas con gran riqueza.

El índice de equidad de Pielou (J) tomó un valor de 0,93, lo cual indica que existe una alta equidad entre la abundancia de las especies, considerando que su valor máximo es de 1 que se presenta cuando todas las especies son igualmente abundantes.

Para este ecosistema se obtuvo un valor de dominancia bajo (0,31) y el índice de diversidad de Simpson presenta un valor alto (0,69), considerando que su valor oscila en el rango entre 0 y (1-1/s), donde S es el número de especies encontradas, de manera que el límite superior en este caso es 0,92. Es decir que al tomar dos individuos al azar existe una probabilidad baja de que sean de la misma especie.

Orobioma Andino Nudo de los pastos

Versión 1 – agosto de 2018.

Caracterización florística del Bosque de galería y ripario del Orobioma Andino Nudo de los pastos

El bosque de Ripario corresponde a las coberturas de vegetación arbórea ubicada en las márgenes de los cuerpos de agua, para el ecosistema Orobioma Andino Nudo de los Pastos en el área de influencia del proyecto en esta cobertura se ocupan 81,05 ha para la caracterización florística y estructural se toman muestras en 7 parcelas.

Composición Florística

Para el bosque ripario del Orobioma Andino Nudo de los Pastos se registran 257 individuos totales, divididos en 128 fustales, 60 latizales y 69 brinzales, agrupados en 25 familias, 28 géneros y 29 especies.

Como se observa en la Tabla 27, las especies que presentan mayor cantidad de individuos son *Weinmannia cochensi, Lafoensia acuminata* y *Myrsine guianensis* con 51, 39 y 20 individuos respectivamente.

Dentro de las familias encontradas Rosaceae y Rubiaceae tienen el mayor número de géneros con dos registrados para cada uno, frente a las especies estas también reportan la mayor presencia, junto a la Melastomataceae con dos especies de *Miconia* que representan 13 de los individuos muestreados, como se muestra en la Figura 41.

Tabla 27 Composición florística en el Bosque ripario

FAMILIA	ESPECIE	NOMBRE COMÚN	N° IND.
ACTINIDIACEAE	Saurauia ursina Triana & Planch.	Moquillo	6
ADOXACEAE	Viburnum sp1	Pelotillo	1
AQUIFOLIACEAE	<i>llex</i> sp.	León	9
BETULACEAE	Alnus acuminata Kunth	Aliso	5
BIGNONACEAE	Tecoma stans (L.) Juss. ex Kunth	Quillotocto	10
BORAGINACEAE	Tournefortia scabrida Kunth.	Mayorquín	5
CUNONIACEAE	Weinmannia cochensis Hieron	Encenillo	51
ELEOCARPACEAE	Vallea stipularis L.f.	Roso	2
ERICACEAE	Cavendishia sp.1	Chaquilulo	1
ESCALLONIACEAE	Escallonia paniculata (Ruiz & Pav.) Schult.	Chilco	21
EUPHORBIACEAE	Euphorbia laurifolia Juss. ex Lam.	Lechero	16
LEGUMINOSAE	Acacia melanoxylon	acacia japonesa	1
LEGUMINOSAE	Inga fastuosa (Jacq.) Willd.	Guaba	2
LYTHRACEAE	Lafoensia acuminata (Ruiz & Pav.) DC.	Guayacán	39
MALPIGHIACEAE	Byrsonima crassifolia (L.) Kunth	Mora	4
MELASTOMATACEAE	Miconia sp1	Amarillo	1

Versión 1 – agosto de 2018.

FAMILIA	ESPECIE	NOMBRE COMÚN	N° IND.
MELASTOMATACEAE	Miconia versicolor Naudin.	Morochillo	12
MELIACEAE	Cedrela odorata	Cedro	1
MYRTACEAE	Eucalyptus globulus	Eucalipto	4
PIPERACEAE	Piper sp1	Cordoncillo	10
PRIMULACEAE	Myrsine guianensis (Aubl.) Kuntze	Cucharo	20
ROSACEAE	Hesperomeles obtusifolia (DC.) Lindl.	Cerote	3
ROSACEAE	Prunus serotina Ehrh.	Capulí	13
RUBIACEAE	Palicourea guianensis Aubl.	Majua	1
RUBIACEAE	Psychotria sp1	Cafetillo	5
SALICACEAE	Salix humboltti	sauce	2
SAPINDACEAE	Allophylus sp.	Caspirosario	7
SIPARUNACEAE	Siparuna aspera (Ruiz & Pav.) A.DC.	Sarapanga	2
SOLANACEAE	Cestrum racemosum Ruiz & Pav.	Sauco blanco	3
	TOTAL		257

Fuente: INGETEC S.A., 2018

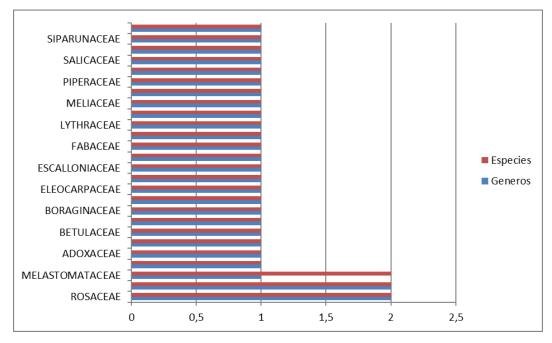


Figura 41 Distribución de géneros y especies por familia para el Bosque ripario

Versión 1 – agosto de 2018.

- Abundancia frecuencia y dominancia

El índice de valor de importancia está definido por parámetros como abundancia, frecuencia y dominancia, determinando de esta manera la importancia ecológica de las especies de una determinada área de estudio; de acuerdo a lo presentado en Tabla 28 encontramos que *Lafoensia acuminata* presenta 25% de abundancia, con una frecuencia en el muestreo de 11,8%, presentando de igual manera la mayor dominancia con 20,7%, la siguiente especie más abundante en el bosque ripario es *Weinmannia cochensis* con 22,7% y *Escallonia paniculata* con 13,3 %; para el caso de la dominancia una especie que tiene una importancia significativa fuera de las ya mencionadas es el *Eucalyptus globulus* con 14%

Como se evidencia en la Figura 42, las especies de mayor importancia ecológica son *Lafoensia acuminata* de acuerdo a los parámetros anteriormente mencionados con 57,5%, seguida de *Weinmannia cochensis* con 46,6 %, *Escallonia paniculata* con 31,1% y *Eucalyptus globulus* con una representatividad del 26%. Otras especies que se destacan no solo por su índice de importancia si no por la frecuencia y dominancia en el muestreo son *Salix humboldtii y Saurauia ursina*.

Tabla 28 Abundancia, frecuencia y dominancia relativas para el Bosque ripario

Especie	Ab%	FR%	DOM%	IVI 300
Lafoensia acuminata (Ruiz & Pav.) DC.	25,0%	11,8%	20,7%	57,5%
Weinmannia cochensis Hieron	22,7%	8,8%	15,1%	46,6%
Escallonia paniculata (Ruiz & Pav.) Schult.	13,3%	8,8%	9,0%	31,1%
Eucalyptus globulus	3,1%	8,8%	14,0%	26,0%
Salix humboltti	1,6%	5,9%	10,5%	18,0%
Saurauia ursina Triana & Planch.	4,7%	5,9%	5,0%	15,6%
Tecoma stans (L.) Juss. ex Kunth	3,9%	5,9%	4,1%	13,9%
Allophylus sp.	5,5%	2,9%	5,4%	13,8%
Myrsine guianensis (Aubl.) Kuntze	3,9%	5,9%	1,9%	11,7%
Euphorbia laurifolia Juss. ex Lam.	4,7%	2,9%	2,9%	10,5%
Inga fastuosa (Jacq.) Willd.	1,6%	2,9%	2,1%	6,6%
Cedrela odorata	0,8%	2,9%	2,0%	5,8%
Alnus acuminata Kunth	1,6%	2,9%	1,2%	5,7%
<i>Ilex</i> sp.	1,6%	2,9%	1,1%	5,6%
Viburnum sp1	0,8%	2,9%	1,4%	5,1%
Vallea stipularis L.f.	1,6%	2,9%	0,5%	5,0%
Acacia melanoxylon	0,8%	2,9%	1,1%	4,8%
Hesperomeles obtusifolia (DC.) Lindl.	0,8%	2,9%	0,6%	4,3%

CSH-1-AM-AM-EIA-G-0007-0 Versión 1 – agosto de 2018.

Especie	Ab%	FR%	DOM%	IVI 300
Prunus serotina Ehrh.	0,8%	2,9%	0,6%	4,3%
Tournefortia scabrida Kunth.	0,8%	2,9%	0,5%	4,2%
Cavendishia sp.1	0,8%	2,9%	0,2%	3,9%
TOTAL	100%	100%	100%	300%

Fuente: INGETEC S.A., 2018

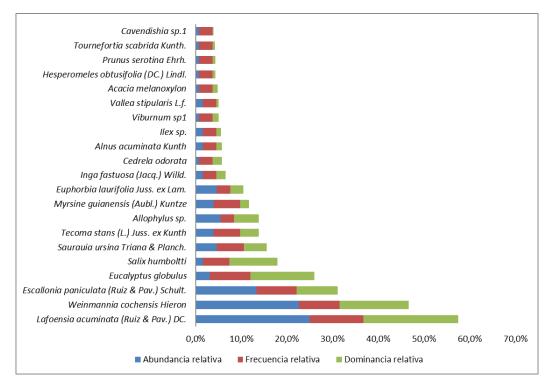


Figura 42 Índice de valor de importancia para el Bosque ripario

Fuente: INGETEC S.A., 2018

Posición Sociológica

La posición sociológica muestra la representatividad que tienen las especies en todos los estratos de esta manera refleja la importancia fitosociológica, para el caso del bosque ripario como se muestra en la Figura 43, se tiene que que el mayor posición sociológica relativa lo reporta *Lafoensia acuminata* con 25,5% (32 individuos, la mayoría dentro del estrato inferior) y *Weinmannia cochensis* con 24% (29 individuos); de esta

Versión 1 – agosto de 2018.

manera estas especies muestran un comportamiento de permanencia en los diferentes estados de desarrollo en el bosque.

Otra especie que vale la pena mencionar es *Escallonia paniculata* con 14,6% en la posición sociológica, representada con 17 individuo, sin embargo, no están presentes en todos los estratos, únicamente en el inferior con 14 y en el medio con 3 individuos.

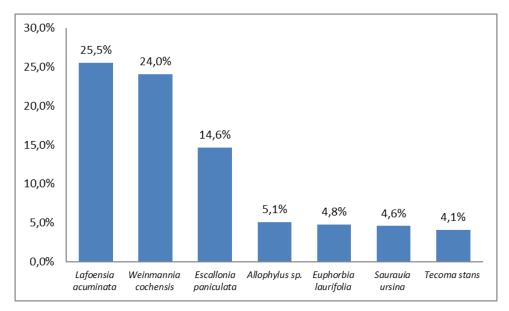


Figura 43 Posición sociológica para las siete primeras especies del Bosque ripario

Fuente: INGETEC S.A., 2018

- Regeneración natural

La regeneración natural muestreada en el Bosque ripario está compuesta por 129 individuos que corresponden a 60 latizales y 69 brinzales, agrupados en 16 familias, 18 géneros y 19 especies. La especie con mayor cantidad de individuos en el área de estudio corresponde a *Weinmannia cochensis* de la familia Cunnoniaceae con 22 latizales, seguido de *Myrsine guianensis* (Primulaceae) con 5 latizales y 10 brinzales, el género más representativo corresponde a Miconia, con dos especies muestreadas y 13 individuos, de acuerdo a lo presentado en la Tabla 29.

Tabla 29 Composición Florística de la regeneración natural en el bosque ripario

Familia	Especie	Nombre común	Latizal	Brinzal	Total
BETULACEAE	Alnus acuminata Kunth	Aliso	3	0	3
MALPIGHIACEAE	Byrsonima crassifolia (L.) Kunth	Mora	2	2	4

5. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA	Página 70
---	-------------

CONCESIONARIA VIAL UNIÓN DEL SUR

Versión 1 – agosto de 2018.

Familia	Especie	Nombre común	Latizal	Brinzal	Total
SOLANACEAE	Cestrum racemosum Ruiz & Pav.	Sauco blanco	0	3	3
ESCALLONIACEAE	Escallonia paniculata (Ruiz & Pav.) Schult.	Chilco	4	0	4
EUPHORBIACEAE	Euphorbia laurifolia Juss. ex Lam.	Lechero	3	7	10
ROSACEAE	Hesperomeles obtusifolia (DC.) Lindl.	Cerote	2	0	2
AQUIFOLIACEAE	<i>llex</i> sp.	León	4	3	7
LYTHRACEAE	Lafoensia acuminata (Ruiz & Pav.) DC.	Guayacán	2	5	7
MELASTOMATACEAE	Miconia sp1	Amarillo	1	0	1
MELASTOMATACEAE	<i>Miconia versicolor</i> Naudin.	Morochillo	2	10	12
PRIMULACEAE	Myrsine guianensis (Aubl.) Kuntze	Cucharo	5	10	15
RUBIACEAE	Palicourea guianensis Aubl.	Majua	0	1	1
PIPERACEAE	Piper sp1	Cordoncillo	7	3	10
ROSACEAE	Prunus serotina Ehrh.	Capulí	0	12	12
RUBIACEAE	Psychotria sp1	Cafetillo	1	4	5
SIPARUNACEAE	Siparuna aspera (Ruiz & Pav.) A.DC.	Sarapanga	0	2	2
BIGNONACEAE	Tecoma stans (L.) Juss. ex Kunth	Quillotocto	1	4	5
BORAGINACEAE	Tournefortia scabrida Kunth.	Mayorquín	1	3	4
CUNNONIACEAE	Weinmannia cochensis Hieron	Encenillo	22	0	22
	TOTAL GENERAL		60	69	129

Fuente: INGETEC S.A., 2018

De acuerdo a la composición florística del bosque ripario y al análisis de regeneración natural que abarca parámetros como abundancia, frecuencia y categoría de tamaño (ver Figura 44), las especies que tienen mayor valor de regeneración son *Weinmannia cochensis* con 11,9% de valor en regeneración, una abundancia de 17,1%, frecuencia de 3,8% y una categoría de tamaño 14,9%, seguido de *Myrsine guianensis* con una importancia en la regeneración de 10,6%, abundancia del 11,6% y frecuencia del 7,7%, *Miconia versicolor* con una importancia en la regeneración del bosque de 8,6%, abundancia de 9,3%, frecuencia de 7,7% y categoría de tamaño del 8,7%. Estas especies tienen presencia en al menos dos de los estratos fitosociológicos; de esta manera se demuestra la supervivencia y permanencia de estas especies en los diferentes estados de desarrollo del Bosque. En la Tabla 30, se presentan los porcentajes de los parámetros evaluados de todas las especies encontradas en el muestreo de la cobertura, una de las especies que aunque solo tiene un valor de 5,3% de regeneración, presento una frecuencia de 11,5% en todas las parcelas evaluadas.

Tabla 30 Abundancia, frecuencia y categoría de tamaño para la regeneración natural del Bosque ripario

Especie	Ct%	Ab%	Fr%	RN%
Weinmannia cochensis Hieron	14,9%	17,1%	3,8%	11,9%

5. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA	Página 71
---	-------------

CONCESIONARIA VIAL. UNIÓN DEL SUR

CSH-1-AM-AM-EIA-G-0007-0 Versión 1 – agosto de 2018.

Especie	Ct%	Ab%	Fr%	RN%
Myrsine guianensis (Aubl.) Kuntze	12,6%	11,6%	7,7%	10,6%
<i>Miconia versicolor</i> Naudin.	8,7%	9,3%	7,7%	8,6%
Prunus serotina Ehrh.	11,0%	9,3%	3,8%	8,1%
Euphorbia laurifolia Juss. ex Lam.	7,7%	7,8%	3,8%	6,4%
Piper sp1	7,5%	7,8%	3,8%	6,4%
Lafoensia acuminata (Ruiz & Pav.) DC.	5,7%	5,4%	7,7%	6,3%
Alnus acuminata Kunth	2,0%	2,3%	11,5%	5,3%
Tecoma stans (L.) Juss. ex Kunth	3,9%	3,9%	7,7%	5,1%
<i>Ilex</i> sp.	4,8%	5,4%	3,8%	4,7%
Cestrum racemosum Ruiz & Pav.	2,8%	2,3%	7,7%	4,3%
Psychotria sp1	4,3%	3,9%	3,8%	4,0%
Tournefortia scabrida Kunth.	3,4%	3,1%	3,8%	3,5%
Byrsonima crassifolia (L.) Kunth	3,2%	3,1%	3,8%	3,4%
Escallonia paniculata (Ruiz & Pav.) Schult.	2,7%	3,1%	3,8%	3,2%
Siparuna aspera (Ruiz & Pav.) A.DC.	1,8%	1,6%	3,8%	2,4%
Hesperomeles obtusifolia (DC.) Lindl.	1,3%	1,6%	3,8%	2,2%
Palicourea guianensis Aubl.	0,9%	0,8%	3,8%	1,8%
Miconia sp1	0,7%	0,8%	3,8%	1,8%
TOTAL	100%	100%	100%	100%

Versión 1 – agosto de 2018.

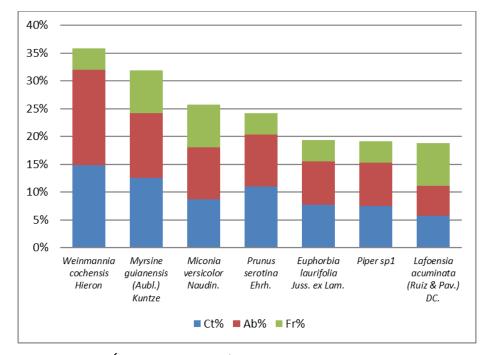


Figura 44 Índice de regeneración natural del Bosque ripario

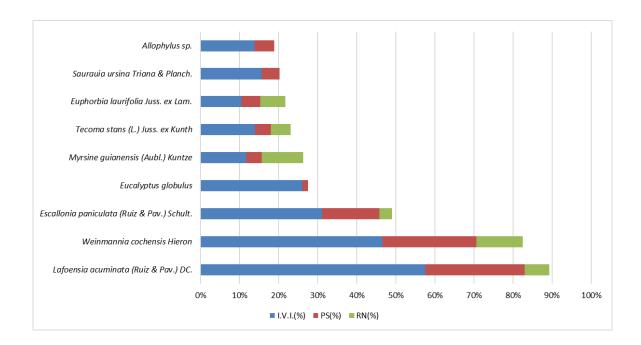
Fuente: INGETEC S.A., 2018

Índice de valor de importancia ampliado

El índice de valor de importancia ampliado, evalúa el valor ecológico de las especies desde los individuos más maduros hasta la regeneración del bosque y su presencia y relevancia en los diferentes estratos fitosociológicos. Para el caso del Bosque ripario, dentro de las especies con mayor importancia ecológica se registran *Lafoensia acuminata* con 89,3% sobresaliendo principalmente por su importancia a nivel de fustales, *Weinmannia cochensis* con un 82,6% y *Escallonia paniculata* con un valor de IVIA de 49%(Ver Tabla 31 31). En la Figura 45 se presentan las diez especies más importantes del Bosque ripario, mostrando especies adicionales como *Eucalyptus globulus* con el 27,5%, *Myrsine guianensis* con 26,3%, *Tecoma stans* con 23,1% y *Euphorbia laurifolia* con 21,7%.

Tabla 31 Índice de valor de importancia ampliado para el Bosque ripario

Especie	I.V.I.(%)	PS(%)	RN(%)	I.V.I.A.(%)
Lafoensia acuminata (Ruiz & Pav.) DC.	57,5%	25,5%	6,3%	89,3%
Weinmannia cochensis Hieron	46,6%	24,0%	11,9%	82,6%
Escallonia paniculata (Ruiz & Pav.) Schult.	31,1%	14,6%	3,2%	49,0%
Eucalyptus globulus	26,0%	1,5%	0,0%	27,5%
Myrsine guianensis (Aubl.) Kuntze	11,7%	3,9%	10,6%	26,3%
Tecoma stans (L.) Juss. ex Kunth	13,9%	4,1%	5,1%	23,1%


CSH-1-AM-AM-EIA-G-0007-0 Versión 1 – agosto de 2018.

Especie	I.V.I.(%)	PS(%)	RN(%)	I.V.I.A.(%)
Euphorbia laurifolia Juss. ex Lam.	10,5%	4,8%	6,4%	21,7%
Saurauia ursina Triana & Planch.	15,6%	4,6%	0,0%	20,2%
Allophylus sp.	13,8%	5,1%	0,0%	18,9%
Salix humboltti	18,0%	0,1%	0,0%	18,1%
Prunus serotina Ehrh.	4,3%	0,7%	8,1%	13,0%
Alnus acuminata Kunth	5,7%	1,4%	5,3%	12,4%
<i>llex</i> sp.	5,6%	1,8%	4,7%	12,0%
<i>Miconia versicolor</i> Naudin.	0,0%	0,0%	8,6%	8,6%
Tournefortia scabrida Kunth.	4,2%	0,7%	3,5%	8,4%
<i>Inga fastuosa</i> (Jacq.) Willd.	6,6%	1,4%	0,0%	8,0%
Hesperomeles obtusifolia (DC.) Lindl.	4,3%	0,9%	2,2%	7,5%
Vallea stipularis L.f.	5,0%	1,8%	0,0%	6,8%
Cedrela odorata	5,8%	0,7%	0,0%	6,5%
Piper sp1	0,0%	0,0%	6,4%	6,4%
Viburnum sp1	5,1%	0,7%	0,0%	5,8%
Acacia melanoxylon	4,8%	0,7%	0,0%	5,5%
Cavendishia sp.1	3,9%	0,9%	0,0%	4,8%
Cestrum racemosum Ruiz & Pav.	0,0%	0,0%	4,3%	4,3%
Psychotria sp1	0,0%	0,0%	4,0%	4,0%
Byrsonima crassifolia (L.) Kunth	0,0%	0,0%	3,4%	3,4%
Siparuna aspera (Ruiz & Pav.) A.DC.	0,0%	0,0%	2,4%	2,4%
Palicourea guianensis Aubl.	0,0%	0,0%	1,8%	1,8%
Miconia sp1	0,0%	0,0%	1,8%	1,8%
TOTAL	300,0%	100,0%	100,0%	500,0%

Versión 1 – agosto de 2018.

Versión 1 – agosto de 2018.

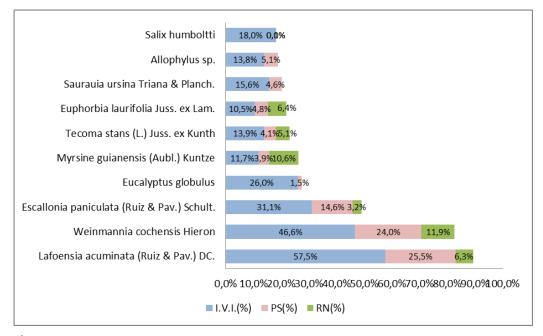


Figura 45 Índice de valor de importancia para las diez especies más importantes del Bosque Ripario del Orobioma Andino Nudo de los Pastos.

Fuente: INGETEC S.A., 2018

- Perfil de vegetación

A partir de los levantamientos realizados para este ecosistema, se evidencia que domina el estrato inferior con individuos que oscilan entre los 5 y 7 metros, con alta abundancia de la especie *Lafoensia acuminata*. Debido al alto grado de intervención de la vegetación y los procesos de recuperación de este tipo de coberturas, se ha propiciado el establecimiento de especies arbóreas que tieden a desarrollar un dosel estructurado el cual aumenta la regulación hídrica en los cuerpos de agua (Figura 46).

Versión 1 – agosto de 2018.

Perfil de Vegetación - Bosque de Galería y Ripario del Orobioma Andino Nudo de los pastos

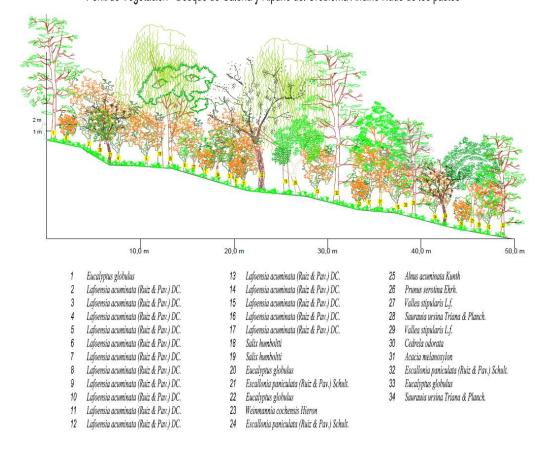


Figura 46 Perfil de vegetación para el bosque de galería y ripario del Orobioma Andino Nudo de los pastos

Clases diamétricas

Las clases diamétricas agrupan los individuos fustales en diferentes rangos de acuerdo a su dasometría con una amplitud de 3,3 cm, de esta manera se definen ocho clases diamétricas, concentrando 66 individuos que representan el 51,6 % en la clase I en un intervalo de 10,03 cm a 13,33 cm, la siguiente clase con mayor número de individuos es la II en un intervalo de 13,33 cm a 16,63 cm con 33 árboles (Figura 47).

La tendencia de la distribución es de "J" invertida, es decir que, la cantidad de individuos disminuye con el aumento de las clases diamétricas. Sin embargo, a partir de la clase III que presenta 33 individuos, la distribución presenta de a un individuo excepto la clase VI con 2 individuos, este comportamiento evidencia el aprovechamiento forestal intensivo que se realiza en esta zona, encontrando en esta cobertura la mayor cantidad de individuos agrupadas en las primeras categorías con menores DAP.

Versión 1 – agosto de 2018.

Amplitud de	l intervalo	Clase diamétrica
10,03	13,33	1
13,33	16,63	II
16,63	19,93	Ш
19,93	23,23	IV
23,23	26,53	V
26,53	29,84	VI
29,84	33,14	VII
33,14	36,44	VIII

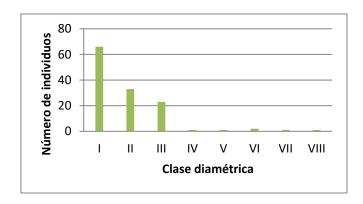


Figura 47 Distribución diamétrica del Bosque ripario

Fuente: INGETEC S.A., 2018

- Clases altimétricas

La distribución altimétrica agrupa a los individuos fustales en categorías de acuerdo a su altura, se maneja una amplitud de 1,5 m, determinando ocho clases (Figura 48). La clase II, con un intervalo de 6,5 a 8 m presenta 47 individuos que corresponden a 36,7%, seguido de la clase IV con 30 individuos es decir el 23,4%, la clase I y III presenta 20 y 21 individuos respectivamente, las clases VI, VII y VIII que incluye alturas de 12,5 m a 17,1 m presenta la menor cantidad de individuos, identificando que en estas clases el aprovechamiento de especies forestales ha sido constante e intensivo.

Amplitud del intervalo		Clase altimétrica
5,0	6,5	1
6,5	8,0	Ш
8,0	9,5	Ш
9,5	11,0	IV
11,0	12,5	V
12,5	14,1	VI
14,1	15,6	VII
15,6	17,1	VIII

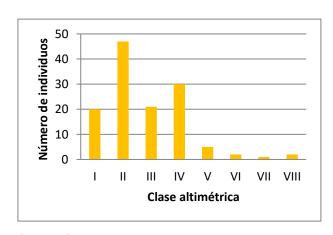


Figura 48 Distribución altimétrica del Bosque ripario

Versión 1 – agosto de 2018.

- Grado de sociabilidad

El grado de sociabilidad hace referencia a la interrelación de los individuos de la misma especie, es decir cómo se determina su organización en un área determinada, de esta manera en la Tabla 32 se presenta la sociabilidad de las especies del bosque ripario, encontrando que *Cavendishia* sp.1 es la especie más gregaria con un valor de 9,67% seguida de *Cedrela odorata* con 8% y *Weinmannia cochensis* con 7%, por el contrario algunas de las especies que tienden a distribuirse de manera solitaria son *Hesperomeles obtusifolia, Tournefortia scabrida, Myrsine guianensis* y *Salix humboltti*.

Tabla 32 Grado de sociabilidad de las especies del Bosque ripario

Especie	Frecuencia %	Abundancia media	Índice de sociabilidad
Cavendishia sp.1	43%	4,14	9,67
Cedrela odorata L.	57%	4,57	8,00
Weinmannia cochensis Hieron	14%	1,00	7,00
Allophylus sp.	14%	0,86	6,00
Saurauia ursina Triana & Planch.	43%	2,43	5,67
Vallea stipularis L.f.	29%	0,86	3,00
Alnus acuminata Kunth	29%	0,71	2,50
Acacia melanoxylon	29%	0,71	2,50
Escallonia paniculata (Ruiz & Pav.) Schult.	14%	0,29	2,00
Euphorbia laurifolia Juss. ex Lam.	14%	0,29	2,00
Inga fastuosa (Jacq.) Willd.	14%	0,29	2,00
Prunus serotina Ehrh.	14%	0,29	2,00
Tecoma stans (L.) Juss. ex Kunth	43%	0,57	1,33
Lafoensia acuminata (Ruiz & Pav.) DC.	14%	0,14	1,00
Eucalyptus globulus	14%	0,14	1,00
Salix humboltti	14%	0,14	1,00
Myrsine guianensis (Aubl.) Kuntze	14%	0,14	1,00
<i>llex</i> sp.	14%	0,14	1,00
Viburnum sp1	29%	0,29	1,00
Hesperomeles obtusifolia (DC.) Lindl.	14%	0,14	1,00
Tournefortia scabrida Kunth.	14%	0,14	1,00

Versión 1 – agosto de 2018.

Índices de diversidad

El índice de Shannon es muy utilizado para obtener valores correspondientes a la biodiversidad de una comunidad vegetal, reflejando su heterogeneidad de acuerdo a las especies presentes en la zona y su abundancia relativa desde su parte conceptual, no arroja la medida del grado de incertidumbre relacionada a la selección de forma aleatoria de un individuo en la comunidad. Para ello se calcula el Ln S (Siendo S el número total de las especies encontradas) de esta manera Ln 29= 3,36 este valor representa la máxima heterogeneidad que se puede tener y el 2.77el índice real calculado es decir el grado de incertidumbre de si todas las especies fueran abundantes. (Ver Tabla 33).

El Índice de Simpson es otro método para definir la diversidad de un ecosistema; abarca las especies que tienen mayor representación y dominancia, de esta manera el índice que se tiene para el muestreo es de 0.90 con una tendencia alta a 1 esto nos indica que el ecosistema es heterogéneo, es decir todas las especies presentes, se encuentran en la misma proporción, de esta manera no existe una dominancia especifica de alguna especie sobre las demás.

Margalef es un índice utilizado para estimar la biodiversidad de cierta comunidad, de acuerdo a la distribución del número de individuos en las diferentes especies, en función al total de individuos de la muestra, para el estudio se tiene un índice de 5,04 lo que implica alta diversidad en la muestra estudiada.

Tabla 33 Índices de diversidad para el Bosque ripario

Estimador	Resultado
Taxa_S	29
Individuals	257
Simpson_1-D	0,9085
Shannon_H	2,777
Margalef	5,046
Equitability_J	0,8248

Fuente: INGETEC S.A., 2018

Caracterización florística del Bosque denso de tierra firme del Orobioma Andino Nudo de los pastos

El Bosque denso de tierra firme del Orobioma Andino Nudo de los pastos, ocupa 9,31 ha para el área de influencia lo que corresponde al 0,23 %, este ecosistema está inmerso en una matriz de mosaico de pastos y cultivos, por lo tanto, los relictos de bosque presentes en la zona representan un gran valor ecológico no solo para la regulación hídrica si no para el hábitat de varias especies de fauna del lugar.

Versión 1 – agosto de 2018.

Composición Florística

En la Tabla 34 se muestran los valores que corresponden al número de individuos por especie es la zona de estudio, encontrando 448 individuos, agrupados en 19 familias, 23 géneros y 25 especies, la mayor concentración de individuos de diferentes estratos se encuentra en la familia Primulaceae, principalmente de la especie *Myrsine guianensis* para los fustales con 52 individuos y los latizales con 10. La especie que tiene mayor cantidad de individuos con DAP mayores a 10 cm es *Aegiphila odontophylla* con 74 árboles, seguida de *Myrsine quianensis* y *Cestrum buxifolium* con 52 y 28 respectivamente.

Dentro de las familias con mayor cantidad de géneros en el muestreo, se puede encontrar la Adoxaceae, Myrtaceae, Primulaceae y Solanaceae con dos especies diferentes de cada una (Figura 49).

Dentro de las especies reportadas para la regeneración del bosque se reportan especies importantes en estratos de latizales y brinzales como el *Styrax* sp., con 24 individuos, *Palicourea guianensis* con 12, *Geissanthus* sp., con 13 y *Vallea stipularis* con 10.

Tabla 34 Composición florística del Bosque denso bajo de tierra firme del Orobioma Andino Nudo de los pastos

Familia	Especie	Nombre común	N° de Individuos
ACTINIDIACEAE	Saurauia ursina Triana & Planch.	Moquillo	22
ADOXACEAE	Sambucus nigra L.	Sauco negro	13
ADOXACEAE	Viburnum sp1	Pelotillo	25
AQUIFOLIACEAE	<i>Ilex</i> sp.	León	13
ARALIACEAE	Oreopanax sp.	Pumamaque	3
ASTERACEAE	Verbesina arborea Kunth	Colla	1
CRISOBALANACEAE	Hirtella carbonaria Little	Carbonquillo	2
CUNONIACEAE	Weinmannia cochensis Hieron	Encenillo	4
ELEOCARPACEAE	Vallea stipularis L.f.	Roso	22
ERICACEAE	Cavendishia sp.1	Chaquilulo	4
LAMIACEAE	Aegiphila odontophylla Donn.Sm.	Cedrillo	84
MYRTACEAE	Eugenia sp2	Arrayán 2	8
MYRTACEAE	Myrcianthes rhopaloides (Kunth) McVaugh	Arrayán	5
PRIMULACEAE	Geissanthus sp.	Charmolan	24
PRIMULACEAE	Myrsine guianensis (Aubl.) Kuntze	Cucharo	64
ROSACEAE	Prunus huantensis Pilg.	Pilche	13
ROSACEAE	Prunus serotina Ehrh.	Capulí	15
RUBIACEAE	Palicourea guianensis Aubl.	Majua	16
SABIACEAE	Meliosma caucana Cuatrec. & Idrobo	Aguacatillo	15
SABIACEAE	Meliosma cf. cundinamarcensis Cuatrec. & Idrobo	Sabiaceae	5

CONCESIONARIA VIAL. UNIÓN DEL SUR

Versión 1 – agosto de 2018.

Familia	Especie	Nombre común	N° de Individuos
SAPINDACEAE	Allophylus excelsus (Triana & Planch.) Radlk.	Palo blanco	8
SIPARUNACEAE	Siparuna aspera (Ruiz & Pav.) A.DC.	Sarapanga	3
SOLANACEAE	Cestrum buxifolium Kunth.	Tinto	28
SOLANACEAE	Solanum sp	Cujaca	1
STYRACACEAE	Styrax sp.	Hojarasco	50
TOTAL			448

Fuente: INGETEC S.A., 2018

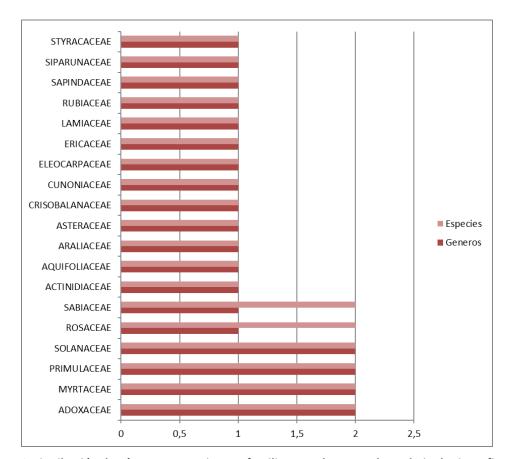


Figura 49 Distribución de géneros y especies por familia para el Bosque denso bajo de tierra firme del Orobioma Andino Nudo de los pastos

Versión 1 – agosto de 2018.

- Índice de valor de importancia (Abundancia frecuencia y dominancia)

En la Tabla 35 se presentan las especies encontradas en el área de estudio de acuerdo a la información levantada, detallando los valores de abundancia, frecuencia y dominancia del Bosque Denso Altoandino; de esta manera se identifica que las especies de mayor índice de valor de importancia enfocada a parámetros ecológicos son *Aegiphila odontophylla* con 20,5%, *Myrsine guianensis* con 11,2% y *Cestrum buxifolium* con 7,9%, estas especies también destacan en abundancia con 22%, 15,6% y 8,4 % respectivamente; frente a los parámetros de frecuencia y dominancia también tienen relevancia con respecto a las demás (Ver Figura 50).

Frente a la abundancia relativa, a parte de las especies ya mencionadas, también es importante mencionar individuos como Styrax sp., *Viburnum* sp1 y *Prunus serótina*, que se destacan también por su presencia frecuente en las parcelas levantadas con 4,7%, 7,8 % y 4,7 % respectivamente.

Para el caso de la dominancia una especie adicional a las inicialmente mencionadas que tiene relevancia es *Meliosma caucana* con 11,2%. En cuanto a las especies de regeneración que se mencionan en la composición florística como *Styrax* sp y *Vallea stipularis* con IVI de 5,9% y 3,5%, también tiene un valor ecológico importante para la regeneración y desarrollo del bosque por su frecuencia y abundancia.

Tabla 35 Abundancia, dominancia y frecuencia para el Bosque denso bajo de tierra firme del Orobioma Andino Nudo de los pastos

Especie	AB %	FR%	Dom%	IVI
Aegiphila odontophylla Donn.Sm.	22,2%	9,4%	29,9%	20,5%
Myrsine guianensis (Aubl.) Kuntze	15,6%	9,4%	8,6%	11,2%
Cestrum buxifolium Kunth.	8,4%	4,7%	10,6%	7,9%
Styrax sp.	7,8%	4,7%	5,1%	5,9%
Meliosma caucana Cuatrec. & Idrobo	4,5%	1,6%	11,2%	5,7%
Viburnum sp1	5,7%	7,8%	3,6%	5,7%
Prunus serotina Ehrh.	4,5%	4,7%	4,3%	4,5%
<i>Ilex</i> sp.	3,3%	6,3%	3,3%	4,3%
Saurauia ursina Triana & Planch.	4,8%	4,7%	2,9%	4,1%
Prunus huantensis Pilg.	3,3%	4,7%	3,6%	3,9%
Vallea stipularis L.f.	3,6%	4,7%	2,3%	3,5%
Eugenia sp2	1,5%	6,3%	1,1%	3,0%
Myrcianthes rhopaloides (Kunth) McVaugh	0,9%	4,7%	3,3%	2,9%
Geissanthus sp.	3,3%	1,6%	2,3%	2,4%
Palicourea guianensis Aubl.	1,2%	4,7%	0,5%	2,1%
Sambucus nigra L.	2,7%	1,6%	1,5%	1,9%
Cavendishia sp.1	1,2%	3,1%	1,2%	1,8%
Siparuna aspera (Ruiz & Pav.) A.DC.	0,9%	3,1%	0,9%	1,6%

Versión 1 – agosto de 2018.

Especie	AB %	FR%	Dom%	IVI
Allophylus excelsus (Triana & Planch.) Radlk.	0,9%	3,1%	0,6%	1,5%
Hirtella carbonaria Little	0,6%	3,1%	0,8%	1,5%
Meliosma cf. cundinamarcensis Cuatrec. & Idrobo	1,2%	1,6%	1,0%	1,3%
Weinmannia cochensis Hieron	1,2%	1,6%	0,6%	1,1%
Oreopanax sp.	0,6%	1,6%	0,8%	1,0%
Solanum sp	0,3%	1,6%	0,1%	0,7%
TOTAL	100%	100%	100%	100%

Fuente: INGETEC S.A., 2018

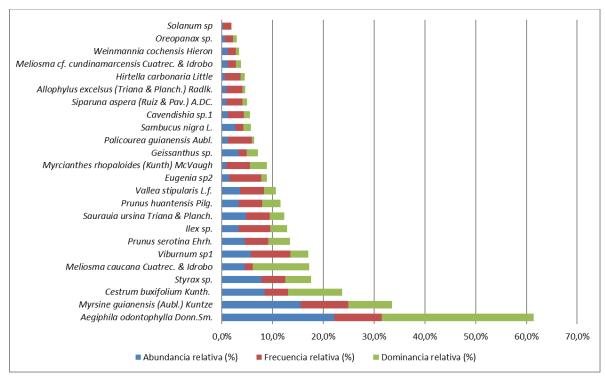


Figura 50 Distribución del Índice de valor de importancia (IVI %) para el Bosque denso bajo de tierra firme del Orobioma Andino Nudo de los pastos

Fuente: INGETEC S.A., 2018

Posición sociológica

Para las especies de una cobertura boscosa natural mantener su permanencia en cierto ecosistema está definido por individuos presentes en los diferentes estratos del bosque, es decir, desde la categoría de

Versión 1 – agosto de 2018.

desarrollo brinzal como indicio de regeneración natural, hasta los individuos de alto porte, demostrando que son capaces de llegar a su madurez por excelencia convirtiéndose en árboles padres productores de semillas para la regeneración natural. De acuerdo al muestreo realizado en el Bosque denso Altoandino, la especie *Aegiphila odontophylla* es la especie con la mayor importancia fitosociológica con un 22,2%, presentando (19 individuos en el estrato inferior y medio 45 y en el superior 10), le sigue *Myrsine guianensis* con 16,1% (21 individuos en el estrato inferior, 30 en el medio y uno en el superior). Dos especies importantes que vale la pena resaltar son *Cestrum buxifolium* y *Styrax* sp., con un valor de importancia que corresponde a 8,2% y 7,8 % respectivamente. En la Figura 51, se muestran las especies con el mayor nivel de importancia fitosociológica, ya que las demás se encontraban entre el 4% y el 0,2%.

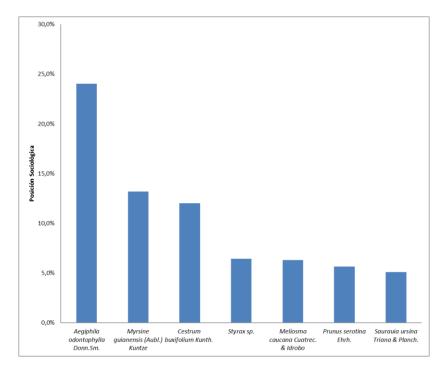


Figura 51 Posición sociológica para las siete primeras especies del Bosque denso alto andino

Fuente: INGETEC S.A., 2018

Perfil de la vegetación

En este ecosistema predominan los individuos en el estrato medio (individuos entre 2 a 6 metros), con presencia de algunos individuos en el estrato inferior y pocos individuos dentro del estrato superior. Para este ecosistema, como lo evidencia el análisis estructural predominan especies como *Meliosma caucana* y *Aegiphila odontophyla* (Ver Figura 52).

Versión 1 – agosto de 2018.

Figura 52 Perfil de vegetación para el bosque denso del Orobioma andino nudo de los pastos

Fuente: INGETEC S.A., 2018

- Regeneración natural

En la Tabla 36 se reporta la composición florística del Bosque denso Altoandino para la regeneración natural. Se registran individuos en los dos estratos de regeneración para latizales 73 individuos y para brinzales 41 para un total de 114 en el área de estudio, agrupados en 17 familias y 17 géneros.

Las familias que cuentan con mayor número de individuos registrados corresponden a Styracaceae y Primulaceae con 24 y 13 respectivamente.

Tabla 36 Composición florística para regeneración natural en el Bosque denso alto andino.

Fomilio	Familia Especie Nombre común		N° de Individuos		Total
ramilia	Especie	Nombre comun	Latizales	Brinzales	TOLAI
LAMIACEAE	Aegiphila odontophylla	Cedrillo	4	6	10
SAPINDACEAE	Allophylus excelsus	Palo blanco	2	3	5
MYRTACEAE	Eugenia sp2	Arrayán 2	2	1	3
PRIMULACEAE	Geissanthus sp.	Charmolan	7	6	13

CONCESIONARIA VIAL.
UNIÓN DEL SUR

Versión 1 – agosto de 2018.

Familia	Famorio	Nombre común	N° de In	dividuos	Tatal
Familia	Especie	Nombre comun	Latizales	Brinzales	Total
AQUIFOLIACEAE	<i>Ilex</i> sp.	León	1	1	2
SABIACEAE	Meliosma cf. cundinamarcensis	Sabiaceae	1	0	1
MYRTACEAE	Myrcianthes rhopaloides	Arrayán	1	1	2
PRIMULACEAE	Myrsine guianensis	Cucharo	10	2	12
ARALIACEAE	Oreopanax sp.	Pumamaque	1	0	1
RUBIACEAE	Palicourea guianensis	Majua	10	2	12
ROSACEAE	Prunus huantensis	Pilche	1	1	2
ADOXACEAE	Sambucus nigra	Sauco negro	0	4	4
ACTINIDIACEAE	Saurauia ursina	Moquillo	5	1	6
STYRACACEAE	Styrax sp.	Hojarasco	19	5	24
ELEOCARPACEAE	Vallea stipularis	Roso	3	7	10
ASTERACEAE	Verbesina arborea	Colla	0	1	1
ADOXACEAE	Viburnum sp1	Pelotillo	6	0	6
TOTAL GENERAL		73	41	114	

Fuente: INGETEC S.A., 2018

En cuanto a la importancia fitosociológica, abundancia y frecuencia de la regeneración natural reportada en el muestreo realizado se destaca la especie *Styrax* sp. con una representatividad del 15,8 % que corresponde a 21,1% de abundancia, 5,9% de frecuencia y 20,6 % en su categoría de tamaño, seguida de *Geissanthus* sp. con 10,6 % de importancia en la regeneración natural, con 11,4 % de abundancia representada en 13 individuos registrados, 8,8 % de presencia en las diferentes parcelas y 11,5% en categoría de tamaño (ver Figura 53). El bosque alto andino tiene especies con mayor relevancia que otras en la generación de este ecosistema, adicional a las anteriormente mencionadas se destacan *Myrsine guianensis* con 9,8% y *Palicourea guianensis* con 9,9%. Entre otras especies a rescatar que si bien no tienen de los porcentajes más altos en abundancia o categoría de tamaño, si tienen una representatividad en la frecuencia durante todo el muestreo, son *Aegiphila odontophylla, Saurauia ursina, Vallea stipularis* y *Viburnum* sp1 con un 8,8% de frecuencia durante el muestreo (Tabla 3737).

Tabla 37 Abundancia, Frecuencia y Categoría de tamaño para la Regeneración natural en el Bosque denso alto andino

Especie	Nombre común	AB%	FR%	Ct %	Rn
Aegiphila odontophylla	Cedrillo	8,8%	8,8%	8,8%	8,8%

CONCESIONARIA VIAL UNIÓN DEL SUR

Versión 1 – agosto de 2018.

Especie	Nombre común	AB%	FR%	Ct %	Rn
Allophylus excelsus	Palo blanco	4,4%	2,9%	4,6%	4,0%
Eugenia sp2	Arrayán 2	2,6%	5,9%	2,6%	3,7%
Geissanthus sp.	Charmolan	11,4%	8,8%	11,5%	10,6%
<i>llex</i> sp.	León	1,8%	2,9%	1,8%	2,2%
Meliosma cf. cundinamarcensis	Sabiaceae	0,9%	2,9%	0,9%	1,6%
Myrcianthes rhopaloides	Arrayán	1,8%	5,9%	1,8%	3,2%
Myrsine guianensis	Cucharo	10,5%	8,8%	10,1%	9,8%
Oreopanax sp.	Pumamaque	0,9%	2,9%	0,8%	1,5%
Palicourea guianensis	Majua	10,5%	8,8%	10,4%	9,9%
Prunus huantensis	pilche	1,8%	2,9%	1,8%	2,2%
Sambucus nigra	Sauco negro	3,5%	2,9%	3,8%	3,4%
Saurauia ursina	Moquillo	5,3%	8,8%	5,2%	6,4%
Styrax sp.	Hojarasco	21,1%	5,9%	20,6%	15,8%
Vallea stipularis	Roso	8,8%	8,8%	9,2%	8,9%
Verbesina arborea	Colla	0,9%	2,9%	0,9%	1,6%
Viburnum sp1	Pelotillo	5,3%	8,8%	5,3%	6,4%
TOTAL	•	100%	100%	100%	100%

Ct: Categoría de tamaño; Rn: índice de regeneración natural.

Fuente: INGETEC S.A., 2018

Versión 1 – agosto de 2018.

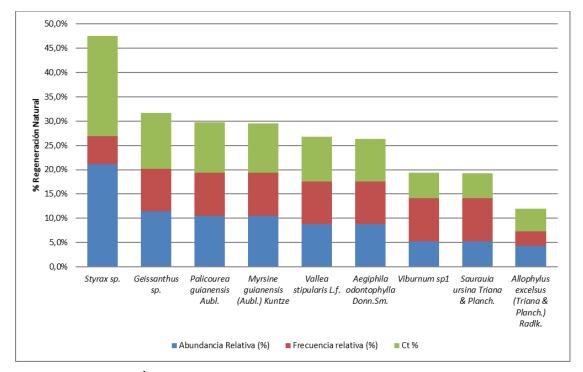


Figura 53 Índice de regeneración natural para el Bosque denso alto andino

Fuente: INGETEC S.A., 2018

- Índice de valor de importancia ampliado

En la Tabla 3838 se presenta el Índice valor de importancia ampliado para el Bosque denso Altoandino, donde se aborda no solo la importancia a nivel de fustales, si no que incluye la regeneración natural y su importancia fitosociológica en el bosque. Llas especies de mayor importancia ecológica en este ecosistema son Aegiphila odontophylla con 92,4%, *Myrsine guianensis* con 59,5 %, *Styrax* sp., con 41,2% y *Cestrum buxifolum* con 31,9%, de acuerdo a esta representatividad estas especies garantizan su permanencia en el bosque por estar presentes en todos los estratos desde los superiores hasta la regeneración natural del bosque como se observa en la Figura 54.

Tabla 38 Índice de Valor de importancia ampliado para el Bosque denso alto andino

Especie	I.V.I.(%)	PS(%)	RN(%)	I.V.I.A.(%)
Aegiphila odontophylla	61,4%	22,2%	8,8%	92,4%
Myrsine guianensis	33,6%	16,1%	9,8%	59,5%
Styrax sp.	17,6%	7,8%	15,8%	41,2%

CONCESIONARIA VIAL. UNIÓN DEL SUR

Versión 1 – agosto de 2018.

Especie	I.V.I.(%)	PS(%)	RN(%)	I.V.I.A.(%)
Cestrum buxifolium	23,7%	8,2%	0,0%	31,9%
Viburnum sp1	17,1%	5,6%	6,4%	29,1%
Saurauia ursina	12,3%	5,5%	6,4%	24,3%
Vallea stipularis	10,6%	3,3%	8,9%	22,8%
Meliosma caucana	17,2%	4,1%	0,0%	21,3%
Geissanthus sp.	7,1%	3,2%	10,6%	20,9%
Prunus serotina	13,4%	4,8%	0,0%	18,3%
Ilex sp.	12,8%	3,1%	2,2%	18,1%
Palicourea guianensis	6,4%	1,0%	9,9%	17,3%
Prunus huantensis	11,6%	3,5%	2,2%	17,2%
Eugenia sp2	8,9%	1,4%	3,7%	14,0%
Myrcianthes rhopaloides	8,8%	0,8%	3,2%	12,9%
Sambucus nigra	5,7%	2,4%	3,4%	11,6%
Allophylus excelsus	4,6%	1,0%	4,0%	9,6%
Meliosma cf. cundinamarcensis	3,8%	1,6%	1,6%	6,9%
Cavendishia sp.1	5,5%	1,2%	0,0%	6,7%
Siparuna aspera	4,9%	0,6%	0,0%	5,6%
Hirtella carbonaria	4,5%	0,8%	0,0%	5,3%
Oreopanax sp.	3,0%	0,6%	1,5%	5,1%
Weinmannia cochensis	3,4%	1,1%	0,0%	4,4%
Solanum sp	2,0%	0,2%	0,0%	2,2%
Verbesina arborea	0,0%	0,0%	1,6%	1,6%
TOTAL	300,0%	100,0%	100%	500,0%

Fuente: INGETEC S.A., 2018

Versión 1 – agosto de 2018.



Figura 54 Índice de valor de importancia para las diez primeras especies en el Bosque denso alto andino

Fuente: INGETEC S.A., 2018

- Clases diamétricas

Las clases diamétricas agrupan a los individuos mayores a 10 cm de DAP en 10 clases, cada una con intervalos de amplitud 4,5 cm. La primera clase (10,02 a 14,54 cm) agrupa la mayor cantidad de individuos con 168 individuos, seguido de la clase II con 76. De esta manera, la distribución diamétrica tiene un comportamiento en "J" invertida, agrupando los árboles de mayor diámetro en las ultimas clases con menor cantidad de individuo. Para las clases IX y X se reporta un individuo en cada una, con un intervalo que oscila entre los 46 cm hasta los 55 cm; de esta manera se evidencia que el bosque ha tenido una alteración por actividades antrópicas considerables, puede ser por extracción de madera ya que no se encuentran grandes cantidades de individuos de gran porte (Figura 55).

Versión 1 – agosto de 2018.

Amplitud del intervalo		Clase diamétrica
10,02	14,54	I
14,54	19,06	П
19,06	23,59	III
23,59	28,11	IV
28,11	32,63	V
32,63	37,15	VI
37,15	41,67	VII
41,67	46,19	VIII
46,19	50,71	IX
50,71	55,23	Х

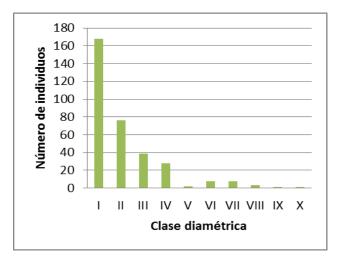


Figura 55 Número de individuos por clase diamétrica para el Bosque denso bajo de tierra firme del Orobioma Andino Nudo de los pastos

Fuente: INGETEC S.A., 2018

Clases altimétricas

Para este ecosistema se obtienen 10 clases altimétricas en intervalos con una amplitud de 1,07 m. La distribución del número de individuos agrupa la mayor cantidad entre las clases IV, III y VI con 72, 64 y 62 respectivamente, lo que infiere que el bosque se encuentra en un estado de madurez estable, los picos más bajos para la distribución se encuentran entre las primeras y la última clase es decir I, II y X con 15, 25 y 3 individuos, de esta manera la lectura del bosque desde este parámetro identifica una menor cantidad de árboles de bajas alturas, dando robustez a la hipótesis de la madurez de este ecosistema.

Versión 1 – agosto de 2018.

Amplit inter	ud del valo	Clase altimétrica
4	5,07	I
5,07	6,14	П
6,14	7,21	Ш
7,21	8,28	IV
8,28	9,35	V
9,35	10,43	VI
10,43	11,5	VII
11,5	12,57	VIII
12,57	13,64	IX
13,64	14,71	Х

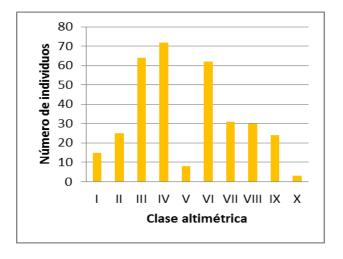


Figura 56 Número de individuos por clase altimétrica para el Bosque denso bajo de tierra firme del Orobioma Andino Nudo de los pastos

Fuente: INGETEC S.A., 2018

- Grado de Sociabilidad

De acuerdo a la evaluación del grado de sociabilidad de las especies en el área de estudio, la especie que tiene mayor agregación es *Meliosma caucana* con un grado de 15%, seguida de *Aegiphila odontophylla* con 12,3%, para *Geissanthus* sp. el gregarismo se sitúa en 11%. Para las especies que menos tienden a estar agrupadas tenemos a *Solanum* sp. *Myrcianthes rhopaloides* y *Hirtella carbonaria* con 1% de agregación (ver Tabla 3939).

Tabla 39 Grado de Sociabilidad de las especies del Bosque denso alto andino

Especie	Frecuencia %	Abundancia media	Índice de sociabilidad
Meliosma caucana	17%	2,50	15,00
Aegiphila odontophylla	100%	12,33	12,33
Geissanthus sp.	17%	1,83	11,00
Cestrum buxifolium	50%	4,67	9,33
Sambucus nigra	17%	1,50	9,00
Myrsine guianensis	100%	8,67	8,67
Styrax sp.	50%	4,33	8,67
Saurauia ursina	50%	2,67	5,33

N BAJO EL ESQUEMA APP N° 15 DE 2015

Versión 1 – agosto de 2018.

Especie	Frecuencia %	Abundancia media	Índice de sociabilidad
Prunus serotina	50%	2,50	5,00
Meliosma cf. cundinamarcensis	17%	0,67	4,00
Vallea stipularis	50%	2,00	4,00
Weinmannia cochensis	17%	0,67	4,00
Viburnum sp1	83%	3,17	3,80
Prunus huantensis	50%	1,83	3,67
llex sp.	67%	1,83	2,75
Cavendishia sp.1	33%	0,67	2,00
Oreopanax sp.	17%	0,33	2,00
Allophylus excelsus	33%	0,50	1,50
Siparuna aspera	33%	0,50	1,50
Palicourea guianensis	50%	0,67	1,33
Eugenia sp2	67%	0,83	1,25
Hirtella carbonaria	33%	0,33	1,00
Myrcianthes rhopaloides	50%	0,50	1,00
Solanum sp.	17%	0,17	1,00

Fuente: INGETEC S.A., 2018

- Índices de diversidad

El índice de Shannon evalúa la diversidad de un ecosistema, dando en un solo valor la riqueza y la equitabilidad de las especies; para ello el muestreo debe ser aleatorio y todas las especies de una comunidad vegetal deben estar presentes en la muestra ya que tiene en cuenta la abundancia y la frecuencia uniforme de las especies a lo largo de esta. Calculando Ln S (Siendo S el número total de las especies encontradas), se tiene que Ln 41= 3,71; representando la máxima heterogeneidad que se puede tener y el 2.96 el índice real calculado, mostrando que su heterogeneidad es alta, ya que los índices que estén cercanos a 3 o por encima de este se consideran menos uniformes.

El Índice de Simpson es otro método para definir la diversidad de una comunidad vegetal en estudio, abarca las especies que tienen mayor representación y dominancia es decir la probabilidad de tomar dos muestras de la misma especie al azar. El índice que se tiene para el muestreo es de 0.92 con una tendencia alta a 1 esto nos indica la homogeneidad en el ecosistema, es decir todas las especies presentes, se encuentran en la misma proporción, de esta manera no existe una dominancia especifica de alguna especie sobre las demás

Versión 1 – agosto de 2018.

Margalef es un índice utilizado para estimar la biodiversidad de cierta comunidad, de acuerdo a la distribución del número de individuos en las diferentes especies, en función al total de individuos de la muestra, para el estudio se tiene un índice de 6.77, lo que implica alta diversidad en la muestra estudiada.

Tabla 40 índices de diversidad para el Bosque denso bajo de tierra firme del Orobioma Andino Nudo de los pastos

Taxa_S	25
Individuals	448
Simpson_1-D	0,9101
Shannon_H	2,725
Margalef	3,931
Equitability_J	0,8466

Fuente: INGETEC S.A., 2018

Caracterización florística del Herbazal abierto rocoso del Orobioma Andino Nudo de los pastos

La cobertura de herbazal abierto rocoso del Orobioma Andino Nudo de los Pastos corresponde a áreas dominadas por vegetación natural de porte herbáceo con una distribución abierta, en esta cobertura no se registra ningún individuo arbóreo y se desarrolla típicamente en sustratos predominantemente rocosos y pedregosos que no retienen humedad. Usualmente esta cobertura ocupa entre un 30% a un 70% de la matriz analizada (IDEAM, 2010).

Esta cobertura ocupa 1,46 ha del total del área de influencia representando tan solo 0.04%. Se realizaron 10 parcelas de 1x1m aleatoriamente distribuidas; dadas las características estructurales de esta cobertura, solamente se registran datos de individuos de porte herbáceo a arbustivo (abundancias y alturas). En total se registraron 48 individuos que permitieron analizar los siguientes parámetros.

- Composición Florística

Los resultados de composición florística para el ecosistema analizado indican un total de 48 individuos distribuidos en 11 familias 13 géneros y 16 especies, de las cuales *Miconia* sp1 y *Polypodium* sp1 fueron la más abundantes con 10 individuos cada una representando el 41,6% del total registrado, seguida por *Ageratum conyzoides* y *Baccharis* sp1 con seis (12,5%) y cinco (10,41%) individuos respectivamente (ver Tabla 41).

En la Figura 57 se relacionan la cantidad de géneros y especies registrados para cada familia, se evidencia que la familia Asteraceae presenta la mayor cantidad de especies y géneros con tres taxones; por su parte las demás familias registran tan solo un género. La familia más abundante es Asteraceae con 12 individuos seguida de Melastomataceae y Polypodiaceae con 11 y 10 individuos respectivamente.

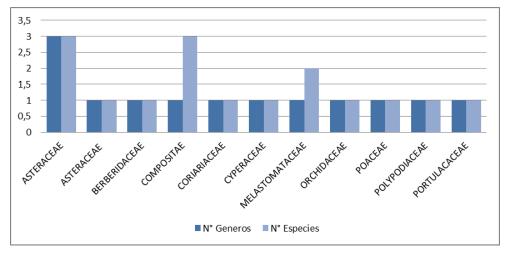

Versión 1 – agosto de 2018.

Tabla 41 Composición florística del Herbazal abierto rocoso del Orobioma Andino Nudo de los pastos

Familia	Especie	Nombre común
MELASTOMATACEAE	Miconia sp1	Amarillo
POLYPODIACEAE	Polypodium sp1.	Helecho
ASTERACEAE	Ageratum conyzoides (L.) L	Flor morada
COMPOSITAE	Baccharis sp1	Baccharis
ASTERACEAE	Verbesina arborea Kunth	Colla
ASTERACEAE	Ageratina tinifolia (Kunth) R.M.King & H.Rob.	Chilca roja
ASTERACEAE	Asteraceae sp1	Pilosa
BERBERIDACEAE	Berberis hallii Hieron.	Espina amarilla
COMPOSITAE	Baccharis sp2	Baccharis
COMPOSITAE	Baccharis sp3	Baccharis
CORIARIACEAE	Coriaria ruscifolia L.	Sancia
CYPERACEAE	Cyperus sp1	Cyperus
MELASTOMATACEAE	Miconia sp2	Amarillo
ORCHIDACEAE	Pleurothallis lamellaris Lindl.	Orquidea larga
POACEAE	Calamagrostis effusa	Calamagrostis
PORTULACACEAE	Portulaca oleracea L	Congona

Fuente: INGETEC S.A., 2018

Versión 1 – agosto de 2018.

Figura 57 Distribución de géneros y especies por familia del Herbazal abierto rocoso del Orobioma Andino Nudo de los Pastos

Fuente: INGETEC S.A., 2018

Frecuencia

Este parámetro tiene en cuenta la presencia de las especies en cada una de las parcelas realizadas. Siendo así se obtuvo que las especies *Miconia* sp1 y *Polypodium* sp1 fueron las más frecuentes representando cada una el 20% del total al ser registradas en 8 de las 10 parcelas realizadas; por su parte 10 especies fueron registradas solamente en una de las parcelas, representando cada una el 2,5% (ver Tabla 4242). En la Figura 58, se muestran la distribución de frecuencias para cada una de las especies identificadas.

Tabla 42 Frecuencia de las especies encontradas en el Herbazal abierto rocoso del Orobioma Andino Nudo de los Pastos

Especie	Nombre común	Frecuencia absoluta	Frecuencia relativa
Miconia sp1	Amarillo	8	20
Polypodium sp1.	Helecho	8	20
Ageratum conyzoides (L.) L	Flor morada	5	12,5
Baccharis sp1	Baccharis	4	10
Verbesina arborea Kunth	Colla	3	7,5
Asteraceae sp1	Pilosa	2	5
Ageratina tinifolia (Kunth) R.M.King & H.Rob.	Chilca roja	1	2,5
Baccharis sp2	Baccharis	1	2,5
Baccharis sp3	Baccharis	1	2,5
Berberis hallii Hieron.	Espina amarilla	1	2,5
Calamagrostis effusa	Calamagrostis	1	2,5
Coriaria ruscifolia L.	Sancia	1	2,5
Cyperus sp1	Cyperus	1	2,5
Miconia sp2	Amarillo	1	2,5
Pleurothallis lamellaris Lindl.	Orquidea larga	1	2,5
Portulaca oleracea L	Congona	1	2,5
Total		40	100

Fuente: INGETEC S.A., 2018

Versión 1 – agosto de 2018.

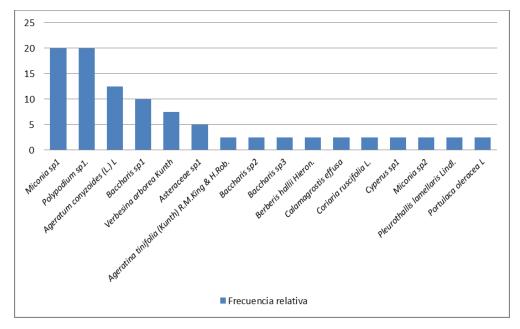


Figura 58 Especies con mayor Frecuencia relativa en el Herbazal abierto rocoso del Orobioma Andino Nudo de los Pastos

Fuente: INGETEC S.A., 2018

- Estructura vertical en Herbazal abierto rocoso Orobioma Andino Nudo de los Pastos

La estratificación vertical del herbazal indica que la estructura de la comunidad evaluada es de porte muy bajo al no haber ningún registro para el estrato arbustivo. El estrato más representativo es el herbáceo con 15 especies identificadas, mientras que en el estrato rasante solo se identificaron cinco. Las especies *Asteraceae* sp1, *Baccharis* sp1, *Miconia* sp1 y *Polypodium* sp1 se registraron en los dos estratos de la cobertura; la presencia de estas especies en los dos estratos indica que los individuos presentaban diferentes estadios de crecimiento; por su parte individuos de *Ageratina tinifolia* se registraron típicamente en el estrato rasante (ver Figura 59 y Tabla 4343).

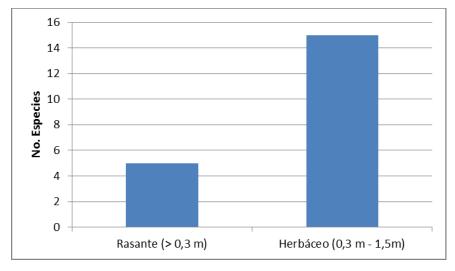


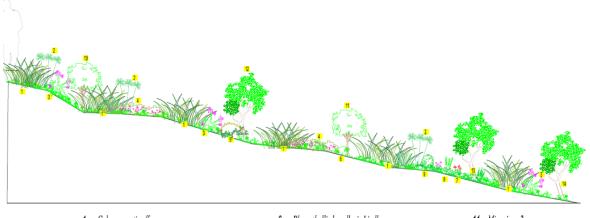
Figura 59 Estratificación vertical de la vegetación en Herbazal abierto rocoso del Orobioma Andino Nudo de los Pastos

Fuente: INGETEC S.A., 2018

Tabla 43 Estratificación vertical de la vegetación en Herbazal abierto rocoso del Orobioma Andino Nudo de los Pastos

Especie	Nombre común	Rasante	Herbáceo	Arbustivo
Ageratina tinifolia (Kunth) R.M.King & H.Rob.	Chilca roja		Х	
Ageratum conyzoides (L.) L	Flor morada	Х		
Asteraceae sp1	Pilosa	Х	Х	
Baccharis sp1	Baccharis	Х	Х	
Baccharis sp2	Baccharis	Х		
Baccharis sp3	Baccharis	Х		
Berberis hallii Hieron.	Espina amarilla	Х		
Calamagrostis effusa	Calamagrostis	Х		
Coriaria ruscifolia L.	Sancia	Х		
Cyperus sp1	Cyperus	Х		
Miconia sp1	Amarillo	Х	Х	
Miconia sp2	Amarillo	Х		
Pleurothallis lamellaris Lindl.	Orquidea larga	Х		
Polypodium sp1.	Helecho	Х	Х	
Portulaca oleracea L	Congona	Х		
Verbesina arborea Kunth	Colla	Х		

Fuente: INGETEC S.A., 2018


Versión 1 – agosto de 2018.

- Perfil de vegetación

Como es de esperar, en este ecosistema predomina el estrato herbáceo, con algunos elementos de porte arbustivo. En cuanto a la composición se evidencia un grado bajo de intervención y la presencia de especies propias del ecosistema como es el caso de *Calamagrostis effusa*, *Pleurothallis lamellaris* y *Portulaca oleraceae*. En la Figura 60 se presenta la distribución de las especies en el perfil vertical, donde se evidencia la dominancia del estrato inferior y la presencia dispersa de elementos arbustivos de porte bajo.

Perfil de Vegetación - Herbazal abierto rocoso del Orobioma Andino Nudo de los Pastos

- 1. Calamagrostis effusa
- Cyperus sp1
- 3. Berberis hallii Hieron.
- 4. Ageratum convzoides (L.) L
- 5. Coriaria ruscifolia L.

- 6. Pleurothallis lamellaris Lindl.
- 7. Portulaca oleracea L
- 8. Polypodium sp1.
- 9. Asteraceae sp1
- 10. Miconia spl

- 11. Miconia sp2
- 12. Baccharis spl
- 13. Baccharis sp2
- 14. Baccharis sp3

Figura 60 Perfil del Herbazal abierto rocoso del Orobioma Andino Nudo de los Pastos

Fuente: INGETEC S.A., 2018

- Índices de diversidad

A continuación, se presentan los índices de diversidad del ecosistema, calculados a partir de los datos presencia ausencia de las especies registradas en los muestreos (Tabla 4444).

Tabla 44 Índices de Diversidad de Herbazal abierto rocoso del Orobioma Azonal Andino Nudo de los Pastos

5. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA

Versión 1 – agosto de 2018.

Índice	Valor
Especies promedio por	
muestreo	8,74
Individuos promedio por	
muestreo	8,74
Dominance_D	0,12
Simpson_1-D	0,88
Shannon_H	2,14
Margalef	3,56
Equitability_J	1,00

Fuente: INGETEC S.A., 2018

Para la riqueza, durante los 19 muestreos se identificó un total de 25 familias, 40 géneros y 42 especies, con un promedio de 8,74 especies por parcela. Estos valores son altos en comparación con los encontrados para otras coberturas.

El índice de diversidad de Margalef presentó un valor de 3,56; lo cual implica que la diversidad es alta, considerando que valores inferiores a dos son considerados como zonas de baja biodiversidad (en general resultado de efectos antropogénicos) y valores cercanos a cinco son indicativos de alta biodiversidad.

De igual forma el índice de Shannon muestra una diversidad media-alta (2,14), considerando que su valor máximo es cercano a 5, en ecosistemas con gran riqueza.

El índice de equidad de Pielou (J) presentó un valor de 1,0, que es el máximo posible y se presenta cuando todas las especies son igualmente abundantes. Para este ecosistema se obtuvo un valor de dominancia muy bajo (0,12) y por consiguiente el índice de diversidad de Simpson presenta un valor alto (0,88), considerando que su valor oscila en el rango entre 0 y (1-1/s), donde S es el número de especies encontradas, de manera que el límite superior en este caso es 0,98. Es decir que al tomar dos individuos al azar existe una probabilidad muy alta de que sean de la misma especie.

Caracterización florística de la Vegetación secundaria alta del Orobioma Andino Nudo de los pastos

La vegetación secundaria tiene una extensión de 67,7 ha dentro del área de influencia. Este tipo de ecosistema se caracteriza por la presencia de individuos arbóreos en estado sucesional o de desarrollo con una representación importante de individuos de porte arbustivo, así como la presencia de lianas y enredaderas. Esta clase, generalmente surge luego del estadio de vegetación secundaria baja, que a su vez se desarrolla luego de procesos de deforestación de bosques.

Composición Florística

Para el ecosistema de Vegetación Secundaria alta en el Orobioma Andino Nudo de los Pastos de acuerdo a la información levantada en los muestreos realizados en el área de interés se evidencia la presencia de 27 familias, 35 géneros y 41 especies, para un total de 367 individuos entre categorías fustales con 182, latizales

Versión 1 – agosto de 2018.

con 107 y brinzales con 78 individuos respectivamente. En la Tabla 4545 se presenta la composición florística reportada para la vegetación secundaria alta, donde la especie *Palicourea guianensis* presenta la mayor abundancia con 53 individuos, destacándose en individuos de latizales y brinzales; seguido de especies como *Aegiphila odontophylla y Morella pubescens* con 37 y 36 individuos respectivamente, con mayor medida en el estrato fustal, también tiene relevancia la especie *Allophylus* sp., con la presencia de 30 individuos. Otra especie que es de importancia de acuerdo a los registros es *Myrsine guianensis* con una representación relevante en todos los estratos del bosque. Frente a la regeneración del ecosistema otras especies que se destacan son *Viburnum* sp1, *Chusquea lehmannii* con 14 y 30 respectivamente.

Tabla 45 Composición Florística de la vegetación secundaria alta del Orobioma Andino Nudo de los Pastos

Familia	Especie	Nombre común	N° de Individuos
ACTINIDIACEAE	Saurauia bullosa	Mote	1
ACTINIDIACEAE	Saurauia ursina	Moquillo	17
ADOXACEAE	Viburnum pichinchense	Pelotillo 2	1
ADOXACEAE	Viburnum sp1	Pelotillo	22
AQUIFOLIACEAE	<i>llex</i> sp.	León	8
ASTERACEAE	Ageratina tinifolia	Chilca roja	1
ASTERACEAE	cf. <i>Pentacalia</i> sp1	Pentacalia	1
ASTERACEAE	Verbesina arborea	Colla	4
BETULACEAE	Alnus acuminata	Aliso	1
BIGNONIACEAE	Tecoma stans	Quillotocto	1
CUNONIACEAE	Weinmannia cochensis	Encenillo	2
DENNSTAEDTIACEAE	Pteridium aquilinum	Helecho	2
ELEOCARPACEAE	Vallea stipularis	Roso	17
ERICACEAE	Cavendishia sp.1	Chaquilulo	1
FABACEAE	Mimosa quitensis	Guarango	2
LAMIACEAE	Aegiphila odontophylla	Cedrillo	37
Malvaceae	Sida glomerata	Ortigo	3
MELASTOMATACEAE	Leandra acutiflora	Monchiro	8
MELASTOMATACEAE	Miconia sp1	Amarillo	4
MELASTOMATACEAE	Miconia theaezans	Munchiro	3
MELASTOMATACEAE	Miconia versicolor	Morochillo	4
MYRICACEAE	Morella pubescens	Laurel	36
MYRTACEAE	Eucalyptus globulus	eucalipto	1
MYRTACEAE	Eugenia sp2	Arrayán 2	10
MYRTACEAE	Myrcianthes rhopaloides	Arrayán	10

Versión 1 – agosto de 2018.

Familia	Especie	Nombre común	N° de Individuos
PIPERACEAE	Peperomia sp1	Peperomia 1	1
POACEAE	Chusquea lehmannii	Carrizo	30
POLYGALACEAE	Monnina aestuans	Uvilán	5
PRIMULACEAE	Geissanthus sp.	Charmolan	1
PRIMULACEAE	Myrsine guianensis	Cucharo	31
ROSACEAE	Hesperomeles obtusifolia	Cerote	1
ROSACEAE	Prunus huantensis	pilche	1
ROSACEAE	Prunus serotina	Capulí	4
ROSACEAE	Rubus floribundus	Mora silvestre	1
RUBIACEAE	Palicourea guianensis	Majua	53
SABIACEAE	Meliosma caucana	Aguacatillo	4
SAPINDACEAE	Allophylus sp.	Caspirosario	30
SAPINDACEAE	Allophylus excelsus	Palo blanco	3
SIPARUNACEAE	Siparuna aspera	Sarapanga	1
SOLANACEAE	Cestrum racemosum	Sauco blanco	1
URTICACEAE	Pilea cf. myriantha Killip	Pilea	3
	TOTAL		367

Fuente: INGETEC S.A., 2018

En la Figura 61 se presentan las familias con mayor número de géneros y especies registrados denotando que la familia Melastomataceae tiene una gran importancia con 2 géneros, 4 especies y 19 individuos, cabe resaltar también la familia Primulaceae con 2 géneros, 2 especies y 32 individuos: Por otro lado la familia Rosaceae no cuenta con gran número de individuos (7) sin embargo, se clasifican en 3 géneros y 4 especies, igualmente la familia Asteraceae con 6 individuos cuenta con 3 géneros y 3 especies.

Versión 1 – agosto de 2018.

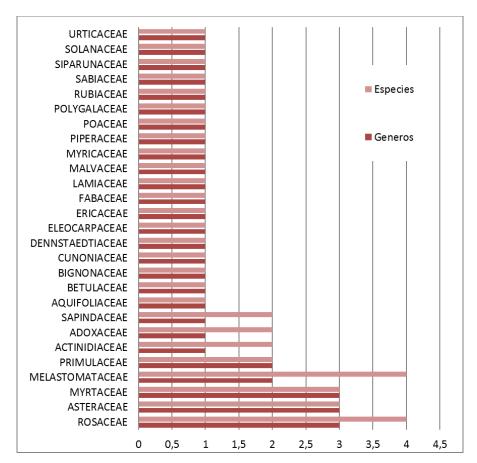


Figura 61 Distribución de género y especies por familia para la Vegetación secundaria alta

Fuente: INGETEC S.A., 2018

- Abundancia frecuencia y dominancia

En la Tabla 4646, se relacionan los datos con respecto a parámetros de abundancia, frecuencia y dominancia para la determinación del índice de valor de importancia de las especies dentro de este ecosistema, describiendo la representatividad de las especies, su valor estratégico a nivel ecológico dentro del área de interés.

De acuerdo a lo descrito frente al análisis realizado se encuentra que la especie de mayor índice de valor de importancia es *Morella pubescens* con una abundancia del 14,3% representada en 26 individuos y con la mayor de las dominancias presentes en el bosque con 15,4%, finalmente esta especie tiene dentro de las parcelas estudiadas una frecuencia de presencia del 4,5%. Algunas de las especies con mayor frecuencia e importancia dentro del área de estudio se destacan *Myrsine guianenesis, Palicourea guianensis* y *Vallea stipularis* con un porcentaje del 7,5 %, frente a la abundancia de las mismas en el bosque, tiene una representatividad entre el 5,5 % y el 6,3% (Ver Figura 62).

Versión 1 – agosto de 2018.

En general la Vegetación Secundaria Alta del Orobioma Andino Nudo de los Pastos se caracteriza por la presencia de individuos maduros de alta importancia ecológica frente a su abundancia y dominancia como *Morella pubescen, Allophylus* sp., y *Aegiphila odontophylla*, sin embargo, otras especies también se destacan en el proceso sucesional y desarrollo del bosque tales como *Saurauia ursina, Vallea stipularis* y *Myrcianthes rhopaloides*. La abundancia, frecuencia y dominancia de individuos dentro de este ecosistema evidencia las especies que se destacan en la comunidad y facilitan una lectura ecológica del proceso sucesional dentro del bosque.

Tabla 46 Índice de valor de Importancia para la Vegetación secundaria alta

Especie	AB%	FR%	DOM%	IVI 300
Morella pubescens	14,3%	4,5%	15,4%	34,2%
Allophylus sp.	14,3%	4,5%	14,2%	33,0%
Aegiphila odontophylla	9,9%	6,0%	12,3%	28,1%
Saurauia ursina	8,2%	7,5%	7,1%	22,8%
Palicourea guianensis	6,0%	7,5%	5,5%	19,0%
Vallea stipularis	6,0%	7,5%	4,6%	18,2%
Myrsine guianensis	5,5%	7,5%	4,9%	17,9%
Myrcianthes rhopaloides	5,5%	6,0%	5,4%	16,8%
Viburnum sp1	4,4%	6,0%	4,0%	14,3%
Allophylus excelsus	1,6%	3,0%	5,9%	10,5%
Verbesina arborea	2,2%	6,0%	2,2%	10,4%
llex sp.	2,7%	4,5%	2,3%	9,6%
Meliosma caucana	2,2%	3,0%	3,1%	8,2%
Eugenia sp2	2,7%	1,5%	2,8%	7,1%
Miconia versicolor	1,6%	3,0%	1,1%	5,7%
Miconia theaezans	1,6%	3,0%	1,1%	5,7%
Prunus serotina	2,2%	1,5%	1,3%	5,0%
Sida glomerata	1,1%	1,5%	1,4%	4,0%
Monnina aestuans	1,6%	1,5%	0,6%	3,7%
Mimosa quitensis	1,1%	1,5%	0,8%	3,4%
Eucalyptus globulus	0,5%	1,5%	0,9%	2,9%
Alnus acuminata	0,5%	1,5%	0,8%	2,9%
Cavendishia sp.1	0,5%	1,5%	0,5%	2,6%
Siparuna aspera	0,5%	1,5%	0,4%	2,4%
Weinmannia cochensis	0,5%	1,5%	0,4%	2,4%
Prunus huantensis Pilg.	0,5%	1,5%	0,3%	2,4%
Saurauia bullosa	0,5%	1,5%	0,3%	2,3%

Versión 1 – agosto de 2018.

Especie	AB%	FR%	DOM%	IVI 300
Hesperomeles obtusifolia	0,5%	1,5%	0,3%	2,3%
Viburnum pichinchense	0,5%	1,5%	0,2%	2,2%
TOTAL	100%	100%	100%	300%

Fuente: INGETEC S.A., 2018

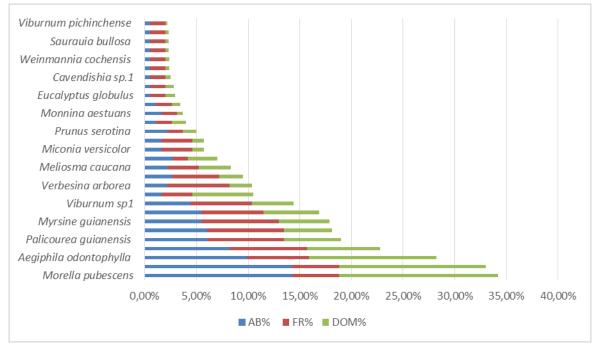


Figura 62 Índice de Valor de Importancia de la Vegetación secundaria alta

Fuente: INGETEC S.A., 2018

Posición sociológica

De acuerdo a lo presentado en la Figura 63 la importancia fitosociológica en el bosque denso alto andino, está representado por *Allophylus* sp. con 14,4% con 26 individuos, presentes en todos los estratos, para el inferior se reportan 6, para el estrato medio 16 y para el superior 4, seguido de *Morella pubescens* con 13,8%, presente en el estrato inferior y medio con 15 y 11 respectivamente, para *Aegiphila odontophylla* se tiene 10,5% con presencia en todos los estratos, para el inferior y superior se reportan 2 y 3 individuos respectivamente mientras que para el estrato medio se registran 13 individuos.

Versión 1 – agosto de 2018.

Otras especies que no pasan desapercibidas por su presencia en todos los estratos son *Saurauia ursina, Palicourea guianensis, Vallea stipularis* y *Myrcianthes rhopaloides* con 8,6%, 6,3%, 5,8%, y 5,1% respectivamente. Las especies que no se muestran en la figura tienen valores de posición sociológica menores al 5%.

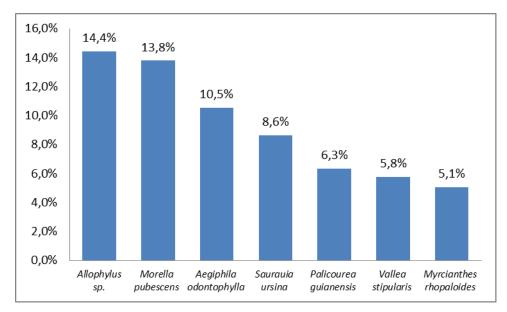


Figura 63 Posición sociológica para las siete primeras especies de la Vegetación secundaria alta

Fuente: INGETEC S.A., 2018

Regeneración natural

Para la regeneración natural de la vegetación secundaria alta se reportan 185 individuos que corresponden a 107 latizales y 78 brinzales, agrupados en 22 familias, 25 géneros y 26 especies como se presenta en la Tabla 4747.

Tabla 47 Composición florística de la regeneración natural de la Vegetación secundaria alta

Familia	Familia Especie Nombre común	Nombro común	N° de Ind.		TOTAL
ramilia	Especie	Nombre comun	Latizales	Brinzales	IOIAL
LAMIACEAE	Aegiphila odontophylla	Cedrillo	8	11	19
ASTERACEAE	Ageratina tinifolia	Chilca roja	1	0	1
SAPINDACEAE	Allophylus sp.	Caspirosario	4	0	4
SOLANACEAE	Cestrum racemosum	Sauco blanco	1	0	1
ASTERACEAE	cf. Pentacalia sp1	Pentacalia	0	1	1
POACEAE	Chusquea lehmannii	Carrizo	20	10	30
MYRTACEAE	Eugenia sp2	Arrayán 2	5	0	5

Versión 1 – agosto de 2018.

Familia	Fanasia	Nombre común	N° de Ind.		TOTAL
Familia	Especie	Nombre comun	Latizales	Brinzales	IOIAL
PRIMULACEAE	Geissanthus sp.	Charmolan	0	1	1
AQUIFOLIACEAE	Ilex sp.	León	3	0	3
MELASTOMATACEAE	Leandra acutiflora	Monchiro	1	7	8
MELASTOMATACEAE	Miconia sp1	Amarillo	4	0	4
MELASTOMATACEAE	Miconia versicolor	Morochillo	1	0	1
POLYGALACEAE	Monnina aestuans	Uvilán	1	1	2
MYRICACEAE	Morella pubescens	Laurel	9	1	10
PRIMULACEAE	Myrsine guianensis	Cucharo	12	9	21
RUBIACEAE	Palicourea guianensis	Majua	21	21	42
PIPERACEAE	Peperomia sp1	Peperomia 1	0	1	1
URTICACEAE	Pilea cf. Myriantha	Pilea	0	3	3
DENNSTAEDTIACEAE	Pteridium aquilinum	Helecho	0	2	2
ROSACEAE	Rubus floribundus	Mora silvestre	1	0	1
ACTINIDIACEAE	Saurauia ursina	Moquillo	2	0	2
Malvaceae	Sida glomerata	Ortigo	1	0	1
BIGNONIACEAE	Tecoma stans	Quillotocto	0	1	1
ELEOCARPACEAE	Vallea stipularis	Roso	1	5	6
ADOXACEAE	Viburnum sp1	Pelotillo	10	4	14
CUNONIACEAE	Weinmannia cochensis	Encenillo	1	0	1
	TOTAL GENERAL		107	78	185

Fuente: INGETEC S.A., 2018

Frente a la Tabla 4848 donde se reporta la abundancia, frecuencia y categoría de tamaño para la regeneración natural, se evidencia que la especie con mayor porcentaje de regeneración es *Palicourea guianensis* con 19,2 %, teniendo representación en todos los estratos, teniendo mayor probabilidad para su permanencia en el bosque, para el caso de su abundancia se tiene el 22,7% que representan los 42 individuos registrados, con frecuencia del 11,6% en las parcelas muestreadas. Otra especie importante en la regeneración es *Chusquea lehmannii* con el 19,2% representando 30 individuos, distribuidos en los tres estratos, con mayor concentración en el superior y en el medio con 10 y 15 individuos respectivamente. La especie *Myrsine guianensis* representa el 9,9% en la regeneración natural, con una abundancia que corresponde al 11,4% y un 7% de presencia en el área de estudio. En la Figura 64 se presentan las cinco especies más importantes para la regeneración natural, mostrando además de las anteriormente mencionadas a *Aegiphila odontophylla* y *Viburnum* sp1 con 9,4% y 7,2% respectivamente.

Tabla 48 Abundancia, frecuencia y categoría de tamaño para la regeneración natural de la Vegetación secundaria alta

Especie	Nombre común	Abundancia relativa	Frecuencia relativa	Ct %	Rn %
Palicourea guianensis	Majua	22,7%	11,6%	23,3%	19,2%
Chusquea lehmannii	Carrizo	16,2%	7,0%	15,5%	12,9%
Myrsine guianensis	Cucharo	11,4%	7,0%	11,4%	9,9%
Aegiphila odontophylla	Cedrillo	10,3%	7,0%	10,9%	9,4%
Viburnum sp1	Pelotillo	7,6%	7,0%	7,1%	7,2%
Morella pubescens	Laurel	5,4%	4,7%	4,9%	5,0%
Leandra acutiflora	Monchiro	4,3%	2,3%	5,1%	3,9%
Vallea stipularis	Roso	3,2%	4,7%	3,8%	3,9%
Pilea cf. myriantha	Pilea	1,6%	4,7%	2,0%	2,8%
Eugenia sp2	Arrayán 2	2,7%	2,3%	2,3%	2,5%
Pteridium aquilinum	Helecho	1,1%	4,7%	1,3%	2,4%
Saurauia ursina	Moquillo	1,1%	4,7%	0,9%	2,2%
Allophylus sp.	Caspirosario	2,2%	2,3%	1,8%	2,1%
Miconia sp1	Amarillo	2,2%	2,3%	1,8%	2,1%
<i>llex</i> sp.	León	1,6%	2,3%	1,3%	1,8%
Monnina aestuans	Uvilán	1,1%	2,3%	1,1%	1,5%
cf. Pentacalia sp1	Pentacalia	0,5%	2,3%	0,7%	1,2%
Geissanthus sp.	Charmolan	0,5%	2,3%	0,7%	1,2%
Peperomia sp1	Peperomia 1	0,5%	2,3%	0,7%	1,2%
Tecoma stans	Quillotocto	0,5%	2,3%	0,7%	1,2%
Ageratina tinifolia	Chilca roja	0,5%	2,3%	0,5%	1,1%
Cestrum racemosum	Sauco blanco	0,5%	2,3%	0,5%	1,1%
Miconia versicolor	Morochillo	0,5%	2,3%	0,5%	1,1%
Sida glomerata	Ortigo	0,5%	2,3%	0,5%	1,1%
Weinmannia cochensis	Encenillo	0,5%	2,3%	0,5%	1,1%
Rubus floribundus	Mora silvestre	0,5%	2,3%	0,4%	1,1%
TOTAL		100,0%	100,0%	100,0%	100,0%

Ct: Categoría de tamaño; Rn: Regeneración natural

Fuente: INGETEC S.A., 2018

Versión 1 – agosto de 2018.

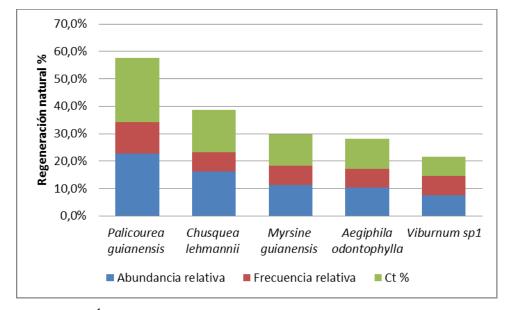


Figura 64 Índice de regeneración natural en la Vegetación secundaria alta

Fuente: INGETEC S.A., 2018

- Índice de valor de importancia ampliado

Con los análisis realizados a la estructura vertical y horizontal del ecosistema, abarcando tanto fustales como regeneración natural, tenemos que las cuatro especies de mayor importancia ecológica son *Morella pubescens* con 52,9%, seguida de *Allophylus* sp. con el 49,5%, *Aegiphila odontophylla* representa el 48,1% y *Palicourea guianensis* con el 44,5%, de esta manera estas especies garantizan su permanencia en esta comunidad vegetal, teniendo una abundancia importante en el área y su representatividad para la regeneración natural y la presencia de individuos a lo largo de todos los estratos fitosociológicos, demostrando que han sido especies exitosas desde la regeneración hasta el estado maduro de sus individuos. En la Figura 65 se muestran las diez primeras especies con el mayor índice de importancia ecológica para la vegetación secundaria alta.

Tabla 49 Índice de valor de importancia ampliado para la Vegetación secundaria alta

Especie	I.V.I.(%)	PS(%)	RN(%)	I.V.I.A.(%)
Morella pubescens	34,2%	13,8%	5,0%	52,9%
Allophylus sp.	33,0%	14,4%	2,1%	49,5%
Aegiphila odontophylla	28,1%	10,5%	9,4%	48,1%
Palicourea guianensis	19,0%	6,3%	19,2%	44,5%
Saurauia ursina	22,8%	8,6%	2,2%	33,6%
Myrsine guianensis	17,9%	4,7%	9,9%	32,4%
Vallea stipularis	18,2%	5,8%	3,9%	27,8%

CSH-1-AM-AM-EIA-G-0007-0 Versión 1 – agosto de 2018.

Especie	I.V.I.(%)	PS(%)	RN(%)	I.V.I.A.(%)
Viburnum sp1	14,3%	4,8%	7,2%	26,4%
Myrcianthes rhopaloides	16,8%	5,1%	0,0%	21,9%
llex sp.	9,6%	2,0%	1,8%	13,4%
Verbesina arborea	10,4%	2,5%	0,0%	12,9%
Chusquea lehmannii	0,0%	0,0%	12,9%	12,9%
Allophylus excelsus	10,5%	1,6%	0,0%	12,1%
Eugenia sp2	7,1%	2,0%	2,5%	11,5%
Meliosma caucana	8,2%	2,9%	0,0%	11,1%
Miconia versicolor	5,7%	2,2%	1,1%	9,0%
Miconia theaezans	5,7%	2,2%	0,0%	7,9%
Prunus serotina	5,0%	1,9%	0,0%	6,9%
Monnina aestuans	3,7%	1,5%	1,5%	6,7%
Sida glomerata	4,0%	0,9%	1,1%	6,0%
Mimosa quitensis	3,4%	1,4%	0,0%	4,8%
Weinmannia cochensis	2,4%	0,7%	1,1%	4,2%
Leandra acutiflora	0,0%	0,0%	3,9%	3,9%
Eucalyptus globulus	2,9%	0,7%	0,0%	3,6%
Cavendishia sp.1	2,6%	0,7%	0,0%	3,3%
Prunus huantensis	2,4%	0,7%	0,0%	3,1%
Saurauia bullosa	2,3%	0,7%	0,0%	3,1%
Hesperomeles obtusifolia	2,3%	0,7%	0,0%	3,1%
Alnus acuminata	2,9%	0,1%	0,0%	3,0%
Pilea cf. myriantha	0,0%	0,0%	2,8%	2,8%
Viburnum pichinchense	2,2%	0,4%	0,0%	2,6%
Siparuna aspera	2,4%	0,1%	0,0%	2,6%
Pteridium aquilinum	0,0%	0,0%	2,4%	2,4%
Miconia sp1	0,0%	0,0%	2,1%	2,1%
cf. Pentacalia sp1	0,0%	0,0%	1,2%	1,2%
Geissanthus sp.	0,0%	0,0%	1,2%	1,2%
Peperomia sp1	0,0%	0,0%	1,2%	1,2%
Tecoma stans	0,0%	0,0%	1,2%	1,2%
Ageratina tinifolia	0,0%	0,0%	1,1%	1,1%
Cestrum racemosum	0,0%	0,0%	1,1%	1,1%
Rubus floribundus	0,0%	0,0%	1,1%	1,1%

Versión 1 – agosto de 2018.

Fuente: INGETEC S.A., 2018

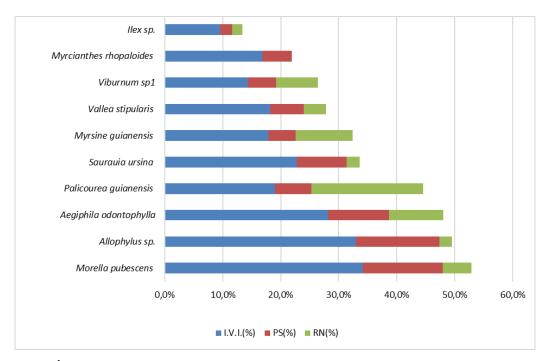


Figura 65 Índice de valor de importancia ampliado para las diez primeras especies de la Vegetación secundaria alta

Fuente: INGETEC S.A., 2018

Perfil de la vegetación

Para este ecosistema se presenta una clara diferenciación entre el estrato medio y superior, donde el estrato predominante corresponde al estrato medio y se encuentra relacionado con el alto grado de intervención. Por lo general se identifican especies de rápido crecimiento que se destacan en el estrato superior como *Allophyllus* sp. y algunas especies en el estrato medio características de este tipo de ecosistemas que corresponden a la especie *Morella pubescens* (Figura 66).

Versión 1 – agosto de 2018.

Perfil de Vegetación - Vegetación Secundaria Alta del Orobioma Andino Nudo de los Pastos

Figura 66 Perfil de vegetación para la vegetación secundaria alta del orobioma andino nudo de los pastos

Fuente: INGETEC S.A., 2018

Clases diamétricas

La distribución por clase diamétrica se define con la clasificación de los individuos fustales en diferentes categorías de acuerdo a la amplitud calculada que corresponde a 3,06, teniendo de esta manera 9 clases diamétricas, 99 de los individuos muestreados están concentrados en la clase I en un intervalo de 10,02 y 13,09 cm representando el 54,4 %, seguido de la clase II con 42 y 23,08 %, el comportamiento de la distribución a manera general es de "J" invertida, es decir en las primeras clases se concentran el mayor número de individuos y a medida que las clases van aumentando el porcentaje de representatividad disminuye, de esta manera tenemos un ecosistema alterado por actividades antrópicas de extracción de árboles de alto porte, evidenciándose en la Figura 67 que en las clases diamétricas más altas se menor cantidad de individuos.

Versión 1 - agosto de 2018.

Amplitud del intervalo		Clase diamétrica
10,02	13,09	I
13,09	16,16	II
16,16	19,23	III
19,23	22,30	IV
22,30	25,36	V
25,36	28,43	VI
28,43	31,50	VII
31,50	34,56	VIII
34,56	37,63	IX

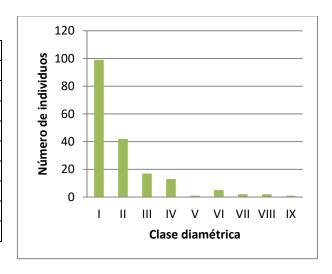


Figura 67 Distribución por clase diamétrica en la Vegetación secundaria alta

Fuente: INGETEC S.A., 2018

- Clases altimétricas

Las clases altimétricas para los individuos fustales fueron clasificadas de acuerdo a una amplitud calculada que corresponde 1,53 m, obteniendo de esta manera 9 clases que se encuentran entre los 4 y 16 m, la mayor concentración de individuos se reportan entre las clases altimétricas II y IV con 42 individuos que representan el 23% para cada clase respectivamente; la clase III también tiene un buen porcentaje para resaltar, que corresponde al intervalo entre los 7,1 y los 8,6 m con 28 individuos que representan el 15,38 % en el área de estudio. (Ver Figura 68)

En las clases superiores entre la VII y la IX se encuentran especies como *Allophylus* sp, *Myrsine guianenesis* y *Myrcianthes rhopaloides* que se destacan no solo por su altura, si no por su desarrollo diamétrico importante en esta cobertura, así como sus índices de valor de importancia con parámetros relevantes como abundancia y dominancia.

Este tipo de distribución permite inferir que el bosque se encuentra en un estado sucesional avanzado por la concentración de sus individuos en las primeras clases, sin embargo también es evidente que las actividades antrópicas han causado impactos en los estados más maduros del bosque.

Versión 1 – agosto de 2018.

Amplitud del intervalo		Clase altimétrica
4,0	5,5	I
5,5	7,1	II
7,1	8,6	III
8,6	10,1	IV
10,1	11,7	V
11,7	13,2	VI
13,2	14,8	VII
14,8	16,3	VIII
16,3	17,8	IX

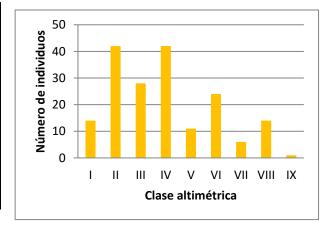


Figura 68 Distribución altimétrica en la Vegetación secundaria alta

Fuente: INGETEC S.A., 2018

Grado de sociabilidad

El grado de sociabilidad, determina el índice que indica el comportamiento gregario de las especies para la vegetación secundaria alta, de esta manera las tres especies que presentan mayor nivel de sociabilidad son *Allophylus* sp. y *Morella pubescens* con 8,7% presentando un 38% de frecuencia en las 8 parcelas muestreadas, seguida de *Eugenia* sp2 con 5% de sociabilidad. En la Tabla 500 se presentan todas las especies y su agregación, representando como se organizan en el área de estudio.

Tabla 50 Grado de sociabilidad de las especies en la Vegetación secundaria alta

Especie	Frecuencia %	Abundancia media	Índice de sociabilidad
Allophylus sp.	38%	3,25	8,7
Morella pubescens	38%	3,25	8,7
Eugenia sp2	13%	0,625	5,0
Aegiphila odontophylla	50%	2,25	4,5
Prunus serotina	13%	0,5	4,0
Monnina aestuans	13%	0,375	3,0
Saurauia ursina	63%	1,875	3,0
Myrcianthes rhopaloides	50%	1,25	2,5
Palicourea guianensis	63%	1,375	2,2
Vallea stipularis	63%	1,375	2,2
Meliosma caucana	25%	0,5	2,0

N BAJO EL ESQUEMA APP N° 15 DE 2015

Versión 1 – agosto de 2018.

Especie	Frecuencia %	Abundancia media	Índice de sociabilidad
Mimosa quitensis	13%	0,25	2,0
Myrsine guianensis	63%	1,25	2,0
Sida glomerata	13%	0,25	2,0
Viburnum sp1	50%	1	2,0
llex sp.	38%	0,625	1,7
Allophylus excelsus	25%	0,375	1,5
Miconia theaezans	25%	0,375	1,5
Miconia versicolor	25%	0,375	1,5
Alnus acuminata	13%	0,125	1,0
Cavendishia sp.1	13%	0,125	1,0
Eucalyptus globulus	13%	0,125	1,0
Hesperomeles obtusifolia	13%	0,125	1,0
Prunus huantensis	13%	0,125	1,0
Saurauia bullosa	13%	0,125	1,0
Siparuna aspera	13%	0,125	1,0
Verbesina arborea	50%	0,5	1,0
Viburnum pichinchense	13%	0,125	1,0
Weinmannia cochensis	13%	0,125	1,0

Fuente: INGETEC S.A., 2018

- Índices de diversidad

El índice de Shannon evalúa la diversidad de un ecosistema, dando en un solo valor la riqueza y la equitabilidad de las especies en este para ello el muestreo debe ser aleatorio y todas las especies de una comunidad vegetal deben estar presentes en la muestra ya que, tiene en cuenta la abundancia y la frecuencia uniforme de las especies a lo largo de esta, para ello se calcula el Ln S (Siendo S el número total de las especies encontradas) de esta manera Ln 41= 3,71 este valor representa la máxima heterogeneidad que se puede tener y el 2.96 el índice real calculado es decir su heterogeneidad es alta, ya que los índices que estén cercanos a 3 o por encima de este se consideran menos uniformes.

El Índice de Simpson es otro método para definir la diversidad de una comunidad vegetal en estudio, abarca las especies que tienen mayor representación y dominancia es decir la probabilidad de tomar dos muestras de la misma especie al azar, de esta manera el índice que se tiene para el muestreo es de 0.92 con una tendencia alta a 1 esto nos indica la homogeneidad en el ecosistema, es decir todas las especies presentes, se encuentran en la misma proporción, de esta manera no existe una dominancia especifica de alguna especie sobre las demás

Versión 1 – agosto de 2018.

Margalef es un índice utilizado para estimar la biodiversidad de cierta comunidad, de acuerdo a la distribución del número de individuos en las diferentes especies, en función al total de individuos de la muestra, para el estudio se tiene un índice de 6.77, lo que implica alta diversidad en la muestra estudiada. (Ver Tabla 511)

Tabla 51 Índices de Diversidad para la Vegetación secundaria alta

Taxa_S	41
Individuals	367
Simpson_1-D	0.9273
Shannon_H	2.962
Margalef	6.774
Equitability_J	0.7975

Fuente: INGETEC S.A., 2018

Caracterización florística de la Vegetación secundaria baja del Orobioma Andino Nudo de los pastos

El ecosistema Vegetación secundaria baja del Orobioma Andino Nudo de los pastos presenta un área de 75,95 Ha que representan el 1,88% del área total, la vegetación secundaria se define como la cobertura vegetal pionera del proceso sucesional de la vegetación natural generado después de una fuertes intervención y consecuente destrucción de la vegetación primaria, es decir el primer estadio hacia la recuperación del ecosistema original, se encuentra en áreas sometidas a cambios en el uso del suelo con diferentes usos como el agrícola y que posteriormente fueron abandonadas permitiendo el desarrollo de vegetación pionera, para el caso de la vegetación secundaria baja esta se caracteriza por la dominancia de vegetación arbustiva y herbácea principalmente, un dosel irregular y presencia ocasional de árboles y enredaderas (IDEAM 2010).

Para la caracterización de este ecosistema se levantaron un total de 25 unidades de muestreo, que dejaron como resultado un total de 694 individuos, de los cuales 302 pertenecen a la categoría brinzal y 392 a latizal.

Composición Florística

Para la Vegetación secundaria baja del Orobioma Andino Nudo de los Pastos se encontraron un total 694 individuos distribuidos en 19 familias 23 géneros y 24 especies como se detalla en la Tabla 522, la cantidad de especies encontradas corresponde a la dinámica de esta cobertura, donde un número considerable de especies intenta colonizar de forma rápida los espacios dejados tras una fuerte intervención antrópica, especialmente especies pioneras como *Baccharis latifolia* que se desarrollan a plena exposición de luz y con altas tasas reproducción, con aparición de especies plantadas o remanentes de la vegetación que se desarrollaba anteriormente.

N BAJO EL ESQUEMA APP N° 15 DE 2015

Versión 1 – agosto de 2018.

En la Figura 69, se discriminan las especies y géneros por familia, donde Asteraceae fue la familia con mayor número de especies y géneros con 4 para cada uno, seguida de Rosaceae y Melastomataceae con 2 especies cada una, Rosaceae presentó 2 géneros, las demás especies solo presento 1 genero, esto corresponde con lo indicado anteriormente puesto que Asteraceae es una familia caracterizada por especies pioneras.

Tabla 52 Composición florística de la Vegetación secundaria baja del Orobioma Andino Nudo de los pastos

Familia	Especie	Nombre común	N° de individuos
LEGUMINOSAE	Acacia decurrens Willd.	Acacia	10
ASTERACEAE	Ageratina tinifolia (Kunth) R.M.King & H.Rob.	Chilca roja	3
ASTERACEAE	Baccharis latifolia (Ruiz & Pav.) Pers.	Chilca blanca	120
ASTERACEAE	Barnadesia spinosa L.f.	Pilampo	14
BERBERIDACEAE	Berberis hallii Hieron.	Espina amarilla	19
MALPIGHIACEAE	Byrsonima crassifolia (L.) Kunth	Mora	2
SOLANACEAE	Cestrum racemosum Ruiz & Pav.	Sauco blanco	8
ESCALLONIACEAE	Escallonia paniculata (Ruiz & Pav.) Schult.	Chilco	28
EUPHORBIACEAE	Euphorbia laurifolia Juss. ex Lam.	Lechero	26
ROSACEAE	Hesperomeles obtusifolia (DC.) Lindl.	Cerote	10
AQUIFOLIACEAE	<i>Ilex</i> sp.	León	4
LYTHRACEAE	Lafoensia acuminata (Ruiz & Pav.) DC.	Guayacán	48
VERBENACEAE	Lantana camara L.	Venturosa	2
MELASTOMATACEAE	Miconia sp1	Amarillo	30
MELASTOMATACEAE	Miconia versicolor Naudin.	Morochillo	46
FABACEAE	Mimosa quitensis Benth.	Guarango	6
PRIMULACEAE	Myrsine guianensis (Aubl.) Kuntze	Cucharo	244
RUBIACEAE	Palicourea guianensis Aubl.	Majua	2
ROSACEAE	Prunus serotina Ehrh.	Capulí	4
MYRTACEAE	Psidium guajava L.	Guayabilla	27
BIGNONACEAE	Tecoma stans (L.) Juss. ex Kunth	Quillotocto	19
ELEOCARPACEAE	Vallea stipularis L.f.	Roso	20
ASTERACEAE	Verbesina arborea Kunth	Colla	1
CUNONIACEAE	Weinmannia cochensis Hieron	Encenillo	1

Fuente: INGETEC, 2018.

Versión 1 – agosto de 2018.

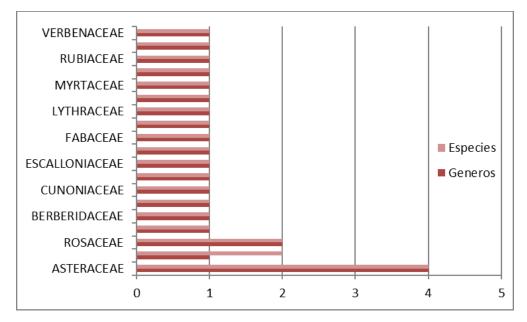


Figura 69 Distribución de especies y géneros por familia en la Vegetación secundaria baja del Orobioma Andino Nudo de los Pastos

Fuente: INGETEC, 2018.

- Índice de regeneración natural (Rn%) (Abundancia, Frecuencia y Categoría de tamaño)

Considerando que el ecosistema analizado no presenta individuos fustales y que su composición está dominada principalmente por la regeneración natural, se utiliza el índice de regeneración natural como indicador de la importancia de las especies a nivel estructural, se encontró que *Myrsine guianensis* es la especie más importante con un valor de 28,89% dado por sus máximos valores de Frecuencia (16,67%), Abundancia (35,16%) y Categoria de tamaño (34,85%), seguida por *Baccharis latifolia* con 15,13%, muy de cerca seguidas por *Miconia versicolor y Lafoensia acuminata* con 7,34% y 7,07% respectivamente (ver

Tabla 5353 y), esta última especie de porte arbóreo pertenece al gremio de las heliofitas durables por lo que su aparición es garantía de la sucesión natural del ecosistema.

Versión 1 – agosto de 2018.

Tabla 53 Abundancia Frecuencia, Categoría de tamaño relativas e Índice de regeneración natural (Rn%) por especie en la Vegetación secundaria baja del Orobioma Andino Nudo de los pastos

Nombre científico	Frecuencia relativa	Abundancia Relativa	Ct %	Rn%
Myrsine guianensis (Aubl.) Kuntze	16,67%	35,16%	34,85%	28,89%
Baccharis latifolia (Ruiz & Pav.) Pers.	11,76%	17,29%	16,33%	15,13%
Miconia versicolor Naudin.	8,82%	6,63%	6,57%	7,34%
Lafoensia acuminata (Ruiz & Pav.) DC.	7,84%	6,92%	6,45%	7,07%
Psidium guajava L.	7,84%	3,89%	4,17%	5,30%
Tecoma stans (L.) Juss. ex Kunth	8,82%	2,74%	3,06%	4,87%
Euphorbia laurifolia Juss. ex Lam.	5,88%	3,75%	3,98%	4,54%
Miconia sp1	1,96%	4,32%	4,54%	3,61%
Escallonia paniculata (Ruiz & Pav.) Schult.	1,96%	4,03%	4,00%	3,33%
Vallea stipularis L.f.	1,96%	2,88%	2,99%	2,61%
Berberis hallii Hieron.	1,96%	2,74%	2,95%	2,55%
Acacia decurrens Willd.	3,92%	1,44%	1,61%	2,33%
Cestrum racemosum Ruiz & Pav.	3,92%	1,15%	1,36%	2,14%
Barnadesia spinosa L.f.	0,98%	2,02%	1,93%	1,64%
Hesperomeles obtusifolia (DC.) Lindl.	1,96%	1,44%	1,48%	1,63%
Prunus serotina Ehrh.	1,96%	0,58%	0,60%	1,04%
Ilex sp.	1,96%	0,58%	0,55%	1,03%
Mimosa quitensis Benth.	0,98%	0,86%	0,96%	0,94%
Lantana camara L.	1,96%	0,29%	0,34%	0,86%
Byrsonima crassifolia (L.) Kunth	1,96%	0,29%	0,28%	0,84%
Palicourea guianensis Aubl.	1,96%	0,29%	0,21%	0,82%
Ageratina tinifolia (Kunth) R.M.King & H.Rob.	0,98%	0,43%	0,51%	0,64%
Verbesina arborea Kunth	0,98%	0,14%	0,14%	0,42%
Weinmannia cochensis Hieron	0,98%	0,14%	0,14%	0,42%

Versión 1 - agosto de 2018.

Fuente: INGETEC, 2018.

Con respecto a la frecuencia *Myrsine guianensis* y *Baccharis latifolia* presentan los máximo valores con presencia en 17 (16,67%) y 12 (11,76%) parcelas respectivamente, seguida por Miconia versicolor y Tecoma stans presentes en 9 parcelas que representan el 8,82% para cada una, más del 50% de las especies se presentaron en una o 2 unidades de muestreo.

Considerando la abundancia se tiene que Myrsine guianensis es la especie con mayor número de individuos con 244 (35,16%) seguida de Baccharis latifolia con 120 (17,29%) y Lafoensia acuminata con 48 individuos (6,92%), las dos primeras especies acumulan el 52,45% dando señales de sus altas tasas de regeneración, 2 especies presentaron un individuo Verbesina arbórea y Weinmannia cochensis esta última siendo de gran importancia por pertenecer a estados sucesionales más avanzados.

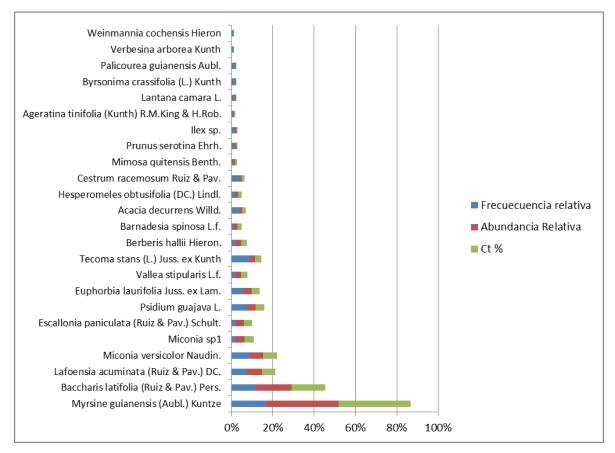


Figura 70 Abundancia, Frecuencia y Categoría de tamaño relativas por especie en la Vegetación secundaria baja del Orobioma Andino Nudo de los pastos

Fuente: INGETEC, 2018.

Versión 1 – agosto de 2018.

Perfil de vegetación para la Vegetación secundaria baja del Orobioma Andino Nudo de los Pastos

Predominan en este ecosistema las especies herbáceas y arbustivas con alturas menores a los 4 metros en su mayoría. En general como se observa en la Figura 71, el estrato dominante es el medio (arbustivo) con la presencia de elementos representativos en el estrato inferior (arbustivo): Dentro de las especies de porte arbustivo se destacan *Baccharislatifolia*, *Myrsine guianensis y Miconia versicolor*.

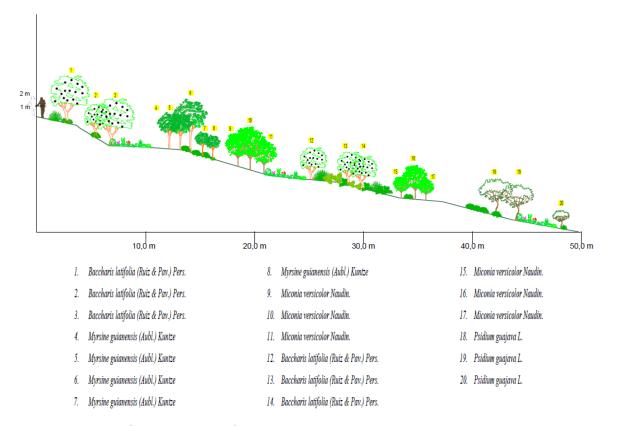


Figura 71 Perfil para la Vegetación secundaria baja del Orobioma Andino Nudo de los Pastos

Clases diamétricas

Versión 1 – agosto de 2018.

La distribución por clases diamétricas para el ecosistema estudiado se realizó en un total de 10 clases, con una amplitud de intervalo de 0,9, como se observa en la Figura 72 la tendencia de la gráfica es de "J" invertida donde la mayoría de los individuos se concentran en las clase más bajas con una disminución marcada a medida que la clase aumenta de tamaño, es de resaltar que la única clase que no sigue la tendencia es la II ya que presenta un aumento considerable de individuos respecto a la clase anterior y la clase que le sigue, considerando que estamos hablando de una vegetación secundaria baja la distribución diamétrica puede tener fuertes alteraciones en periodos de tiempo muy cortos como las temporadas reproductivas de alguna especies que pueden generar aumentos drásticos en sus poblaciones, como se indicó anteriormente la clase II presento la mayor cantidad de individuos con 210 (30,26%), seguida por la clase I con 174 individuos (25,07%) las clases IX y X presentaron la menor cantidad de individuos con un total de 4 cada una (0,58%), el máximo diámetro registrado fue de 9,54 cm lo cual coincide con el comportamiento de estos estadios tempranos de la vegetación.

Amplitud d	Clase diamétrica	
0,637	1,528	
1,528	2,419	II
2,419	3,310	III
3,310	4,202	IV
4,202	5,093	V
5,093	5,984	VI
5,984	6,875	VII
6,875	7,767	VIII
7,767	8,658	IX
8,658	9,549	Х

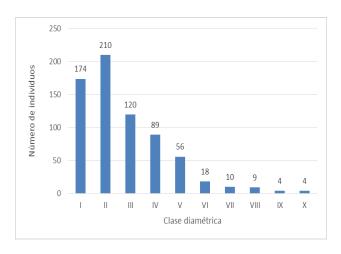


Figura 72 Número de individuos por clase diamétrica para la Vegetación secundaria baja del Orobioma Andino Nudo de los pastos

Fuente: INGETEC, 2018.

Clases altimétricas

Las clases altimétricas fueron evaluadas en 10 rangos separados cada 0,67, un valor pequeño dado por las bajas alturas máximas y la gran cantidad de individuos, característica típica de estos estados sucesional desarrollados justo después de una fuerte intervención antrópica , se tiene que las categorías más pequeñas presentan el mayor número de individuos, es así como las clases I y II con 176 y 169 Individuos acumulan el 49,71% de los individuos, es decir que casi la mitad de la población no supera los 1,64m, a pesar de definirse una tendencia en la disminución de individuos a medida que la clase va aumentando de tamaño se pueden observar clases como la III y IV donde las abundancias disminuyen considerablemente, esto se refleja como una discontinuidad en el dosel , elemento muy típico de estos estadios de la vegetación, la máxima altura registrada fue de 7m.

Versión 1 – agosto de 2018.

Amplitud d	el intervalo	Clase Altimétrica
0,3000	0,9700	1
0,9700	1,6400	II
1,6400	2,3100	III
2,3100	2,9800	IV
2,9800	3,6500	V
3,6500	4,3200	VI
4,3200	4,9900	VII
4,9900	5,6600	VIII
5,6600	6,3300	IX
6,3300	7,0000	Х

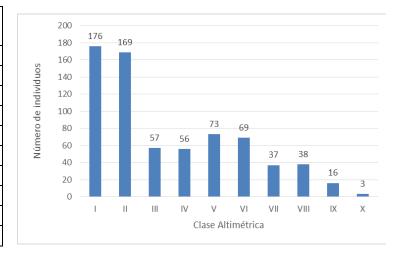


Figura 73 Número de individuos por clase altimétrica para la Vegetación secundaria baja del Orobioma Andino Nudo de los pastos

Fuente: INGETEC, 2018.

Posición sociológica

La posición sociológica en la regeneración se evalúa por medio de la categoría de tamaño, que nos indica la importancia de las especies por estratos, a pesar de que en la vegetación secundaria baja el dosel es irregular podemos dividir la vegetación en estratos por su altura, como se observa en la Tabla 5454 se presentaron un total de 176 individuos en el estrato bajo 282 en el medio y 236 en el bajo, para este índice tenemos que *Myrsine guianensis*es es la especie con mayor presencia en los diferentes estratos con 65 individuos en el estrato inferior, 92 en el medio y 87 en el superior, seguida de *Baccharis latifolia* (16,33%) con 48 individuos en el estrato inferior, 37 en el medio y 35 en el superior, *Miconia versicolor y Lafoensia acuminata* son otra especies a tener en cuenta con valores de 6,57% y 6,45%, un total de 13 especies no presentaron individuos en el estrato bajo lo que denota la velocidad de crecimiento con la que se desarrollan la especies en este estadio sucesional.

Tabla 54 Categoría de tamaño por especie para la Vegetación secundaria baja del Orobioma Andino Nudo de los pastos

Nombre Científico	Nombre Común	ı	II	III	Categoria de tamaño absoluta	Ct %
Myrsine guianensis (Aubl.) Kuntze	Cucharo	65	92	87	834,524	34,85%
Baccharis latifolia (Ruiz & Pav.) Pers.	Chilca blanca	48	37	35	391,095	16,33%
Miconia versicolor Naudin.	Morochillo	15	21	10	157,378	6,57%
Lafoensia acuminata (Ruiz & Pav.) DC.	Guayacán	21	14	13	154,352	6,45%
Miconia sp1	Amarillo	0	10	20	108,646	4,54%

N BAJO EL ESQUEMA APP N° 15 DE 2015
Versión 1 – agosto de 2018.

Nombre Científico	Nombre Común	ı	II	III	Categoria de tamaño absoluta	Ct %
Psidium guajava L.	Guayabilla	6	20	1	99,885	4,17%
Escallonia paniculata (Ruiz & Pav.) Schult.	Chilco	0	1	27	95,879	4,00%
Euphorbia laurifolia Juss. ex Lam.	Lechero	5	17	4	95,360	3,98%
Tecoma stans (L.) Juss. ex Kunth	Quillotocto	0	13	6	73,228	3,06%
Vallea stipularis L.f.	Roso	2	8	10	71,585	2,99%
Berberis hallii Hieron.	Espina amarilla	3	13	3	70,634	2,95%
Barnadesia spinosa L.f.	Pilampo	7	7	0	46,196	1,93%
Acacia decurrens Willd.	Acacia	0	7	3	38,646	1,61%
Hesperomeles obtusifolia (DC.) Lindl.	Cerote	0	2	8	35,331	1,48%
Cestrum racemosum Ruiz & Pav.	Sauco blanco	0	8	0	32,507	1,36%
Mimosa quitensis Benth.	Guarango	0	4	2	23,055	0,96%
Prunus serotina Ehrh.	Capulí	0	1	3	14,265	0,60%
Ilex sp.	León	2	2	0	13,199	0,55%
Ageratina tinifolia (Kunth) R.M.King & H.Rob.	Chilca roja	0	3	0	12,190	0,51%
Lantana camara L.	Venturosa	0	2	0	8,127	0,34%
Byrsonima crassifolia (L.) Kunth	Mora	0	0	2	6,801	0,28%
Palicourea guianensis Aubl.	Majua	2	0	0	5,072	0,21%
Verbesina arborea Kunth	Colla	0	0	1	3,401	0,14%
Weinmannia cochensis Hieron	Encenillo	0	0	1	3,401	0,14%
Total		176	282	236	2394,755	1

Fuente: INGETEC, 2018.

Índices de diversidad

El índice de Simpson es indicativo de la heterogeneidad o dominancia de una especie sobre un ecosistema siendo esta la probabilidad de encontrar la misma especie en dos extracciones al azar, para el ecosistema estudiado el valor arrojado fue de 0,8274, indicando así un ecosistema con distribución de las abundancias entre especies tendiente a la homogeneidad y que no hay una clara dominancia de alguna o algunas especies.

Respecto al índice de Shannon, este nos indica la incertidumbre de predecir que especie es sacada en una extracción al azar adquiriendo su máximo valor en Ln S (siendo S el número total de especies), para el caso evaluado se tiene un valor de 2,295 siendo Ln 24= 3,17, lo que indica una distribución de las abundancias entre especies tendiente a la homogeneidad, en otras palabras el ecosistema presenta un diversidad media alta.

La equitatividad arrojo un valor de 0,722 lo que indica un valor medio alto, es decir el ecosistema presenta una distribución equitativa de los individuos entre las especies, finalmente se tiene que el índice de Margalef

Versión 1 – agosto de 2018.

arrojo un valor de 3,15 siendo este un indicador de alta diversidad en la relación entre número de individuos y especies según lo acotado por Moreno et al (2015), estos valores corresponden a un ecosistema perturbado como el evaluado donde múltiples especies de herbáceas y arbustos llegan a colonizar espacios abiertos dejados por fuertes intervenciones antrópicas, como el primer paso de las sucesión ecológica.

Tabla 55 Índices de diversidad calculados para la Vegetación secundaria baja del Orobioma Andino Nudo de los pastos

Estimador	Resultado
N° de especies	24
N° de individuos	694
Simpson_1-D	0,8274
Shannon_H	2,295
Margalef	3,515
Equitability_J	0,7222

Fuente: INGETEC, 2018.

Orobioma Azonal Andino Nudo de los pastos

Caracterización florística del Bosque de galería y ripario del Orobioma Azonal Andino Nudo de los pastos

El ecosistema Bosque de galería y ripario del Orobioma Azonal Andino Nudo de los pastos presenta un área de 64,42 HA que representa el 1,59% del área total de influencia en el proyecto doble calzada Pasto – Rumichaca, tramo San Juan – Pedregal, estos ecosistemas se encuentran en zonas aledañas a los drenajes, siendo de especial importancia en la preservación del recurso hídrico la estabilización del cauce y terreno aledaño, igualmente su función como corredores y albergues de fauna en épocas secas, por su fácil acceso y la cantidad de recursos que proveen, han sido el objeto de una fuerte actividad antrópica (Hernández y Sánchez, 1990 citados por FAO 2002).

Para la caracterización de este ecosistema se levantaron un total de 7 unidades de muestreo, que dejaron como resultado un total de 286 individuos, de los cuales 138 pertenecen a la categoría fustales 51 a latizales y 97 a brinzales.

Composición Florística

Como se puede observar en la Tabla 5656 Para el ecosistema en mención se encontraron 286 individuos distribuidos en 19 familias, 19 géneros y 20 especies, de los cuales La especie *Lafoensia acuminata* es la más abundante, con 75 individuos que representan el 26,2% del total encontrado, seguida de *Myrsine guianensis*

Versión 1 – agosto de 2018.

con 39 individuos (13,6%), lo anterior para los totales en todas la categorías sin embargo es importante mencionar que *Allophylus sp.* fue la especie con mayor cantidad de latizales con 10 y *Myrsine guianensis* presento la mayor cantidad de brinzales con 21 lo que indica un alto potencial de regeneración en estas especies.

En la Figura 74 se discriminan la cantidad de géneros y especies por familia encontrando así que para todas las familias solo se registró 1 género y una familia con excepción de la familia Boraginacea de la cual se reportaron 2 especies del mismo género (), en cuanto a abundancias la familia con mayor número de individuos es Lythraceae con un total de 75 individuos todos de la especie *Lafoensia acuminata* seguida de la familia Primulaceae con un total de 39 individuos de la especie *Myrsine guianensis*. Los géneros más abundantes fueron *Lafoensia* y *Myrsine* con 79 y 35 individuos respectivamente.

Tabla 56 Composición florística del Bosque de galería y ripario del Orobioma Azonal Andino Nudo de los pastos

Familia	Nombre científico	Nombre común	Total
LEGUMINOSAE	Acacia decurrens Willd.	Acacia	3
SAPINDACEAE	Allophylus sp.	Caspirosario	36
BETULACEAE	Alnus acuminata Kunth	Aliso	8
MALPIGHIACEAE	Byrsonima crassifolia (L.) Kunth	Mora	4
SOLANACEAE	Cestrum racemosum Ruiz & Pav.	Sauco blanco	1
MYRTACEAE	Eugenia sp2	Arrayán 2	9
EUPHORBIACEAE	Euphorbia laurifolia Juss. ex Lam.	Lechero	30
ROSACEAE	Hesperomeles obtusifolia (DC.) Lindl.	Cerote	1
AQUIFOLIACEAE	Ilex sp.	León	9
LYTHRACEAE	Lafoensia acuminata (Ruiz & Pav.) DC.	Guayacán	75
MELASTOMATACEAE	Miconia versicolor Naudin.	Morochillo	12
PRIMULACEAE	Myrsine guianensis (Aubl.) Kuntze	Cucharo	39
PIPERACEAE	Piper sp1	Cordoncillo	10
RUBIACEAE	Psychotria sp1	Cafetillo	9
ACTINIDIACEAE	Saurauia ursina Triana & Planch.	Moquillo	4
BIGNONACEAE	Tecoma stans (L.) Juss. ex Kunth	Quillotocto	24
BORAGINACEAE	Tournefortia fuliginosa Kunth.	Pelotillo 1	2
BORAGINACEAE	Tournefortia scabrida Kunth.	Mayorquín	5
ADOXACEAE	Viburnum sp1	Pelotillo	1
CUNONIACEAE	Weinmannia cochensis Hieron	Encenillo	4
	Total		286

Versión 1 – agosto de 2018.

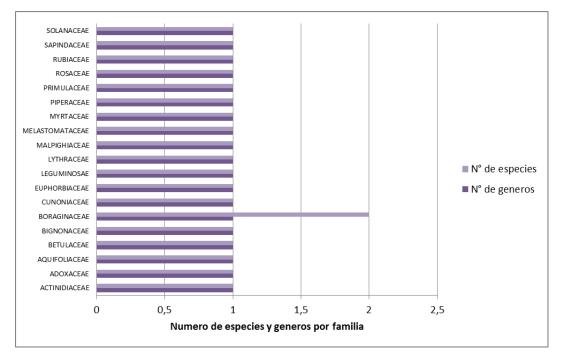


Figura 74. Distribución de géneros y especies por familia para el Bosque ripario del Orobioma Azonal Andino Nudo de los pastos

Fuente: INGETEC S.A., 2018

- Índice de valor de importancia (Abundancia frecuencia y dominancia)

Los valores de dominancia, frecuencia y abundancia relativas nos permiten determinarla distribución horizontal de las diferentes especies en el bosque, en la Tabla 5757 y Figura 75 se puede observar que la especie con mayor IVI % es *Lafoensia acuminata* con un 121,77% seguida *Tecoma stans* y *Euphorbia laurifolia* con valores de 31,77% y 31,23% respectivamente, *Lafoensia acuminata* presenta un claro dominio en la distribución espacial puesto que es la especie con valores máximos en dominancia (55,69%) abundancia (44,2%) y frecuencia (21,88%), presentándose en todas las parcelas con gran número de individuos, a pesar de que *Euphorbia laurifolia* solo se presentó en 3 parcelas (9,38%) destaca por sus altos valores de dominancia (8,08%) y abundancia (13,77%), finalmente la especie *Tecoma stans* a pesar de ser la cuarta especie en valores de dominancia y abundancia destaca por haberse presentado en 5 parcelas (15,63%) lo que la ubico en la segunda posición del IVI%.

Respecto a la frecuencia encontramos que *Myrsine guianensis* es otra de las especies que sobresale presentándose en 4 parcelas (12,5%) incluso por encima de *Euphorbia laurifolia* tercera especie en IVI% y presente en 3 parcelas (9,38%) mismo valor arrojado por Allophylus sp. La mayoría de especies encontradas solo se presentaron en una de las parcelas.

Versión 1 – agosto de 2018.

En cuanto a la abundancia los máximos valores registrados fueron para la especie *Lafoensia acuminata y Euphorbia laurifolia* con 61 (44,2%) y 19 (13,77%) individuos respectivamente, otra especie importante en esta variable fue *Allophylus sp.* con un total de 16 individuos (11,59%), finalmente tenemos a *Tecoma stans* con 13 individuos (9,42%).

Para la dominancia los máximos valores los presentaron *Lafoensia acuminata y Allophylus sp.* con 1,57m2 (55,69%) y 0,252m2 (8,92%), la especie ubicada en el tercer puesto es *Euphorbia laurifolia* con 0,228m2 (8,08%) seguida de *Tecoma stans* con 0,189m2 (6,7), *Allophylus sp.* a pesar de presentar el segundo valor en dominancia presento una menor cantidad de individuos que *Euphorbia laurifolia* por lo que termino en el cuarto lugar del IVI, indicando esto que a pesar de tener menos individuos estos presentaban unas mayores dimensiones.

Tabla 57. Abundancia, dominancia y frecuencia para el Bosque ripario del Orobioma Azonal Andino Nudo de los pastos

Nombre científico	Nombre común	Frecuencia relativa	Abundancia Relativa	Dominancia Relativa	IVI
Lafoensia acuminata (Ruiz & Pav.) DC.	Guayacán	21,88%	44,20%	55,69%	121,77%
Tecoma stans (L.) Juss. ex Kunth	Quillotocto	15,63%	9,42%	6,70%	31,74%
Euphorbia laurifolia Juss. ex Lam.	Lechero	9,38%	13,77%	8,08%	31,23%
Allophylus sp.	Caspirosario	9,38%	11,59%	8,92%	29,89%
Myrsine guianensis (Aubl.) Kuntze	Cucharo	12,50%	7,25%	4,44%	24,19%
Acacia decurrens Willd.	Acacia	6,25%	2,17%	3,93%	12,35%
Saurauia ursina Triana & Planch.	Moquillo	3,13%	2,90%	5,62%	11,64%
Weinmannia cochensis Hieron	Encenillo	3,13%	2,90%	2,31%	8,33%
<i>Ilex</i> sp.	León	3,13%	1,45%	1,02%	5,60%
Alnus acuminata Kunth	Aliso	3,13%	1,45%	0,91%	5,48%
Viburnum sp1	Pelotillo	3,13%	0,72%	0,98%	4,83%
Hesperomeles obtusifolia (DC.) Lindl.	Cerote	3,13%	0,72%	0,65%	4,50%
Tournefortia scabrida Kunth.	Mayorquín	3,13%	0,72%	0,43%	4,28%
Tournefortia fuliginosa Kunth.	Pelotillo 1	3,13%	0,72%	0,32%	4,17%

Versión 1 – agosto de 2018.

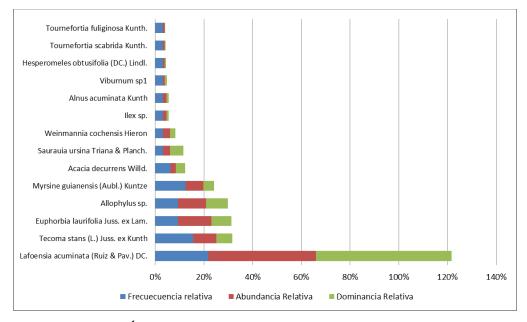


Figura 75 Distribución del Índice de valor de importancia (IVI%) por especies en el Bosque Ripario del Orobioma Azonal Andino Nudo de los pastos

Fuente: INGETEC S.A., 2018

Análisis de Posición sociológica

Para el análisis de la posición sociológica se encontraron un total de 118 individuos de los cuales 64 pertenecen al estrato inferior, 46 al medio y 8 al superior, en la Figura 76 se puede apreciar que la especie *Lafoensia acuminata* presento el máximo valor para esta variable con 37,33% resultado de 17 individuos en el estrato inferior, 30 en el medio y 14 en el superior siendo la especie con más individuos en cada estrato, seguida por *Euphorbia laurifolia* (15,29%) con 5 individuos en el estrato inferior y 14 en el medio, en tercer lugar se encuentra *Allophylus sp.* (14,68%) con 1 individuo en el estrato inferior y 15 en el medio, las única especie que presento individuos en el estrato superior fue *Lafoensia acuminata* con 14, este índice nos indica la importancia de las especies en la distribución vertical del bosque, siendo claramente *Lafoensia acuminata* la especie más abundante en los estratos verticales (ver Figura 76).

Versión 1 – agosto de 2018.

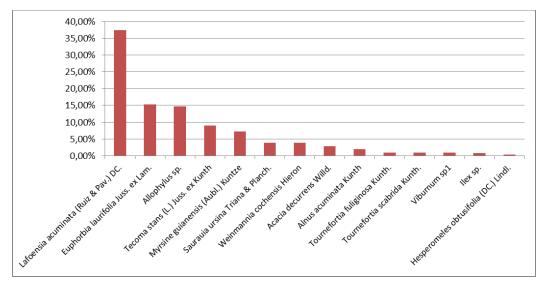
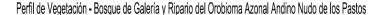


Figura 76 Posición sociológica por especie en el Bosque Ripario del Orobioma Azonal Andino Nudo de los pastos

Fuente: INGETEC S.A., 2018


Perfil de vegetación

En el perfil del Bosque de galería (Figura 77) se distingue con claridad la presencia de dos estratos bien diferenciados (el inferior y el medio), debido a que allí se agrupan la mayor parte de los individuos registrados durante el muestro, conformándose un dosel que oscila entre los 10 y 13 m aproximadamente. El estrato superior no se diferencia con facilidad, lo cual se encuentra principalmente asociado a grado de disturbio de la vegetación, no obstante, es posible observar algunos individuos con alturas superiores a las mencionadas anteriormente.

Versión 1 – agosto de 2018.

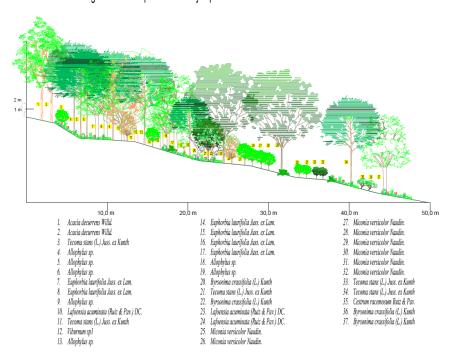


Figura 77 Perfil de vegetación para el Bosque de Galería de Orobioma Azonal Andino Nudo de los pastos

Análisis de Regeneración natural

Para la composición florística de la regeneración en el ecosistema analizado, fueron encontrados 148 individuos distribuidos en 14 familias, 14 géneros y 15 especies, de los cuales 97 fueron de la categoría brinzal y 51 de latizal, en la Tabla 5858 se discriminan los valores de abundancia por especie y categoría.

Tabla 58 Composición florística de la regeneración natural en el Bosque Ripario del Orobioma Azonal Andino Nudo de los pastos

Familia	Nombre científico sin autor	Nombre	No. Inc	Tatal	
ramilia	Monibre cientifico sin autor		Latizal	Brinzal	Total
SAPINDACEAE	Allophylus sp.	Caspirosario	10	10	20
BETULACEAE	Alnus acuminata Kunth	Aliso	2	4	6
MALPIGHIACEAE	Byrsonima crassifolia (L.) Kunth	Mora	2	2	4
SOLANACEAE	Cestrum racemosum Ruiz & Pav.	Sauco blanco		1	1
MYRTACEAE	Eugenia sp2	Arrayán 2	2	7	9
EUPHORBIACEAE	Euphorbia laurifolia Juss. ex Lam.	Lechero	4	7	11

Versión 1 – agosto de 2018.

Página | 133

Familia	Namehus signatífica sin suatou	Nombre	No. Inc	Tatal	
Familia	Nombre científico sin autor	común	Latizal	Brinzal	Total
AQUIFOLIACEAE	<i>Ilex</i> sp.	León	4	3	7
LYTHRACEAE	Lafoensia acuminata (Ruiz & Pav.) DC.	Guayacán	4	10	14
MELASTOMATACEAE	Miconia versicolor Naudin.	Morochillo	2	10	12
PRIMULACEAE	<i>Myrsine guianensis</i> (Aubl.) Kuntze	Cucharo	8	21	29
PIPERACEAE	Piper sp1	Cordoncillo	7	3	10
RUBIACEAE	Psychotria sp1	Cafetillo	1	8	9
BIGNONACEAE	Tecoma stans (L.) Juss. ex Kunth	Quillotocto	3	8	11
BORAGINACEAE	Tournefortia fuliginosa Kunth.	Pelotillo 1	1		1
BORAGINACEAE	Tournefortia scabrida Kunth.	Mayorquín	1	3	4

Fuente: INGETEC S.A., 2018

Con respecto a la abundancia se tiene que *Myrsine guianensis* fue la especie con mayor número de individuos con 29 (19,59%), seguida de *Allophylus sp.* y *Lafoensia acuminata* con 20 (13,51%) y 14 (9,46%) respectivamente, en términos de la frecuencia las especies más importantes fueron *Myrsine guianensis y Tecoma stans* presentes en 5 unidades muestreales, seguidas *de Lafoensia acuminata y Alnus acuminata* presentes en 3 parcelas cada una.

El índice de regeneración natural (Rn%) indica que *Myrsine guianensis* es la especie más importante con un valor de 20,59% seguida de *Allophylus sp. y Tecoma stans* con 13,71% y 7,46% respectivamente, las 3 especies mencionadas también están presentes en la categoría fustal, estos valores indican que son especies con mayor éxito en la tasa de renovación de sus individuos, es decir que a pesar de perder individuos en categorías más altas la sobrevivencia y recambio de la especie está asegurada por sus primeros estadios, *Lafoensia acuminata* ocupa el cuarto puesto de este índice a pesar de ser la especie más importante en el IVI% lo que sugiere una baja capacidad de regeneración de sus individuos, en la Figura 78 se encuentran los valores de frecuencia, abundancia y categoría de tamaño para cada especie, la Tabla 5959 presenta los valores relativos para estas variables.

Tabla 59 Valores de Frecuencia, Abundancia, Categoría de tamaño e índice de Regeneración natural relativos en el Bosque Ripario del Orobioma Azonal Andino Nudo de los pastos.

Nombre científico	Nombre común	Frecuencia relativa	Abundancia Relativa	Ct %	Rn %
Myrsine guianensis (Aubl.) Kuntze	Cucharo	16,13%	19,59%	20,59%	18,77%
Allophylus sp.	Caspirosario	6,45%	13,51%	13,71%	11,22%
Tecoma stans (L.) Juss. ex Kunth	Quillotocto	16,13%	7,43%	7,46%	10,34%
Lafoensia acuminata (Ruiz & Pav.) DC.	Guayacán	9,68%	9,46%	10,42%	9,85%

Versión 1 – agosto de 2018.

Miconia versicolor Naudin.	Morochillo	6,45%	8,11%	6,76%	7,11%
Euphorbia laurifolia Juss. ex Lam.	Lechero	6,45%	7,43%	7,16%	7,01%
Psychotria sp1	Cafetillo	6,45%	6,08%	5,99%	6,18%
Alnus acuminata Kunth	Aliso	9,68%	4,05%	4,53%	6,09%
Piper sp1	Cordoncillo	3,23%	6,76%	6,46%	5,48%
Eugenia sp2	Arrayán 2	3,23%	6,08%	5,99%	5,10%
<i>Ilex</i> sp.	León	3,23%	4,73%	3,59%	3,85%
Tournefortia scabrida Kunth.	Mayorquín	3,23%	2,70%	3,12%	3,02%
Byrsonima crassifolia (L.) Kunth	Mora	3,23%	2,70%	2,82%	2,92%
Cestrum racemosum Ruiz & Pav.	Sauco blanco	3,23%	0,68%	0,85%	1,59%
Tournefortia fuliginosa Kunth.	Pelotillo 1	3,23%	0,68%	0,56%	1,49%

Fuente: INGETEC S.A., 2018

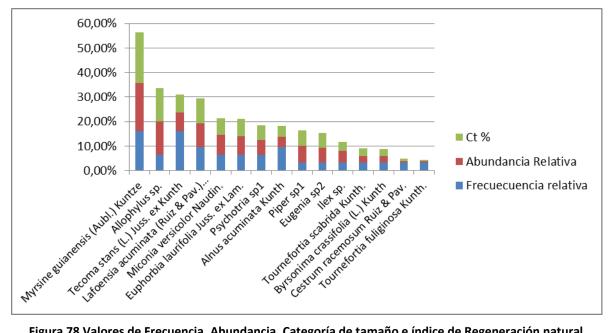


Figura 78 Valores de Frecuencia, Abundancia, Categoría de tamaño e índice de Regeneración natural relativos en el Bosque Ripario del Orobioma Azonal Andino Nudo de los pastos.

Versión 1 – agosto de 2018.

Índice de valor de importancia ampliado

Este índice nos proporciona información completa de la importancia de las especies en la estructura vertical, horizontal y en los estadios más jóvenes (regeneración natural), si bien *Lafoensia acuminata* siguió siendo la especie más importante en todos los estratos, podemos observar que fue desplazada en el índice de regeneración natural hasta el cuarto puesto, por otro lado *Allophylus sp.* fue la segunda especie más importante para esta variable con 57,17% seguida de *Euphorbia laurifolia* con 56,4%, en este caso vemos como el valor de regeneración natural aumento la importancia de Allophylus sp. que desplazo a *Euphorbia laurifolia* y *Tecoma stans* un puesto con respecto al IVI%, *Myrsine guianensis* conservo su quinta posición a pesar de ser la especie más importante en la Rn% (ver Figura 79 y Tabla 600).

Tabla 60 Valores de IVI% Posición sociológica Ps%, Índice de regeneración natural Rn% e IVI ampliado IVIA% en el Bosque Ripario del Orobioma Azonal Andino Nudo de los pastos.

NOMBRE CIENTIFICO	NOMBRE COMUN	I.V.I	Ps %	Rn%	I.V.I.A
Lafoensia acuminata (Ruiz & Pav.) DC.	Guayacán	116,11%	37,33%	9,85%	163,29%
Allophylus sp.	Caspirosario	31,27%	14,68%	11,22%	57,17%
Euphorbia laurifolia Juss. ex Lam.	Lechero	34,10%	15,29%	7,01%	56,40%
Tecoma stans (L.) Juss. ex Kunth	Quillotocto	33,04%	9,01%	10,34%	52,39%
Myrsine guianensis (Aubl.) Kuntze	Cucharo	25,60%	7,28%	18,77%	51,65%
Acacia decurrens Willd.	Acacia	11,39%	2,86%	0,00%	14,25%
Saurauia ursina Triana & Planch.	Moquillo	10,12%	3,81%	0,00%	13,93%
Alnus acuminata Kunth	Aliso	5,75%	1,91%	6,09%	13,75%
Weinmannia cochensis Hieron	Encenillo	8,67%	3,81%	0,00%	12,49%
Ilex sp.	León	5,85%	0,78%	3,85%	10,48%
Tournefortia scabrida Kunth.	Mayorquín	4,43%	0,95%	3,02%	8,40%
Miconia versicolor Naudin.	Morochillo	0,00%	0,00%	7,11%	7,11%
Tournefortia fuliginosa Kunth.	Pelotillo 1	4,36%	0,95%	1,49%	6,80%
Psychotria sp1	Cafetillo	0,00%	0,00%	6,18%	6,18%
Viburnum sp1	Pelotillo	4,73%	0,95%	0,00%	5,68%
Piper sp1	Cordoncillo	0,00%	0,00%	5,48%	5,48%
Eugenia sp2	Arrayán 2	0,00%	0,00%	5,10%	5,10%
Hesperomeles obtusifolia (DC.) Lindl.	Cerote	4,57%	0,39%	0,00%	4,96%
Byrsonima crassifolia (L.) Kunth	Mora	0,00%	0,00%	2,92%	2,92%
Cestrum racemosum Ruiz & Pav.	Sauco blanco	0,00%	0,00%	1,59%	1,59%

Versión 1 – agosto de 2018.

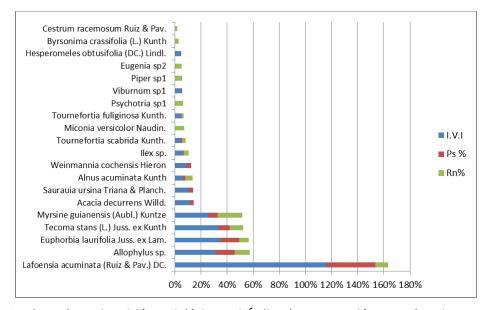


Figura 79 Valores de IVI% Posición sociológica Ps%, Índice de regeneración natural Rn% e IVI ampliado IVIA% en el Bosque Ripario del Orobioma Azonal Andino Nudo de los pastos.

Fuente: INGETEC S.A., 2018

- Clases diamétricas

Para la distribución de clases diamétricas los datos de fustales dieron una amplitud de clase de 2,52 cm lo que dio como resultado 8 clases diamétricas, encontrando una distribución tendiente a la "J" invertida donde las clases más pequeñas acumulan la mayor cantidad de individuos disminuyendo en proporción a medida que aumenta el tamaño de la clase, se puede observar una disminución de la tendencia en las clases 3 y 6 lo que indica que el bosque ha sido objeto de aprovechamiento, llama la atención la disminución en clases diamétricas como la III donde los diámetros no superan los 17 cm, quizás sus dimensiones la hacen idónea para el levantamiento de cercas , la clase I agrupa 46 individuos que representan el 33,3 % del total seguida de la clase II con 35 individuos (25,36%), las clases con menor cantidad de individuos son las VII y VIII con 3 individuos cada una, la falta de individuos con dimensiones por encima de los 30 cm de DAP para un ecosistema ripario evidencia la fuerte actividad antrópica de la que es objetivo (Figura 80).

Versión 1 – agosto de 2018.

Amplitud del intervalo (cm)		Clase diamétrica
10,03	12,55	I
12,55	15,08	II
15,08	17,61	III
17,61	20,13	IV
20,13	22,66	V
22,66	25,19	VI
25,19	27,71	VII
27,71	30,24	VIII

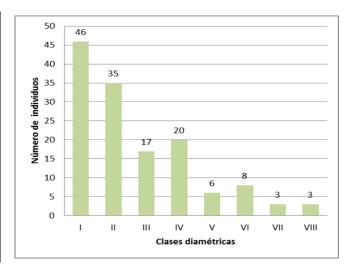


Figura 80 Número de individuos por clase diamétrica para el Bosque Ripario del Orobioma Azonal Andino Nudo de los pastos

Fuente: INGETEC S.A., 2018

Clases altimétricas

Para las clases altimétricas se determinaron 8 clases con una amplitud de 1,37, de las cuales la clase III y IV presentaron la máxima acumulación de individuos con 46 y 36 respectivamente que representan el 33,3% y 26,08%, el comportamiento de la gráfica indica una baja proporción en las clases más bajas un incremento en las clases mencionadas anteriormente y un deceso considerable en las ultimas clases, siendo la clase VIII la que menor cantidad de individuos presento con un total de 2, esta distribución confirma el gran efecto que ha tenido la actividad antrópica sobre estos bosques, *Lafoensia acuminata* es la especie que domina el dosel superior con alturas máximas entre los 12 y 16 metros, siendo la única especie presente en la clases VII y VIII (Figura 81).

Versión 1 – agosto de 2018.

Amplitud del intervalo		Clase altimétrica
5	6,375	I
6,375	7,75	П
7,75	9,125	III
9,125	10,5	IV
10,5	11,875	V
11,875	13,25	VI
13,25	14,625	VII
14,625	16	VIII

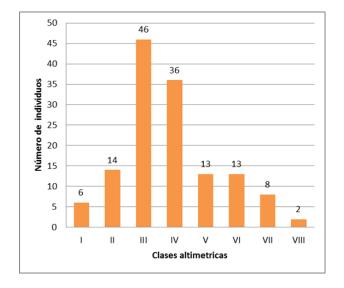


Figura 81 Número de individuos por clase altimétrica para el Bosque Ripario del Orobioma Azonal Andino Nudo de los pastos

Fuente: INGETEC S.A., 2018

Las distribuciones en las clases diamétricas y altimétricas del ecosistema descrito indican una alta presión antrópica y la introducción de especies en áreas intervenidas como esta , las especies más importantes según el IVI% como *Lafoensia acuminata* y *Tecoma stans* siendo estas especies poco representativas de bosques naturales sugieren que han sido plantados individuos de estas especies con el fin de proteger el cauce de los drenajes , posterior a un fuerte proceso de deforestación, la presencia de especies como *Weinmannia cochensis, Ilex sp* y *Hesperomeles obtusifolia,* son señales de la antigua composición de estos bosques.

Grado de sociabilidad de las especies

Este índice nos indica cuales especies presentan un mayor grado de agregación que otras, para este caso nos da un valor máximo para la especie *Lafoensia acuminata* de 8,71, seguido de *Euphorbia laurifolia y Allophylus sp.* con valores de 6,33 y 5,33, estas especies presentan un mayor tendencia a la agregación de sus individuos en el espacio lo que se explica a la gran cantidad de individuos que presentan respecto a la cantidad de unidades muestreales donde se encontraron, el resto de especies presentaron valores por debajo de 4 lo que indican que no tienden a agruparse incluso en los casos de *Hesperomeles obtusifolia, Tournefortia fuliginosa, Tournefortia scabrida y Viburnum sp1* son especies poco frecuentes o raras en el ecosistema, en la Tabla 61 se encuentran discriminados los valores analizados.

Versión 1 – agosto de 2018.

Página | 139

Tabla 61 Valores para índice de Sociabilidad por especie en el Bosque Ripario del Orobioma Azonal Andino Nudo de los pastos.

Especie	Frecuencia absoluta %	Abundancia promedio	Índice de sociabilidad
Lafoensia acuminata (Ruiz & Pav.) DC.	100,00%	8,71	8,71
Euphorbia laurifolia Juss. ex Lam.	42,86%	2,71	6,33
Allophylus sp.	42,86%	2,28	5,33
Saurauia ursina Triana & Planch.	14,29%	0,57	4
Weinmannia cochensis Hieron	14,29%	0,57	4
Tecoma stans (L.) Juss. ex Kunth	71,43%	1,85	2,6
Myrsine guianensis (Aubl.) Kuntze	57,14%	1,43	2,5
Alnus acuminata Kunth	14,29%	0,28	2
<i>llex</i> sp.	14,29%	0,28	2
Acacia decurrens Willd.	28,57%	0,42	1,5
Hesperomeles obtusifolia (DC.) Lindl.	14,29%	0,14	1
Tournefortia fuliginosa Kunth.	14,29%	0,14	1
Tournefortia scabrida Kunth.	14,29%	0,14	1
Viburnum sp1	14,29%	0,14	1

Fuente: INGETEC S.A., 2018

- Diversidad florística

El índice de Simpson nos permite determinar la heterogeneidad o dominancia de una especie sobre un ecosistema siendo este la probabilidad de encontrar la misma especie en dos extracciones al azar, para este caso el valor arrojado fue de 0,8709 lo que indica un ecosistema tendiente a la homogeneidad es decir que las especies están representadas en proporciones similares y no existe una clara dominancia de alguna especie, el índice de Shannon adquiere su máximo valor en Ln S (siendo S el número total de especies) este valor indica que todas las especies se encuentran representadas por la misma cantidad de individuos así pues este índice nos indica la incertidumbre para predecir de una muestra aleatoria la especie extraída, en el caso del ecosistema evaluado nos dio un valor de 2,397 siendo Ln 20 = 2,99 lo que indica que las abundancias de las especies tiene una distribución homogénea (ver Tabla 622)

Respecto a la equitatividad tenemos que los valores cercanos a 1 nos indican una distribución equilibrada en la abundancia de las especies, para el ecosistema analizado este valor fue de 0,8 lo que indica un distribución homogénea de las abundancia entre especies, finalmente el índice de riqueza especifica de Margalef da un valor de 3,35 donde el valor mínimo es 0 este indicador es una medida de la relación entre la cantidad de especies y la cantidad de individuos (ver Tabla 622)

Tabla 62. Índices de diversidad para el Bosque Ripario del Orobioma Azonal Andino Nudo de los pastos

Estimador	Resultado
N° de especies	20
N° de individuos	286
Simpson_1-D	0,8709
Shannon_H	2,397
Margalef	3,359
Equitability_J	0,8

Fuente: INGETEC S.A., 2018

Caracterización florística del Herbazal abierto rocoso del Orobioma Azonal Andino Nudo de los pastos

La cobertura de herbazal abierto rocoso, ubicada en el orobioma Azonal Andino Nudo de los pastos, se muestreó teniendo en cuenta la metodología descrita en el capítulo 2 del presente estudio, aplicando el método de Daubenmire modificado, en vista de que la cobertura se observa homogénea en la distribución espacial, se estableció un total de 19 parcelas de 1m x 1m, a continuación, se muestra la ubicación de dichas parcelas. Es importante resaltar que debido al tamaño de las parcelas realizadas de 1m x 1m, no se tomó coordenada de inicio y de final sino una coordenada en el punto medio de cada parcela, por ende, la Tabla 2.23 Localización de las unidades de muestreo forestal en el área de influencia (Capítulo 2 Generalidades), presenta la coordenada del punto central.

Composición Florística

Según los resultados del muestreo realizado, el ecosistema de Herbazal abierto rocoso del orobioma Azonal Andino Nudo de los Pastos cuenta con 42 especies, agrupadas en 40 géneros y 25 familias, donde predominan las especies de tipo herbáceo (Tabla 6363).

Tabla 63 Composición florística del Herbazal abierto rocoso del orobioma Azonal Andino Nudo de los Pastos.

FAMILIA	ESPECIE	NOMBRE COMUN
AMARYLLIDACEAE	Eucharis sp	Cebolla de monte
ASTERACEAE	Ageratum conyzoides (L.) L	Flor morada
ASTERACEAE	Baccharis sp1	Baccharis
ASTERACEAE	Elaphandra lehmannii (Hieron.) Pruski	Elophandra
ASTERACEAE	Pterocaulon virgatum (L.) DC.	Frailejón
ASTERACEAE	Tagetes minuta L	Yamata
ASTERACEAE	Asteraceae sp1	Pilosa

Versión 1 – agosto de 2018.

FAMILIA	ESPECIE	NOMBRE COMUN
BERBERIDACEAE	Berberis hallii Hieron.	Espina amarilla
BORAGINACEAE	Lithospermum officinale L	Lithospermum
BROMELIACEAE	Puya sp	Chupalla
BROMELIACEAE	Tillandsia fendleri Griseb	Bromelia
BROMELIACEAE	Tillandsia lajensis André.	Vicundo
CORIARIACEAE	Coriaria ruscifolia L.	Sancia
CYPERACEAE	Cyperus sp1	Cyperus
DRYOPTERIDACEAE	Elaphoglossum sp	Lanza
LAMIACEAE	Salvia sp1	Matico
LEGUMINOSAE	Crotalaria incana L.	Abrojo
LEGUMINOSAE	Dalea coerulea (L. f.) Schinz & Thell.	Pispura
LORANTHACEAE	Gaiadendron punctatum (Ruiz & Pav.) G.Don	Matapalo
LYCOPODIACEAE	Lycopodium clavatum L.	Musgo verde
MALVACEAE	Malvaceae sp1	Espinita
MELASTOMATACEAE	Miconia versicolor Naudin.	Morochillo
MELASTOMATACEAE	Monochaetum sp1	Mayo pequeño
ORCHIDACEAE	Elleanthus sphaerocephalus Schltr	Elleanthus
ORCHIDACEAE	Epidendrum sp.1	Guaminche
ORCHIDACEAE	Govenia sodiroi Schltr.	Cutal
ORCHIDACEAE	Pleurothallis lamellaris Lindl.	Orquidea larga
ORCHIDACEAE	Pleurothallis coriacardia Rchb. f.	Flor verde
OROBANCHACEAE	Lamourouxia virgata Kunth	Trompeta
PASSIFLORACEAE	Passiflora sp1	Corazón
POACEAE	Anthoxanthum odoratum L.	Pasto azul
POACEAE	Calamagrostis effusa (Kunth) Steud.	Calamagrostis
POACEAE	Chusquea sp1	Chusquea 2
POLYGALACEAE	Monnina aestuans (L.f.) DC.	Uvilán
POLYPODIACEAE	Niphidium sp	Niphidium
POLYPODIACEAE	Polypodium sp1.	Helecho
PRIMULACEAE	Myrsine guianensis (Aubl.) Kuntze	Cucharo
ROSACEAE	Hesperomeles obtusifolia (DC.) Lindl.	Cerote
RUBIACEAE	Arcytophyllum muticum (Wedd.) Standl.	Flor blanca
RUBIACEAE	Galium hypocarpium (L.) Endl. ex Griseb.	Naranjita
VERBENACEAE	Lantana camara L.	Venturosa

Versión 1 – agosto de 2018.

FAMILIA	ESPECIE	NOMBRE COMUN
VIOLACEAE	Viola scandens Humb. & Bonpl. ex Schult.	Viola

Fuente: INGETEC S.A., 2018

Como se puede apreciar en la Figura 82, las familias botánicas con mayor representatividad en cuanto a riqueza específica y genérica son ASTERACEAE (6 géneros y 6 especies), ORCHIDACEAE (4 géneros y 5 especies), POACEAE (3 géneros y 3 especies), BROMELIACEAE (2 géneros y 3 especies), LEGUMINOSAE, RUBIACEAE, POLYPODIACEAE y MELASTOMATACEAE (2 géneros y dos especies cada una), las familias restantes están representadas por una sola especie.

Respecto a los géneros encontrados en este ecosistema, los que presentan mayor riqueza específica son *Tillandsia* y *Pleurothallis* con dos especies diferentes cada uno.

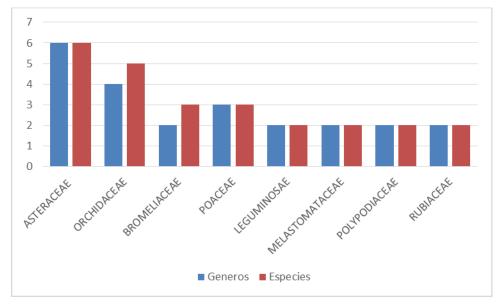


Figura 82 Riqueza específica y genérica de las familias más representativas en el Herbazal abierto rocoso del orobioma Azonal Andino Nudo de los Pastos

Fuente: INGETEC S.A., 2018.

Es importante destacar la predominancia de familias como POACEAE que es característica de herbazales, con géneros como *Calamagrostis* y *Chusquea* que se encuentran comúnmente en franjas limítrofes entre los Bosques altoandinos y zonas de subpáramo en asociación con especies de la familia Bromeliaceae, especialmente del género *Puya*.

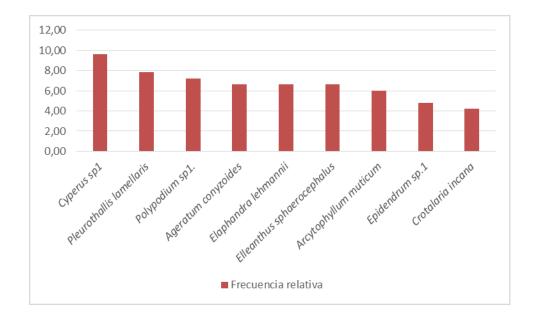
- Frecuencia

Versión 1 – agosto de 2018.

En lo concerniente a la ocurrencia de las especies a lo largo del área muestreada sobresalen las especies Cyperus sp1, Pleurothallis lamellaris (orquídea larga), Polypodium sp1. (Helecho), Ageratum conyzoides (flor morada), Elaphandra lehmannii (elaphandra), Elleanthus sphaerocephalus (Elleanthus) y Arcytophyllum muticum (flor blanca) en su orden, muestran los valores más altos de frecuencia relativa (Figura 83).

Todas las especies presentan valores de frecuencia menores al 10%, lo cual las ubica en la categoría "poco frecuente" (Tabla 6464).

Tabla 64 Frecuencia de las especies encontradas en el Herbazal abierto rocoso del orobioma Azonal
Andino Nudo de los Pastos


ESPECIE	NOMBRE COMUN	Frecuencia absoluta	Frecuencia relativa
Ageratum conyzoides (L.) L	Flor morada	11	6,6
Anthoxanthum odoratum L.	Pasto azul	1	0,6
Arcytophyllum muticum (Wedd.) Standl.	Flor blanca	10	6,0
Asteraceae sp1	Pilosa	3	1,8
Baccharis sp1	Baccharis	4	2,4
Berberis hallii Hieron.	Espina amarilla	5	3,0
Calamagrostis effusa (Kunth) Steud.	Calamagrostis	3	1,8
Chusquea sp1	Chusquea 2	2	1,2
Coriaria ruscifolia L.	Sancia	5	3,0
Crotalaria incana L.	Abrojo	7	4,2
Cyperus sp1	Cyperus	16	9,6
Dalea coerulea (L. f.) Schinz & Thell.	Pispura	1	0,6
Elaphandra lehmannii (Hieron.) Pruski	Elophandra	11	6,6
Elaphoglossum sp	Lanza	1	0,6
Elleanthus sphaerocephalus Schltr	Elleanthus	11	6,6
Epidendrum sp.1	Guaminche	8	4,8
Eucharis sp	Cebolla de monte	3	1,8
Gaiadendron punctatum (Ruiz & Pav.) G.Don	Matapalo	1	0,6
Galium hypocarpium (L.) Endl. ex Griseb.	Naranjita	2	1,2
Govenia sodiroi Schltr.	Cutal	1	0,6
Hesperomeles obtusifolia (DC.) Lindl.	Cerote	1	0,6
Lamourouxia virgata Kunth	Trompeta	1	0,6
Lantana camara L.	Venturosa	1	0,6
Lithospermum officinale L	Lithospermum	1	0,6
Lycopodium clavatum L.	Musgo verde	1	0,6

Versión 1 – agosto de 2018.

ESPECIE	NOMBRE COMUN	Frecuencia absoluta	Frecuencia relativa
Malvaceae sp1	Espinita	1	0,6
Miconia versicolor Naudin.	Morochillo	4	2,4
Monnina aestuans (L.f.) DC.	Uvilán	1	0,6
Monochaetum sp1	Mayo pequeño	4	2,4
Myrsine guianensis (Aubl.) Kuntze	Cucharo	1	0,6
<i>Niphidium</i> sp	Niphidium	5	3,0
Passiflora sp1	Corazón	1	0,6
Pleurothallis coriacardia Rchb. f.	Flor verde	1	0,6
Pleurothallis lamellaris Lindl.	Orquidea larga	13	7,8
Polypodium sp1.	Helecho	12	7,2
Pterocaulon virgatum (L.) DC.	Frailejón	2	1,2
<i>Puya</i> sp	Chupalla	1	0,6
Salvia sp1	Matico	3	1,8
Tagetes minuta L.	Yamata	1	0,6
Tillandsia fendleri Griseb	Bromelia	3	1,8
Tillandsia lajensis André.	Vicundo	1	0,6
Viola scandens Humb. & Bonpl. ex Schult.	Viola	1	0,6

Versión 1 – agosto de 2018.

- Figura 83 Especies con mayor Frecuencia relativa en el Herbazal abierto rocoso del orobioma Azonal Andino Nudo de los Pastos

Fuente: INGETEC S.A., 2018

Estructura vertical en Herbazal abierto rocoso del Orobioma Azonal Andino Nudos de los pastos

La estratificación vertical del herbazal abierto rocoso refleja una fuerte dominancia del estrato herbáceo (0,3-1,5m), esto ocurre debido a la gran variedad de especies de orquídeas, gramíneas, helechos, bromelias y demás especies de habito herbáceo. Solo la especie *Elaphandra lehmannii* (Hieron.) Pruski, perteneciente a la familia Asteraceae, se presentó en el estrato arbustivo. El estrato rasante comprende especies de porte muy bajo y habito rastrero, como es el caso de *Galium hypocarpium* (naranjita), una planta procumbente o trepadora que comúnmente se extiende a ras de suelo por debajo de otras, y algunas especies de hábito herbáceo o arbustivo en estados tempranos de crecimiento. Cabe resaltar que una especie se puede presentar en varios estratos, como en el caso de *Elaphandra lehmannii* (Hieron.) Pruski que es descrita como un subarbusto, pero apareció en los tres estratos, lo cual sugiere que se encontraba distintas etapas de desarrollo (Tabla 6565 y **Figura 84**).

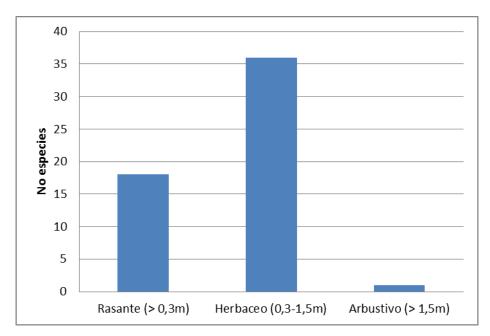


Figura 84 Estratificación vertical de la vegetación en Herbazal abierto rocoso del orobioma Azonal Andino Nudo de los pastos.

Versión 1 – agosto de 2018.

Tabla 65 Estratificación vertical de la vegetación en Herbazal abierto rocoso del orobioma Azonal Andino Nudo de los pastos.

ESPECIE	NOMBRE COMUN	Rasante	Herbáceo	Arbustivo
Ageratum conyzoides (L.) L	Flor morada		Х	
Anthoxanthum odoratum L.	Pasto azul		х	
Arcytophyllum muticum (Wedd.) Standl.	Flor blanca	x	Х	
Asteraceae sp1	Pilosa	х	Х	
Baccharis sp1	Baccharis	x	Х	
Berberis hallii Hieron.	Espina amarilla		Х	
Calamagrostis effusa (Kunth) Steud.	Calamagrostis		Х	
Chusquea sp1	Chusquea 2		Х	
Coriaria ruscifolia L.	Sancia		Х	
Crotalaria incana L.	Abrojo	Х	Х	
Cyperus sp1	Cyperus		Х	
Dalea coerulea (L. f.) Schinz & Thell.	Pispura		Х	
Elaphandra lehmannii (Hieron.) Pruski	Elophandra	Х	Х	Х
Elaphoglossum sp	Lanza		Х	
Elleanthus sphaerocephalus Schltr	Elleanthus	Х	Х	
Epidendrum sp.1	Guaminche	Х	Х	
Eucharis sp	Cebolla de monte		Х	
Gaiadendron punctatum (Ruiz & Pav.) G.Don	Matapalo		Х	
Galium hypocarpium (L.) Endl. ex Griseb.	Naranjita	Х		
Govenia sodiroi Schltr.	Cutal		Х	
Hesperomeles obtusifolia (DC.) Lindl.	Cerote		Х	
Lamourouxia virgata Kunth	Trompeta		Х	
Lantana camara L.	Venturosa		Х	
Lithospermum officinale L	Lithospermum	Х		
Lycopodium clavatum L.	Musgo verde	Х		
Malvaceae sp1	Espinita		Х	
Miconia versicolor Naudin.	Morochillo		Х	
Monnina aestuans (L.f.) DC.	Uvilán		Х	
Monochaetum sp1	Mayo pequeño	Х	Х	
Myrsine guianensis (Aubl.) Kuntze	Cucharo	Х		
Niphidium sp	Niphidium	х	Х	
Passiflora sp1	Corazón	Х		

CONCESIONARIA VIAI.
UNIÓN DEL SUR

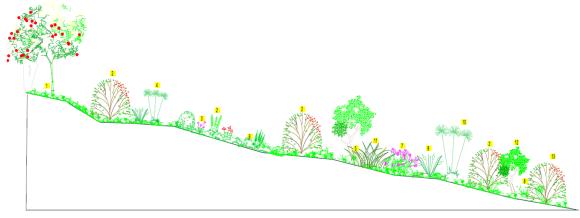
Versión 1 – agosto de 2018.

ESPECIE	NOMBRE COMUN	Rasante	Herbáceo	Arbustivo
Pleurothallis coriacardia Rchb. f.	Flor verde		х	
Pleurothallis lamellaris Lindl.	Orquidea larga	х	х	
Polypodium sp1.	Helecho	х	х	
Pterocaulon virgatum (L.) DC.	Frailejón		х	
Puya sp	Chupalla		х	
Salvia sp1	Matico		х	
Tagetes minuta L.	Yamata		х	
Tillandsia fendleri Griseb	Bromelia	х	х	
Tillandsia lajensis André.	Vicundo		х	
Viola scandens Humb. & Bonpl. ex Schult.	Viola	х		

Fuente: INGETEC S.A., 2018

- Perfil de vegetación para el Herbazal abierto rocoso del Orobioma Azonal Andino Nudos de los pastos

Por las características propias del ecosistema, predomina el estrato inferior dominado por especies herbáceas, en el cual existe la presencia de algunos individuos arbustivos que se destacan en el estrato medio. En este ecosistema se registran especies propias, lo que indica un grado de intervención bajo a medio, sobre el que se destacan especies como *Elaphandra lehmannii, Calamagrostis effusa, Coriaria ruscifolia* y *Ageratum conyzoides* (Figura 85).



Versión 1 – agosto de 2018.

Perfil de Vegetación - Herbazal abierto rocoso del Orobioma Azonal Andino Nudo de los Pastos

- 1. Elaphandra lehmannii (Hieron.) Pruski
- 2. Coriaria ruscifolia L.
- 3. Pleurothallis lamellaris Lindl.
- 4. Cyperus sp1
- 5. Ageratum conyzoides (L.) L
- 6. Arcytophyllum muticum (Wedd.) Standl.
- 7. Monochaetum sp1
- 8. Lithospermum officinale L
- 9. Elleanthus sphaerocephalus Schltr
- Cyperus sp1

- 11. Calamagrostis effusa
- 12. Ageratum conyzoides (L.) L
- 13. Elaphandra lehmannii (Hieron.) Pruski

Figura 85 Perfil del herbazal abierto rocoso del Orobioma Azonal Andino Nudo de los Pastos

Fuente: INGETEC S.A., 2018

- Índices de diversidad

A continuación, se presentan los índices de diversidad del ecosistema, calculados a partir de los datos presencia ausencia de las especies registradas en los muestreos (Tabla 6666).

Tabla 66 Índices de Diversidad de Herbazal rocoso del Orobioma Andino Nudo de los Pastos

Índice	Valor
Especies promedio por	
muestreo	4
Individuos promedio por	
muestreo	4,8
Dominance_D	0,32
Simpson_1-D	0,68
Shannon_H	1,26
Margalef	1,85

Versión 1 – agosto de 2018.

Índice	Valor	
Equitability_J	0,98	

Fuente: INGETEC S.A., 2018

En los 10 muestreos se identificó un total de 9 familias, 13 géneros y 16 especies, con un promedio de 4 especies por parcela. El índice de diversidad de Margalef presentó un valor de 1,85, lo cual implica que la diversidad es baja, considerando que valores inferiores a dos son considerados como zonas de baja biodiversidad (en general resultado de efectos antropogénicos) y valores cercanos a cinco son indicativos de alta biodiversidad.

De igual forma el índice de Shannon muestra una diversidad baja (1,26), considerando que su valor máximo es cercano a 5, en ecosistemas con gran riqueza. El índice de equidad de Pielou (J) presentó un valor alto de 0,98, el cual es muy cercano al valor máximo de 1, que se presenta cuando todas las especies son igualmente abundantes.

Para este ecosistema se obtuvo un valor de dominancia bajo (0,32) y por consiguiente el índice de diversidad de Simpson presenta un valor alto (0,68), considerando que su valor oscila en el rango entre 0 y (1-1/s), donde S es el número de especies encontradas, de manera que el límite superior en este caso es 0,94. Es decir que al tomar dos individuos al azar existe una probabilidad alta de que sean de la misma especie.

Caracterización florística de la Vegetación secundaria alta del Orobioma Azonal Andino Nudo de los pastos

El ecosistema Vegetación secundaria alta del Orobioma Azonal Andino Nudo de los pastos presenta un área de 83,84 Ha que representan el 2,08% del área total, la vegetación secundaria alta se define como la cobertura vegetal pionera del proceso sucesional de la vegetación natural generado después de una fuertes intervención y consecuente destrucción de la vegetación primaria, es decir el primer estadio hacia la recuperación del ecosistema original, se encuentra en áreas sometidas a cambios en el uso del suelo con diferentes usos como el agrícola y que posteriormente fueron abandonadas permitiendo el desarrollo de vegetación pionera, esta se caracteriza por la dominancia de elementos arbóreos un dosel irregular y presencia ocasional de arbustos palmas y enredaderas (IDEAM 2010).

Para la caracterización de este ecosistema se levantaron un total de 5 unidades de muestreo, que dejaron como resultado un total de 43 individuos, de los cuales 42 pertenecen a la categoría fustal y 1 a latizal.

Composición Florística

Los resultados concluyen que para el ecosistema analizado se presentan 43 individuos distribuidos en 4 familias, 4 géneros y 4 especies, siendo *Lafoensia acuminata* con 38 individuos la especie más abundante lo cual representa el 88,1% del total muestreado, seguida de lejos por *Euphorbia laurifolia* y *Myrsine guianensis* con 2 individuos cada uno (4,76%) (**Tabla** 6767)

Versión 1 – agosto de 2018.

En Figura 86 se discriminan las abundancias, géneros y especies por familia, encontrando así que las 4 familias presentes se distribuyen en un género y una especie, la familia con mayor número de individuos es Lythraceae representados en su totalidad por *Lafoensia acuminata*, seguida de Euphorbiaceae Y Primulaceae con 2 individuos cada una, la familia Sapindacea lo presento un individuo representado por *Allophylus sp.*

Tabla 67 Composición florística de la vegetación secundaria alta del Orobioma Azonal Andino Nudo de los pastos

Familia	Especie	Nombre común	N° de Individuos
SAPINDACEAE	Allophylus sp.	Caspirosario	1
EUPHORBIACEAE	Euphorbia laurifolia Juss. ex Lam.	Lechero	2
LYTHRACEAE	Lafoensia acuminata (Ruiz & Pav.) DC.	Guayacán	38
PRIMULACEAE	Myrsine guianensis (Aubl.) Kuntze	Cucharo	2
Total			43

Fuente: INGETEC S.A., 2018

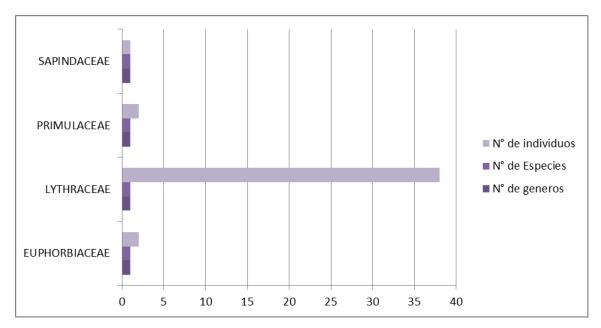


Figura 86 Distribución de géneros y especies por familia para la vegetación secundaria alta del Orobioma Azonal Andino Nudo de los pastos.

Versión 1 – agosto de 2018.

Índice de Abundancia frecuencia y dominancia

El IVI es un indicador que permite analizar la estructura horizontal del bosque, así pues en la Tabla 6868 y Figura 87 encontramos los valores de abundancia, dominancia y frecuencia relativa para cada una de las especies encontradas en el ecosistema analizado, encontrando que *Lafoensia acuminata* es la especie con mayor IVI% con 232,85% lo cual corresponde a sus valores en las 3 que componen el IVI% donde fue la especie con máximos valores, seguida de *Myrsine guianensis* y *Euphorbia laurifolia* con valores de 26,75% y 26,26% respectivamente, *Allophylus* sp fue la especie con menor IVI% con un valor de 14,15%.

Para frecuencia la especie *Lafoensia acuminata* presento el máximo valor ubicándose en las 5 unidades de muestreo, seguida por *Myrsine guianensis* y *Euphorbia* laurifolia que se presentaron en 2 de las unidades de muestreo, acumulando cada una 20% de la frecuencia relativa, *Allophylus sp* se encontró en una unidad de muestreo.

Los valores de abundancia indican que *Lafoensia acuminata* es la especie más importante en esta variable con un total de 37 individuos (88,1%), seguida por *Myrsine guianensis* y *Euphorbia* laurifolia con 2 individuos cada una, la especie con el menor registro de individuos fue Allophylus sp con 1 individuo (2,38%).

Respecto a la abundancia una vez más la especie con el máximo valor es *Lafoensia acuminata* con 1,486m2 (94,75), seguida de *Myrsine guianensis con 0,0312m2 (1,99%) y Allophylus sp* con 0,0277 (1,77%) para esta variable la especie con menor valor es *Euphorbia* laurifolia con 0,023m2 (1,5%), a pesar de presentar un mayor número de individuos que *Allophylus sp* esta última presento un individuo con una estructura más robusta.

Se aprecia una clara dominancia de la estructura horizontal por parte de la especie *Lafoensia acuminata* en todas las variables que componen el IVI es posible que exista una intervención antrópica en el uso de esta especie para la recuperación asistida del ecosistema, esta especie presenta un comportamiento heliofito que la faculta para colonizar áreas despobladas de vegetación preparando las condiciones para subsecuentes etapas sucesionales.

Tabla 68 Abundancia, dominancia y frecuencia para la vegetación secundaria alta del Orobioma Azonal Andino Nudo de los pastos.

Nombre científico	Nombre común	Frecuencia relativa	Abundancia Relativa	Dominancia Relativa	IVI %
Lafoensia acuminata (Ruiz & Pav.) DC.	Guayacán	50,00%	88,10%	94,75%	232,85%
Myrsine guianensis (Aubl.) Kuntze	Cucharo	20,00%	4,76%	1,99%	26,75%
Euphorbia laurifolia Juss. ex Lam.	Lechero	20,00%	4,76%	1,50%	26,26%
Allophylus sp.	Caspirosario	10,00%	2,38%	1,77%	14,15%

Versión 1 – agosto de 2018.

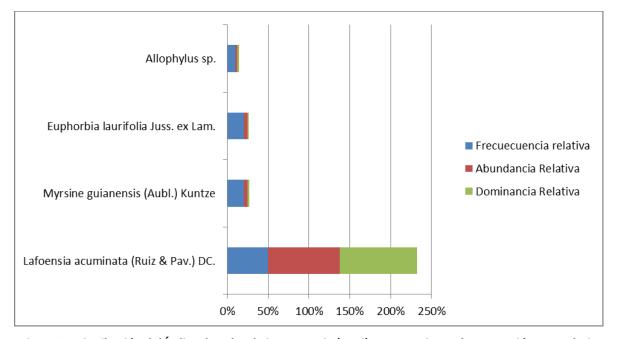


Figura 87 Distribución del Índice de valor de importancia (IVI%) por especies en la vegetación secundaria alta del Orobioma Azonal Andino Nudo de los pastos.

Fuente: INGETEC S.A., 2018

- Posición sociológica

La posición sociológica indica la importancia de una especie en la distribución horizontal, expresada como la abundancia en los estratos altitudinales, con tal suerte que *Lafoensia acuminata* es la especie más importante en este índice con un valor de 84,04% representada por 22 individuos en el estrato superior, 6 en el medio y 9 en el superior, seguido de *Euphorbia laurifolia y Myrsine guianensis* con 6,38% representados por 2 individuos en el estrato inferior cada uno, finalmente se encuentra *Allophylus sp.* que solo presento un individuo en la estrato inferior, es clara la dominancia de los estratos por parte de *Lafoensia acuminata* siendo la única especie presente en los estratos medio y superior, además de presentar la máxima cantidad de individuos en el estrato inferior (ver Figura 88).

Versión 1 – agosto de 2018.

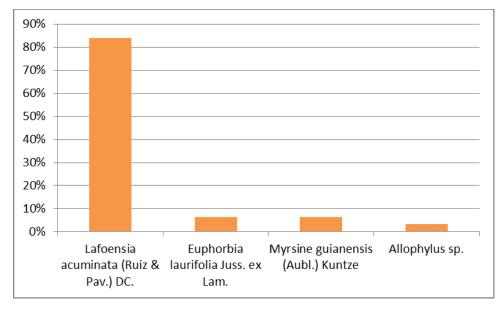


Figura 88 Posición sociológica por especie para la vegetación secundaria alta del Orobioma Azonal Andino Nudo de los pastos.

Fuente: INGETEC S.A., 2018

- Perfil de la vegetación

El ecosistema en el área de estudio se caracteriza por un alto grado de intervención donde predominan superficies con especies empleadas para procesos de restauración ecológica, tal es el caso de la especie *Lafoensia acuminata* la cual se destaca en la comunidad por su abundancia (Figura 89). Para este ecosistema el estrato predominante corresponde al estrato medio, con algunos individuos en el estrato inferior.

Versión 1 – agosto de 2018.

Perfil de Vegetación - Vegetación Secundaria Alta del Orobioma Azonal Andino Nudo de los Pastos

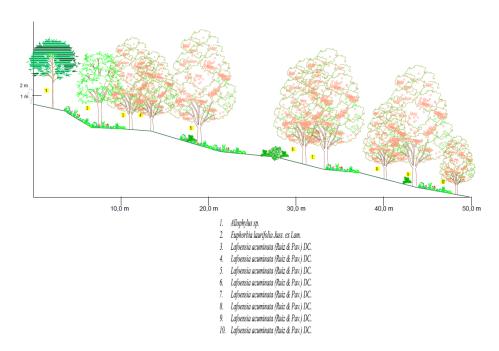


Figura 89 Perfil de vegetación para la vegetación secundaria alta del Orobioma Azonal Andino Nudo de los Pastos

- Clases diamétricas

La distribución de este ecosistema para fustales en clases diamétricas estuvo definido por rangos cada 4,24cm lo que nos da un total de 6 clases, como se observa en la Figura 90 no presentan una distribución definida, la clase III presento la mayor cantidad de individuo con un total de 13 (30,95%), seguida de la clase I con 10 individuos (23,81%), la clase con menor cantidad de individuos registrados fue la V con 3 (7,14%), se confirma de nuevo la dominancia de *Lafoensia acuminata* la cual es la única especie presente en las categorías IV,V y VI, se puede detallar una falta de individuos en las categorías más pequeñas lo que indica una dificultad del ecosistema para futuros recambios entre clases, lo que podría entorpecer el avance del ecosistema a posteriores estadios sucesionales.

Versión 1 – agosto de 2018.

Amplitud del intervalo		Clase diamétrica
10,2	14,4	I
14,4	18,7	II
18,7	22,9	III
22,9	27,2	IV
27,2	31,4	V
_31,4	35,7	VI

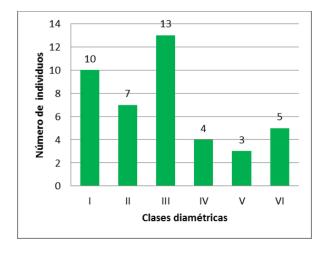


Figura 90 Número de individuos por clase diamétrica para la vegetación secundaria alta del Orobioma Azonal

Fuente: INGETEC S.A., 2018

Clases altimétricas

La distribución del ecosistema para clases altimétricas arrojo una amplitud de 1,16 dando 6 clases, de las cuales la clase I y II presentaron la mayor cantidad de individuos con 18 y 9 respectivamente representando el 42,86% y 21,43% del total, la Figura 91 tiene un comportamiento tendiendo a las "J" invertida donde los individuos con mayores abundancias se presentan en las categorías más bajas es decir los individuos jóvenes, esto indicaría una tendencia normal en la distribución altimétrica del ecosistema donde hay suficientes individuos para hacer recambio en las clase altimétricas más grandes, sin embargo existe una diferencia importante entre las clase más alta VI y las clases III IV V que podría evidenciar una disminución en categorías más bajas de *Lafoensia acuminata* para alguna temporada por tensiones antrópicas.

Versión 1 – agosto de 2018.

Amplitud del intervalo		Clase altimétrica
6,000	7,167	I
7,167	8,333	II
8,333	9,500	III
9,500	10,667	IV
10,667	11,833	V
11,833	13,000	VI

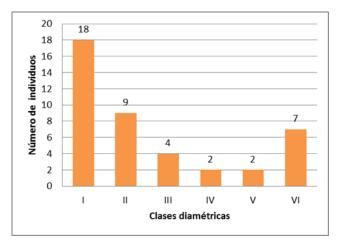


Figura 91 Número de individuos por clase altimétrica para la vegetación secundaria alta del Orobioma Azonal Andino Nudo de los pastos

Fuente: INGETEC S.A., 2018

Grado de sociabilidad

Este índice nos indica cuales especies presentan un mayor grado de agregación que otras, como se observa en la 69para este caso nos da un valor máximo para la especie *Lafoensia acuminata* de 7,4, las demás especies presentan un valor de 1 lo que indica que presentan un número de individuos igual a la cantidad de parcelas donde hicieron presencia, las especies *Euphorbia laurifolia y Myrsine guianensis* solo presentaron 2 individuos en 2 parcelas mientras que *Allophylus sp.* presentó un individuo en una parcela, se puede deducir que en este ecosistema estas últimas 3 especies son poco frecuentes o raras, mientras que *Lafoensia acuminata* tiene tendencias a desarrollarse en agregados.

Tabla 69 Índice de sociabilidad por especie para la vegetación secundaria alta del Orobioma Azonal Andino Nudo de los pastos

Nombre científico	Frecuencia absoluta %	Abundancia promedio	Índice de sociabilidad
Lafoensia acuminata (Ruiz & Pav.) DC.	100%	7,4	7,4
Allophylus sp.	20%	0,2	1
Euphorbia laurifolia Juss. ex Lam.	40%	0,4	1
Myrsine guianensis (Aubl.) Kuntze	40%	0,4	1

Versión 1 – agosto de 2018.

- Análisis de regeneración natural

Teniendo en cuenta el grado de intervención de los ecosistemas que se ubican sobre el área de influencia del proyecto, para esta cobertura tan solo se registró un individuo en estado latizal correspondiente a la especie *Lafoensia acuminata*. Por lo anterior no se realiza análisis de regeneración natural, ni índice de valor de importancia ampliado.

Índices de diversidad

El índice de Simpson indica la heterogeneidad o dominancia de las especies en el ecosistema, siendo esta la probabilidad de encontrar la misma especie en dos extracciones al azar de la muestra, para el ecosistema evaluado este índice adopto un valor de 0,214 lo que indica que existe una clara dominancia de pocas especies como se evidencio anteriormente, el índice de Shannon tiene su máximo valor en Ln S (siendo S el número total de especies) este valor indica que todas las especies se encuentran representadas por la misma cantidad de individuos así pues este índice nos indica la incertidumbre para predecir de una muestra aleatoria la especie extraída, en el caso del ecosistema evaluado nos dio un valor de 0,482 siendo Ln 4 = 1,38 lo que indica que las abundancias de las especies tiene distribuciones heterogéneas con una clara presencia de especies muy abundantes (Tabla 700).

Para la evaluación de la riqueza especifica el índice de Margalef da un valor de 0,79 siendo este un valor bastante bajo en la relación entre el número de especies y la cantidad de individuos considerando que el mínimo valor es 0 indicando un valor muy bajo en indicador, en cuanto a la equitatividad se tiene que los valores cercanos a 1 indican distribuciones de abundancia equilibradas entre las especies, para el caso del ecosistema evaluado se calculó un valor de 0,34 lo que indica una baja equitatividad en las abundancias de las especies, lo que confirma lo arrojado en el análisis realizado anteriormente.

Tabla 70. Índices de diversidad para la vegetación secundaria alta del Orobioma Azonal Andino Nudo de los pastos

Estimador	Resultado	
N° de especies	4	
N° de individuos	43	
Simpson_1-D	0,2142	
Shannon_H	0,4821	
Margalef	0,7976	
Equitability_J	0,3478	

Versión 1 – agosto de 2018.

Caracterización florística de la Vegetación secundaria baja del Orobioma Azonal Andino Nudo de los pastos

El ecosistema de vegetación secundaria baja del orobioma Azonal Andino Nudo de los Pastos se levantaron 17 unidades de muestreo. Por el tipo de cobertura presente no se existen individuos en estado fustal, es decir que el muestreo consta de Latizales y brinzales, obteniendo 254 y 405 individuos respectivamente.

Es importante resaltar, que debido al tamaño de las unidades de muestreo realizadas para esta unidad de cobertura que fue de 5 m x 5 m, se tomó tan solo una coordenada, la del punto medio de cada parcela.

- Composición Florística

La vegetación secundaria baja del orobioma Azonal Andino Nudo de los pastos presentó una riqueza de 22 especies distribuidas en 21 géneros y 18 familias (**Tabla 711**). Esta riqueza es menor que la de otras coberturas, lo cual se debe principalmente a la poca extensión de terreno que ocupa y una alta intervención antropogénica en la zona, impidiendo la libre proliferación de especies de crecimiento natural.

Las familias con mayor riqueza específica son Asteraceae, Leguminosae, Rosaceae y Melastomataceae con dos especies cada una, las familias restantes estas representadas por una sola especie.

Tabla 71 Composición florística de Vegetación secundaria baja del Orobioma Azonal Andino Nudo de los Pastos.

FAMILIA	ESPECIE	NOMBRE COMÚN	NUMERO DE INDIVIDUOS
AQUIFOLIACEAE	Ilex sp.	León	2
ASPARAGACEAE	Furcraea cabuya Trel.	Fique	6
ASTERACEAE	Baccharis latifolia (Ruiz & Pav.) Pers.	Chilca blanca	190
ASTERACEAE	Barnadesia spinosa L.f.	Pilampo	19
BERBERIDACEAE	Berberis hallii Hieron.	Espina amarilla	10
BETULACEAE	Alnus acuminata Kunth	Aliso	5
BIGNONACEAE	Tecoma stans (L.) Juss. ex Kunth	Quillotocto	34
CUNONIACEAE	Weinmannia cochensis Hieron	Encenillo	1
ESCALLONIACEAE	Escallonia paniculata (Ruiz & Pav.) Schult.	Chilco	14
EUPHORBIACEAE	Euphorbia laurifolia Juss. ex Lam.	Lechero	21
LEGUMINOSAE	Acacia decurrens Willd.	Acacia	5
LEGUMINOSAE	Mimosa quitensis Benth.	Guarango	13
LYTHRACEAE	Lafoensia acuminata (Ruiz & Pav.) DC.	Guayacán	34
MALPIGHIACEAE	Byrsonima crassifolia (L.) Kunth	Mora	3
MELASTOMATACEAE	Miconia sp1	Amarillo	16
MELASTOMATACEAE	Miconia versicolor Naudin.	Morochillo	84
PRIMULACEAE	Myrsine guianensis (Aubl.) Kuntze	Cucharo	182
ROSACEAE	Hesperomeles obtusifolia (DC.) Lindl.	Cerote	5
ROSACEAE	Prunus serotina Ehrh.	Capulí	12
RUBIACEAE	Palicourea guianensis Aubl.	Majua	1

Versión 1 – agosto de 2018.

SAPINDACEAE	Allophylus sp.	Caspirosario	1
VERBENACEAE	Lantana camara L.	Venturosa	1

Fuente: INGETEC S.A., 2018

- Índice de regeneración natural (IRN) en Vegetación secundaria baja del Orobioma Azonal Andino Nudo de los Pastos.

Por tratarse de una cobertura que cuenta con Latizales y brinzales únicamente, el análisis estructural del ecosistema tiene su base principalmente, en parámetros relacionados con el proceso de regeneración natural. En la Tabla 722 se resumen la abundancia, frecuencia, categoría de tamaño e índice de regeneración natural para las especies encontradas en la cobertura vegetación secundaria baja del Orobioma Azonal Andino Nudo de los Pastos.

Tabla 72 Índice de regeneración natural- Vegetación secundaria baja del Orobioma Azonal Andino Nudo de los Pastos.

ESPECIE	Abun	Frec	Abun %	Frec %	Ct%	RN %
Acacia decurrens Willd.	5	2	0,8	2,6	0,5	1,29
Allophylus sp.	1	1	0,2	1,3	0,1	0,52
Alnus acuminata Kunth	5	1	0,8	1,3	1,0	1,02
Baccharis latifolia (Ruiz & Pav.) Pers.	190	10	28,8	13,0	30,8	24,19
Barnadesia spinosa L.f.	19	2	2,9	2,6	3,1	2,85
Berberis hallii Hieron.	10	1	1,5	1,3	1,4	1,42
Byrsonima crassifolia (L.) Kunth	3	1	0,5	1,3	0,5	0,75
Escallonia paniculata (Ruiz & Pav.) Schult.	14	1	2,1	1,3	1,4	1,60
Euphorbia laurifolia Juss. ex Lam.	21	4	3,2	5,2	3,1	3,82
Furcraea cabuya Trel.	6	3	0,9	3,9	1,2	2,01
Hesperomeles obtusifolia (DC.) Lindl.	5	1	0,8	1,3	0,5	0,85
<i>llex</i> sp.	2	1	0,3	1,3	0,3	0,64
Lafoensia acuminata (Ruiz & Pav.) DC.	34	10	5,2	13,0	5,1	7,74
Lantana camara L.	1	1	0,2	1,3	0,1	0,52
Miconia sp1	16	1	2,4	1,3	1,6	1,78
Miconia versicolor Naudin.	84	9	12,7	11,7	13,6	12,66
Mimosa quitensis Benth.	13	2	2,0	2,6	2,0	2,20
Myrsine guianensis (Aubl.) Kuntze	182	12	27,6	15,6	26,6	23,26
Palicourea guianensis Aubl.	1	1	0,2	1,3	0,2	0,55
Prunus serotina Ehrh.	12	4	1,8	5,2	1,9	2,98
Tecoma stans (L.) Juss. ex Kunth	34	8	5,2	10,4	5,0	6,84
Weinmannia cochensis Hieron	1	1	0,2	1,3	0,1	0,52
Total	659	77	100,0	100,0	100	100,00

Versión 1 – agosto de 2018.

La especie más abundante fue *Baccharis latifolia* (Ruiz & Pav.) Pers. con una representatividad del 28,8%, seguida por *Myrsine guianensis* (Aubl.) Kuntze con 27,6 % y *Miconia versicolor* Naudin. con 12,7%. Estas tres especies en conjunto agrupan el 69% de los individuos registrados (Figura 92).

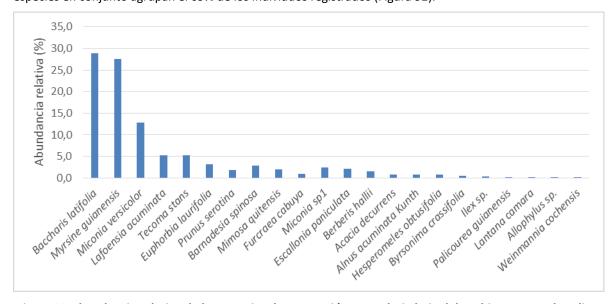


Figura 92 Abundancia relativa de las especies de Vegetación secundaria baja del orobioma Azonal Andino Nudo de los Pastos

Fuente: INGETEC S.A., 2018

Por otra parte, la especie más frecuente en los muestreos fue *Myrsine guianensis*, presentándose en 12 de los 77 muestreos; en segundo lugar aparecen *Baccharis latifolia* (Ruiz & Pav.) Pers. y *Lafoensia acuminata* (Ruiz & Pav.) DC., presentándose en 10 muestreos cada una (Figura 93).

Versión 1 – agosto de 2018.

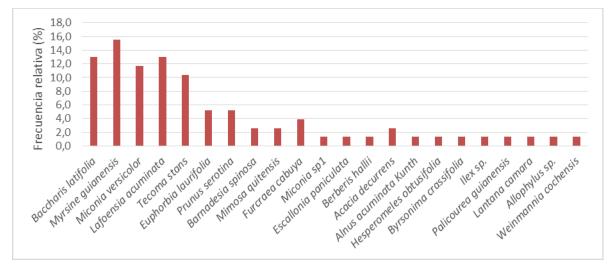


Figura 93 Frecuencia relativa de las especies de Vegetación secundaria baja del orobioma Azonal Andino Nudo de los Pastos

Fuente: INGETEC S.A., 2018

En cuanto a índice de regeneración natural la especie *Baccharis latifolia* (chilca) posee el valor más alto (24,2%), siendo la de mayor importancia en el proceso de repoblación de la vegetación secundaria baja del orobioma Azonal andino Nudo de los Pastos, gracias a sus cualidades adaptativas, así mismo *Myrsine guianensis* (cucharo) con un índice de 23,3 y *Miconia versicolor* (Morochillo) con 12,7 son las especies de mayor influencia en la dinámica del ecosistema.

La distribución del índice de regeneración natural manifiesta una tendencia de J invertida en la que dominan pocas especies y las demás presentan valores de importancia bajos.

Versión 1 – agosto de 2018.

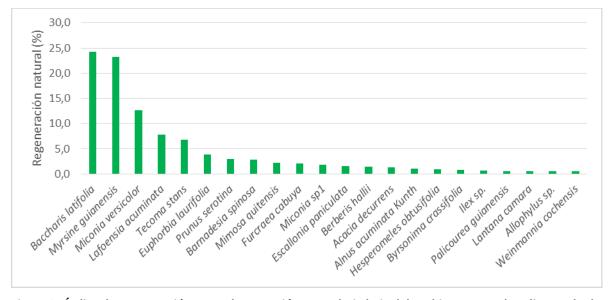


Figura 94 Índice de regeneración natural Vegetación secundaria baja del orobioma Azonal Andino Nudo de los Pastos.

Fuente: INGETEC S.A., 2018

Perfil de la vegetación para Vegetación secundaria baja del orobioma Azonal Andino Nudo de los Pastos

A partir del perfil de vegetación de la cobertura Vegetación Secundaria Baja del Orobioma Azonal Andino Nudo de los Pastos (Figura 95) se evidencia heterogeneidad en las alturas por lo que se distingue claramente los estratos y cantidad de especias registradas; siendo la de mayor recurrencia Chilca Blanca (Baccharis latifolia), un arbusto de rápido crecimiento el cual es propio de este tipo de coberturas, que se encuentran en estado desarrollo, seguida de la especie anteriormente mencionada están el Lechero (Euphorbia laurifolia) y Quillotocto (Tecoma stans) los cuales también se presentan en individuos en diferentes estados de crecimiento.

Versión 1 – agosto de 2018.

Perfil de Vegetación - Vegetación Secundaria Baja del Orobioma Azonal Andino Nudo de los Pastos

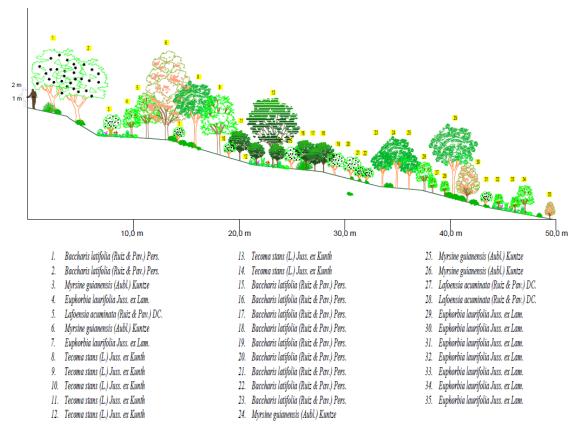


Figura 95 Perfil para la Vegetación secundaria baja del orobioma Azonal Andino Nudo de los Pastos

Clases diamétricas

Para la elaboración de la distribución por clase diamétrica, se clasificaron los latizales y brinzales en 11 clases diamétricas que van de 0,64 a 9,5 cm de diámetro en las cuales se incluyeron los 659 individuos registrados.

En la Figura 96 se consignan la distribución por clases diamétricas del número de individuos. De acuerdo con la información encontrada, el 37,5% de los individuos se encuentran en la primera categoría diamétrica. El 87,4% de los individuos se registran en las primeras cuatro categorías de DAP. De este comportamiento se infiere que la regeneración natural presenta un estado de desarrollo temprano, en donde aparecen plántulas y renuevos de especies arbóreas. (Figura 96).

Versión 1 – agosto de 2018.

Amplitud o	Amplitud del intervalo	
0,64	1,45	Ţ
1,45	2,26	II
2,26	3,07	III
3,07	3,88	IV
3,88	4,69	V
4,69	5,50	VI
5,50	6,31	VII
6,31	7,12	VIII
7,12	7,93	IX
7,93	8,74	Х
8,74	9,55	XI

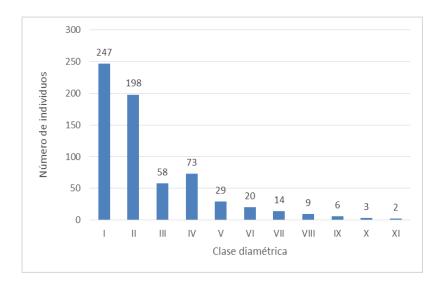


Figura 96 Distribución por clase diamétrica de la Vegetación secundaria baja del orobioma Azonal Andino Nudo de los Pastos.

Fuente: INGETEC S.A., 2018

- Clases altimétricas

Para la elaboración de la distribución por clase de altura, se clasificaron los latizales y brinzales en 11 clases que van de 0,3 a 7,5 m de altura en las cuales se incluyeron los 659 individuos registrados.

En la Figura 96 se pueden observar los valores de abundancia de individuos para las categorías de tamaño presentes. De acuerdo con la información encontrada las clases con mayor abundancia fueron la clase I con el 39,3% de los individuos y la clase dos con el 22,2%. Por lo tanto el 89,3% de los individuos no sobrepasan 1,6m de altura. Es importante anotar que a medida que aumenta el rango de altura, la abundancia de individuos decrece, de modo que en los estratos X y XI solo se presenta un individuo. Esto indica que la zona estuvo sometida a un alto grado de intervención humana, del cual empieza a recuperarse (Figura 97).

Versión 1 – agosto de 2018.

Amplitud de	Amplitud del intervalo		
0,30	0,95	1	
0,95	1,61	II	
1,61	2,26	III	
2,26	2,92	IV	
2,92	3,57	V	
3,57	4,23	VI	
4,23	4,88	VII	
4,88	5,54	VIII	
5,54	6,19	IX	
6,19	6,85	Х	
6,85	7,50	ΧI	

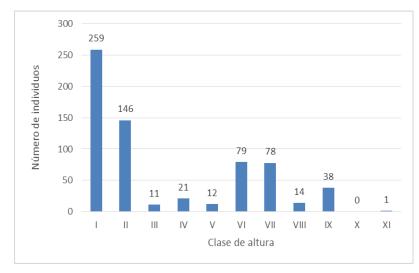


Figura 97 Distribución por clases de altura en la vegetación secundaria del orobioma Azonal Andino Nudo de los Pastos.

Fuente: INGETEC S.A., 2018

En el análisis de la estructura vertical efectuado para el presente ecosistema se tuvo en cuenta la categoría de tamaño de la regeneración natural (posición sociológica) por especie y la estratificación vertical, variables relacionadas con el arreglo de las especies y sus copas y el consecuente aprovechamiento de luz solar y desarrollo vegetativo de los individuos.

Análisis de regeneración natural

Con el fin de conocer el dominio aéreo de las especies se determinó la posición sociológica de las mismas, teniendo como resultado un 30,75% de posición sociológica relativa para la especie *Baccharis latifolia* (chilca), seguida por Myrsine guianensis (Cucharo) con un 26,57% y *Miconia versicolor* (Morochillo) con el 13,56%, acorde con el índice de regeneración natural. (Tabla 733 y Figura 98).

Versión 1 – agosto de 2018.

Tabla 73 Categoría de tamaño de las especies de Regeneración Natural

Especie	Abund	lancia por Cato	egoría de		Ct		Ct	Ct%
	ı	II	II	ı	П	Ш	Abs	
Acacia decurrens Willd.		4	1	0,0	10,4	2,4	12,8	0,52
Allophylus sp.			1	0,0	0,0	2,4	2,4	0,10
Alnus acuminata Kunth	5			25,0	0,0	0,0	25,0	1,01
				569,	101,			30,7
Baccharis latifolia (Ruiz & Pav.) Pers.	114	39	37	1	8	88,7	759,6	5
Barnadesia spinosa L.f.	11	8		54,9	20,9	0,0	75,8	3,07
Berberis hallii Hieron.	4	6		20,0	15,7	0,0	35,6	1,44
Byrsonima crassifolia (L.) Kunth	2		1	10,0	0,0	2,4	12,4	0,50
Escallonia paniculata (Ruiz & Pav.)								
Schult.		2	12	0,0	5,2	28,8	34,0	1,38
Euphorbia laurifolia Juss. ex Lam.	9	10	2	44,9	26,1	4,8	75,8	3,07
Furcraea cabuya Trel.	6			30,0	0,0	0,0	30,0	1,21
Hesperomeles obtusifolia (DC.) Lindl.		2	3	0,0	5,2	7,2	12,4	0,50
<i>Ilex</i> sp.	1	1		5,0	2,6	0,0	7,6	0,31
Lafoensia acuminata (Ruiz & Pav.) DC.	16	10	8	79,9	26,1	19,2	125,2	5,07
Lantana camara L.		1		0,0	2,6	0,0	2,6	0,11
Miconia sp1		8	8	0,0	20,9	19,2	40,1	1,62
				249,				13,5
Miconia versicolor Naudin.	50	18	16	6	47,0	38,4	335,0	6
Mimosa quitensis Benth.	7	3	3	34,9	7,8	7,2	50,0	2,02
				404,	120,	131,		26,5
Myrsine guianensis (Aubl.) Kuntze	81	46	55	4	1	9	656,3	7
Palicourea guianensis Aubl.	1			5,0	0,0	0,0	5,0	0,20
Prunus serotina Ehrh.	7	4	1	34,9	10,4	2,4	47,8	1,93
Tecoma stans (L.) Juss. ex Kunth	15	10	9	74,9	26,1	21,6	122,6	4,96
Weinmannia cochensis Hieron			1	0,0	0,0	2,4	2,4	0,10
Total por categoría	329	172	158					
valor fitosociológico por estrato %	49,9	26,1	24,0					
valor fitosociológico por simplificado	5	3	2					

Versión 1 – agosto de 2018.

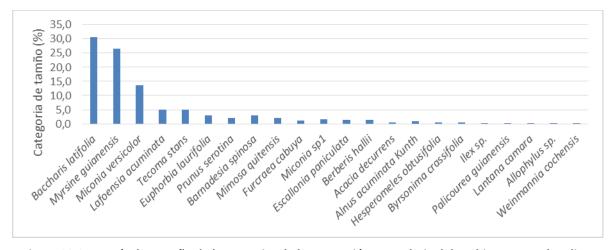


Figura 98 Categoría de tamaño de las especies de la vegetación secundaria del orobioma azonal andino Nudo de los Pastos

Fuente: INGETEC S.A., 2018

Índices de diversidad

A continuación, se presentan los indicadores de diversidad del ecosistema, calculados a partir de todos los individuos muestreados, considerando la variedad de especies y familias, su proporción y disposición en el terreno.

En los 17 muestreos se identificó un total de 18 familias, 22 especies y 659 individuos, lo que señala una diversificación media de la riqueza biológica del lugar, comparando con otras coberturas presentes en el área. Esto es razonable, teniendo en cuenta que se trata de una cobertura en una etapa muy temprana de su desarrollo, que además se encuentra rodeada por sistemas agropecuarios extensivos donde la dispersión de semillas necesita recorrer grandes distancias.

Calculado el índice de diversidad de Margalef se tiene que la vegetación secundaria baja presenta una diversidad baja (1,03), considerando que valores inferiores a 2 son indicativos de una diversidad pobre.

El índice de Shannon _H es de 1,17 (comprendido entre los valores normales de 1 a 5), una vez más evidencia un comportamiento del ecosistema en el que no hay una marcada diversidad biológica, ni un alto grado de homogeneidad.

El índice de diversidad de Simpson es de 0,63, mostrando una dominancia media-alta de las especies, es decir que al tomar dos individuos al azar existe una probabilidad media-alta de que sean de la misma especie.

Tabla 74 Índices de Diversidad de Vegetación secundaria baja del Orobioma Alto de los Andes.

Índice	Valor
Individuos promedio	38,76
por muestreo	38,70

Versión 1 – agosto de 2018.

Dominance_D	0,37
Simpson_1-D	0,63
Shannon_H	1,17
Margalef	1,03
Equitability_J	0,80

Fuente: INGETEC S.A., 2018

Orobioma Azonal Andino Patía

Caracterización florística de la Vegetación secundaria alta del Orobioma Azonal Andino Patía

En la caracterización de esta cobertura vegetal se realizaron siete (7) unidades muestréales (parcelas) siguiendo lo establecido en la metodología. Se registraron un total de 242 individuos de los cuales 85 son fustales, 64 latizales y 93 brinzales.

Composición florística de Vegetación Secundaria Alta del Orobioma Azonal Andino Patía

De acuerdo al muestreo realizado, esta cobertura en el área de influencia del proyecto se encuentra compuesta por 12 especies, correspondientes a 12 géneros y 12 familias botánicas como se puede apreciar en la Tabla 7575.

La composición florística del estrato fustal en esta unidad de cobertura vegetal para el área de influencia está conformada por siete (7) especies. En la regeneración natural (brinzales y latizales) la composición florística está representada por 11 especies distribuidas en 11 géneros y 11 familias.

En cuanto a la riqueza específica y genérica, en esta cobertura vegetal todas las familias están representadas por un género y una especie, en los tres estratos fustal, brinzal y latizal.

Tabla 75 Composición Florística de Vegetación Secundaria Alta en el Orobioma Medio de los Andes.

FAMILIA	ESPECIE	NOMBRE COMUN	Brinzal	Fustal	latizal	Total
ASTERACEAE	Baccharis latifolia (Ruiz & Pav.) Pers.	Chilca blanca	2			2
BETULACEAE	Alnus acuminata Kunth	Aliso	5			5
BIGNONACEAE	Tecoma stans (L.) Juss. ex Kunth	Quillotocto	20	4	7	31
EUPHORBIACEAE	Euphorbia laurifolia Juss. ex Lam.	Lechero	1	13	10	24
LEGUMINOSAE	Senna pistaciifolia (Kunth) H.S.Irwin & Barneby	Pichuelo		1		1
LYTHRACEAE	Lafoensia acuminata (Ruiz & Pav.) DC.	Guayacán	27	57	26	110
MALVACEAE	Sida glomerata Cav.	Ortigo			1	1
MELASTOMATACEAE	Miconia versicolor Naudin.	Morochillo	13		7	20

N BAJO EL ESQUEMA APP N° 15 DE 2015

Versión 1 – agosto de 2018.

UNIÓN DEL

FAMILIA	ESPECIE	NOMBRE COMUN	Brinzal	Fustal	latizal	Total
PIPERACEAE	Piper sp1	Cordoncillo	4	1	1	6
PRIMULACEAE	Myrsine guianensis (Aubl.) Kuntze	Cucharo	14	5	10	29
RUBIACEAE	Psychotria sp1	Cafetillo			1	1
SAPINDACEAE	Allophylus sp.	Caspirosario	7	4	1	12
	Total				64	242

Fuente: INGETEC S.A., 2018

- Índice de valor de importancia de fustales en Vegetación Secundaria Alta del Orobioma Azonal Andino Patía

Para determinar la composición de estructura horizontal de la cobertura se realizó la estimación de la Abundancia, Dominancia, Frecuencia e Índice de Valor de Importancia de las especies identificadas en las parcelas realizadas para la caracterización (Tabla **76**76).

En concordancia con lo anterior la especie con mayor peso ecológico dentro de la cobertura vegetal analizada es *Lafoensia acuminata* (guayacán) al presentar un IVI de 180,6%, seguida por las especies *Euphorbia laurifolia* (lechero) y *Myrsine guianensis* (Cucharo) con valores de IVI de 47,6 y 23,7% respectivamente (Ver **Figura 99**).

Tabla 76 Estructura Horizontal en la Vegetación Secundaria Alta del Orobioma Azonal Andino Patía

ESPECIE	Ab%	Frec%	Dom%	IVI
Allophylus sp.	4,7	9,5	2,4	16,6
Euphorbia laurifolia Juss. ex Lam.	15,3	23,8	8,5	47,6
Lafoensia acuminata (Ruiz & Pav.) DC.	67,1	33,3	80,2	180,6
Myrsine guianensis (Aubl.) Kuntze	5,9	14,3	3,6	23,7
Piper sp1	1,2	4,8	0,5	6,4
Senna pistaciifolia (Kunth) H.S.Irwin & Barneby	1,2	4,8	1,5	7,5
Tecoma stans (L.) Juss. ex Kunth	4,7	9,5	3,4	17,6
Total	100	100	100	300

Versión 1 – agosto de 2018.

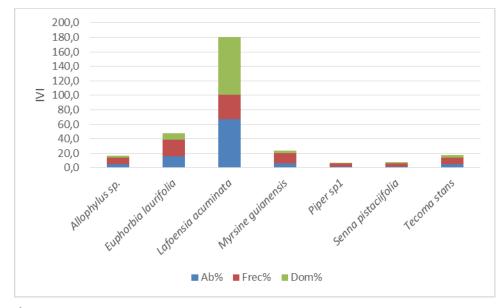


Figura 99 Índice De Valor De Importancia de Fustales en Vegetación Secundaria Alta del Orobioma Azonal Andino Patía

Fuente: INGETEC S.A., 2018

Abundancia

En la cobertura vegetal analizada la especie más abundante es *Lafoensia acuminata* (guayacán) con 57 individuos que representan el 67,1% del total de la muestra, seguida por las especies *Euphorbia laurifolia* (lechero) con 13 individuos registrados (15,3%) y *Myrsine guianensis* (Cucharo) con 5 individuos que corresponden al 5,9%.

Frecuencia

Las especies con mayor frecuencia en las parcelas realizadas son *Lafoensia acuminata* (guayacán) que apareció en la totalidad de las parcelas, *Euphorbia laurifolia* apareciendo en 5 parcelas y *Myrsine guianensis* en 3.

Dominancia

Con respecto a la dominancia, la especie con mayor aporte de área basal es *Lafoensia acuminata* (guayacán) con un porcentaje de 80,2%, seguida de las especies *Euphorbia laurifolia* (lechero) y *Myrsine guianensis* (cucharo) con valores de 8,5% y 3,6% respectivamente. Estas especies ocupan mayor área sobre el suelo, debido a que registraron mayor número de individuos.

Distribución en clases diamétricas.

Para la distribución de la clase diamétrica en la cobertura vegetal analizada, se clasificaron los fustales en categorías con una amplitud de clase de 3,2 cm. Como resultado se obtuvieron ocho (8) clases diamétricas que van de los 10,03 cm a los 35,65 cm de diámetro en las cuales se incluyeron los 85 fustales registrados (Figura 100).

Versión 1 – agosto de 2018.

Se observa que la mayoría de los fustales se agrupan en las primeras clases y no sobrepasan los 23cm de DAP, lo cual indica un comportamiento típico de coberturas vegetales en estados sucesionales jóvenes como lo son las vegetaciones secundarias.

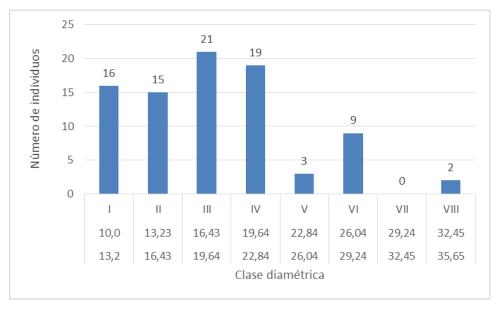


Figura 100 Distribución por clases diamétricas en Vegetación Secundaria Alta del Orobioma Azonal Andino Patía

Versión 1 – agosto de 2018.

Posición sociológica.

La cobertura vegetal analizada se dividió en 3 estratos: inferior, medio y superior donde la altura máxima registrada fue de 22 metros y la mínima de 4m. La especie fitosociológicamente dominantes en la estructura vertical es *Lafoensia acuminata* (guayacán) al presentar el valor más alto de posición sociológica 61,9% (Tabla 7777 y Figura 101), esto se debe a la presencia de la especie en los tres (3) estratos con altos valores de abundancia en los mismos, lo que le garantiza una posición sociológica ventajosa con relación al resto de especies, indicando que tiene un lugar asegurado en la estructura y composición florística de la cobertura.

Tabla 77 Posición Sociológica en Vegetación Secundaria Alta del Orobioma Medio de los Andes.

Nombre Científico	Nombre		dancia Estrato	por	Ps	Ps %
	Común	I	II	III	absoluta	
Allophylus sp.	Caspirosario	4	0	0	24	5,8%
Euphorbia laurifolia Juss. ex Lam.	Lechero	9	4	0	70	16,9%
Lafoensia acuminata (Ruiz & Pav.) DC.	Guayacán	25	25	7	257	61,9%
Myrsine guianensis (Aubl.) Kuntze	Cucharo	5	0	0	30	7,2%
Piper sp1	Cordoncillo	1	0	0	6	1,4%
Senna pistaciifolia (Kunth) H.S.Irwin & Barneby	Pichuelo	1	0	0	6	1,4%
Tecoma stans (L.) Juss. ex Kunth	Quillotocto	3	1	0	22	5,3%
Total general		48	30	7	415	100,0%

Figura 101 Posición Sociológica de los fustales de la Vegetación Secundaria Alta del Orobioma Azonal Andino Patía

Versión 1 – agosto de 2018.

Fuente: INGETEC S.A., 2018

El Estrato inferior con un rango de altura entre 4 y 9,4m, presentó la mayor abundancia con 48 individuos, seguido por el estrato medio con 30 individuos y, por último el superior con 7 individuos (ver **Figura 102**).

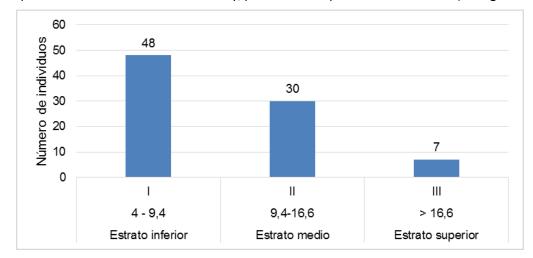


Figura 102 Estratificación arbórea de Vegetación Secundaria Alta del Orobioma Azonal Andino Patía

Fuente: INGETEC S.A., 2018

- Perfil de vegetación para la Vegetación Secundaria Alta del Orobioma Azonal Andino Patía

En el perfil de Vegetación Secundaria Baja del Orobioma Azonal Andino Patía (Figura 103) se aprecia diversidad de especies en diferentes estados de crecimiento, lo que permite observar los estratos en los que se encuentran los individuos que conforman esta cobertura y que las especies que las conforman son promisorias. Se registran especies de rápido crecimiento como el arbusto Chilca Blanca (Baccharis latifolia), y árboles de interés maderable como es Guayacan (Lafoensia acuminata).

Versión 1 – agosto de 2018.

Perfil de Vegetación - Vegetación Secundaria Alta del Orobioma Azonal Andino Patía

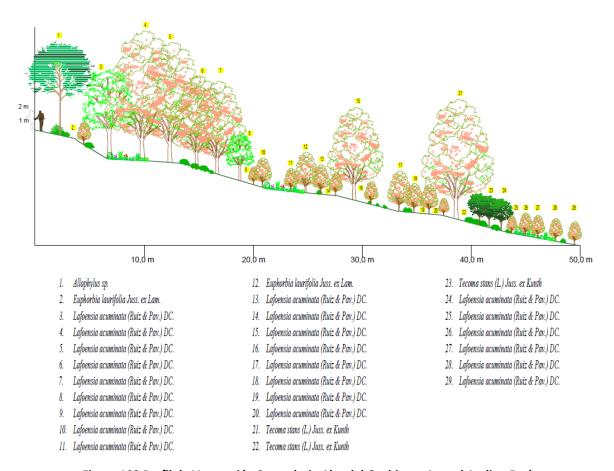


Figura 103 Perfil de Vegetación Secundaria Alta del Orobioma Azonal Andino Patía

Distribución de clases altimétricas

Para el análisis de la estructura vertical se distribuyeron los individuos muestreados en VIII clases altimétricas, cada una de ellas con una amplitud de 2,3 m, iniciando en 4m valor que corresponde a la altura más baja encontrada.

En la distribución altimétrica se observa que la mayoría de los individuos se concentran en las clases I, II y III, siendo la clase altimétrica II la más predominante, esta tendencia nos muestra que se trata de individuos relativamente jóvenes que aún no han alcanzado su máximo desarrollo; la atura máxima presentada es por la especie *Lafoensia acuminata* (guayacán), con 22m (**Figura 104**).

Versión 1 – agosto de 2018.

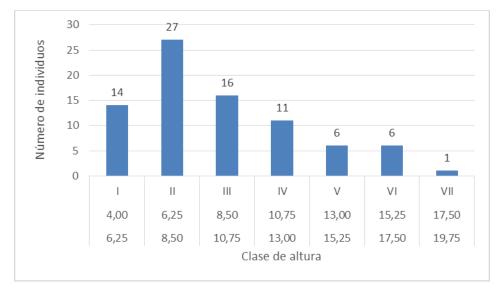


Figura 104 Distribución altimétrica de los fustales de Vegetación Secundaria Alta del Orobioma Azonal Andino Patía

Fuente: INGETEC S.A., 2018

Grado de sociabilidad

Para el ecosistema analizada las especies con mayor índice de sociabilidad fueron *Lafoensia acuminata* (814) y *Euphorbia laurifolia* (260), lo cual implica que son las especies con mayor grado de agregación en el ecosistema y esto se debe a que fueron las especies con mayor abundancia en el muestreo, como se puede apreciar en la Figura 105.

Versión 1 – agosto de 2018.

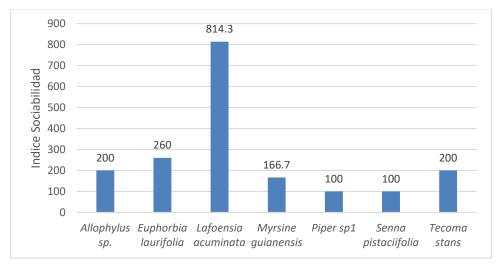


Figura 105 Grado de sociabilidad para la vegetación Secundaria Alta del Orobioma Azonal Andino Patía

- Índice de Regeneración Natural para la Vegetación Secundaria Alta del Orobioma Medio de los Andes.

La dinámica sucesional y de regeneración natural para el análisis de este ecosistema está conformado por 157 individuos, de los cuales 93 corresponden a la categoría de Brinzal y 64 a latizal.

El cálculo del índice de regeneración natural muestra que las especies de mayor incidencia en la dinámica sucesional de la regeneración corresponden a *Lafoensia acuminata* con el 30%, seguida por *Tecoma stans* con 17,34% y *Myrsine quianensis* con 13,74% (Tabla 7878 y Figura 106).

Tabla 78 Índice de regeneración natural en Vegetación Secundaria Alta del Orobioma Azonal Andino Patía

ESPECIE	Abu	Frec	Ab %	Frec %	Ct %	RN %
Allophylus sp.	8	1	5,1	4,0	5,2	4,77
Alnus acuminata Kunth	5	1	3,2	4,0	3,5	3,56
Baccharis latifolia (Ruiz & Pav.) Pers.	2	1	1,3	4,0	1,4	2,22
Euphorbia laurifolia Juss. ex Lam.	11	5	7,0	20,0	5,2	10,74
Lafoensia acuminata (Ruiz & Pav.) DC.	53	5	33,8	20,0	36,2	30,00
Miconia versicolor Naudin.	20	2	12,7	8,0	11,8	10,86
Myrsine guianensis (Aubl.) Kuntze	24	3	15,3	12,0	13,9	13,74
Piper sp1	5	1	3,2	4,0	3,1	3,44
Psychotria sp1	1	1	0,6	4,0	0,3	1,66
Sida glomerata Cav.	1	1	0,6	4,0	0,3	1,66
Tecoma stans (L.) Juss. ex Kunth	27	4	17,2	16,0	18,8	17,34
Total	157	25	100,0	100,0	100	100,00

Versión 1 – agosto de 2018.

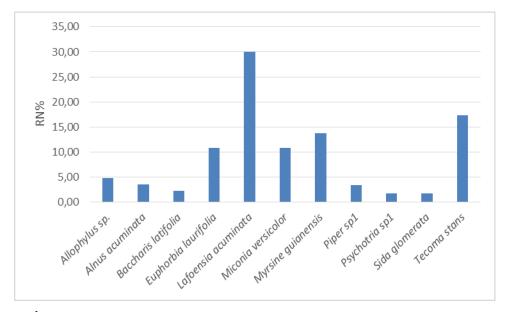


Figura 106 Índice de regeneración natural en Vegetación Secundaria Alta del Orobioma Azonal Andino Patía

Fuente: INGETEC S.A., 2018

Las especies más frecuentes en la regeneración natural son *Lafoensia acuminata* con 53 que representan el 33,8%, seguida por *Tecoma stans* con 27 individuos (17,2%) y *Myrsine guianensis* con 24 individuos (15,3%) (Figura 107).

Versión 1 – agosto de 2018.

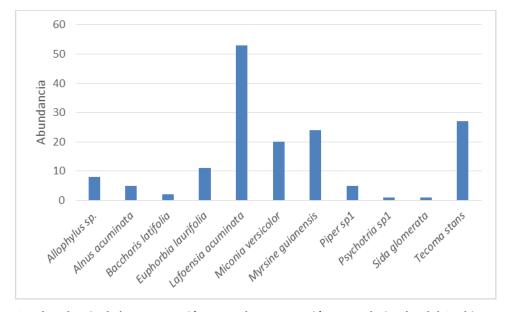


Figura 107 Abundancia de la regeneración natural en Vegetación Secundaria Alta del Orobioma Azonal Andino Patía

Fuente: INGETEC S.A., 2018

Por otra parte las especies más frecuentes son *Lafoensia acuminata y Euphorbia laurifolia* apareciendo en 5 de los 7 muestreos realizados, lo cual equivale a un 20% de frecuencia relativa. En tercer lugar aparece *Tecoma stans*, con presencia en 4 muestreos, es decir 16% de frecuencia relativa (Figura 100).

Versión 1 – agosto de 2018.

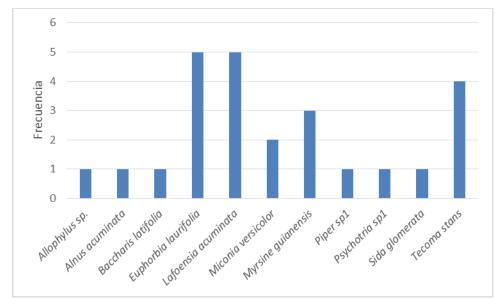


Figura 108 Frecuencia de la regeneración natural en Vegetación Secundaria Alta del Orobioma Azonal Andino Patía

Fuente: INGETEC S.A., 2018

- Diversidad Florística.

Para determinar los índices de diversidad se tuvo en cuenta todos los individuos muestreados dentro de la cobertura independientemente del estado de desarrollo fustal o regeneración natural, estos cálculos se presentan en la Tabla 7979.

Tabla 79 Índices de diversidad de la cobertura Vegetación Secundaria Alta del Orobioma Azonal Andino Patía

INDICE	VALOR
Especies promedio por parcela	4,29
Individuos promedio por parcela	34,57
Dominance_D	0,51
Simpson_1-D	0,49
Shannon_H	0,98
Margalef	0,89
Equitability_J	0,75

Versión 1 – agosto de 2018.

Con respecto al índice de riqueza en la cobertura vegetal analizada se registraron 12 especies para un número total de 242 individuos, con un promedio de 4,29 especies y 34,57 individuos por parcela.

El índice de diversidad de Margalef presentó un valor de 0,89, lo cual implica que la diversidad es baja, considerando que valores inferiores a dos son considerados como zonas de baja biodiversidad (en general resultado de efectos antropogénicos) y valores cercanos a cinco son indicativos de alta biodiversidad.

De igual forma el índice de Shannon muestra una baja diversidad (0,98), considerando que su valor máximo es cercano a 5, en ecosistemas con gran riqueza.

El índice de equidad de Pielou (J) tomó un valor de 0,75, lo cual indica que existe una alta equidad entre la abundancia de las especies, considerando que su valor máximo es de 1 que se presenta cuando todas las especies son igualmente abundantes.

En cuanto a la dominancia para este ecosistema se obtuvo un valor de 0,51, cuyo cálculo se relaciona a la dominancia empleando el índice de Simpson, se puede predecir que la probabilidad de que dos individuos seleccionados al azar sean de la misma especie es muy alta para este tipo de cobertura.

De esta manera, el índice de diversidad de Simpson presenta un valor medio (0,49), considerando que su valor oscila en el rango entre 0 y (1/1-s), donde S es el número de especies encontradas, de manera que el límite superior en este caso es 0,92.

Caracterización florística de la Vegetación secundaria baja del Orobioma Azonal Andino Patía

El ecosistema de vegetación secundaria baja del orobioma Azonal Andino Patía se levantaron 13 unidades de muestreo. Por el tipo de cobertura presente no se existen individuos en estado fustal, es decir que el muestreo consta de Latizales y brinzales, obteniendo 220 y 318 individuos respectivamente.

Es importante resaltar, que debido al tamaño de las unidades de muestreo realizadas para esta unidad de cobertura solo se tomó una coordenada, la del punto medio de cada parcela.

- Composición Florística

La vegetación secundaria baja del orobioma Azonal Andino Patía presentó una riqueza de 10 especies distribuidas en 10 géneros y 9 familias (Tabla 800).

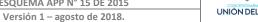

La familia con mayor riqueza específica fue Asteraceae con dos géneros y dos especies. Las familias restantes estas representadas por un solo género y una especie Figura 109.

Tabla 80 Composición florística de Vegetación secundaria baja del Orobioma Azonal Andino Patía

FAMILIA	ESPECIE	NOMBRE COMUN	ABUNDANCIA
---------	---------	-----------------	------------

ASPARAGACEAE	Furcraea cabuya Trel.	Fique	5
ASTERACEAE	Baccharis latifolia (Ruiz & Pav.) Pers.	Chilca blanca	121
ASTERACEAE	Barnadesia spinosa L.f.	Pilampo	33
BIGNONACEAE	Tecoma stans (L.) Juss. ex Kunth	Quillotocto	27
EUPHORBIACEAE	Euphorbia laurifolia Juss. ex Lam.	Lechero	9
LEGUMINOSAE	Mimosa quitensis Benth.	Guarango	24
LYTHRACEAE	Lafoensia acuminata (Ruiz & Pav.) DC.	Guayacán	43
MELASTOMATACEAE	Miconia versicolor Naudin.	Morochillo	115
MYRTACEAE	Psidium guajava L.	Guayabilla	6
PRIMULACEAE	Myrsine guianensis (Aubl.) Kuntze	Cucharo	155
		Total	538

Fuente: INGETEC S.A., 2018

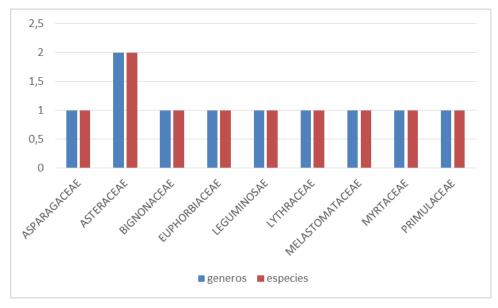


Figura 109 Riqueza de géneros y familias de la vegetación secundaria baja del Orobioma Azonal Andino Patía

Versión 1 – agosto de 2018.

- Regeneración natural en Vegetación secundaria baja del Orobioma Azonal Andino Patía

Por tratarse de una cobertura que cuenta con Latizales y brinzales únicamente, el análisis estructural del ecosistema tiene su base principalmente, en parámetros relacionados con el proceso de regeneración natural. En la Tabla 811 se resumen la abundancia, frecuencia, categoría de tamaño e índice de regeneración natural para las especies encontradas en la cobertura vegetación secundaria baja del Orobioma Azonal Andino Patía.

Tabla 81 Índice de regeneración natural- Vegetación secundaria baja del Orobioma Azonal Andino Patía

				Abun			
ESPECIE	NOMBRE COMUN	Abun	Frec	%	Frec %	Ct%	RN %
Baccharis latifolia (Ruiz & Pav.) Pers.	Chilca blanca	121	8	22,5	14,3	22,6	19,80
Barnadesia spinosa L.f.	Pilampo	33	4	6,1	7,1	6,3	6,54
Euphorbia laurifolia Juss. ex Lam.	Lechero	9	1	1,7	1,8	1,9	1,77
Furcraea cabuya Trel.	Fique	5	2	0,9	3,6	1,2	1,90
Lafoensia acuminata (Ruiz & Pav.) DC.	Guayacán	43	9	8,0	16,1	7,9	10,64
Miconia versicolor Naudin.	Morochillo	115	11	21,4	19,6	21,7	20,89
Mimosa quitensis Benth.	Guarango	24	4	4,5	7,1	4,7	5,42
Myrsine guianensis (Aubl.) Kuntze	Cucharo	155	12	28,8	21,4	27,4	25,87
Psidium guajava L.	Guayabilla	6	1	1,1	1,8	1,4	1,44
Tecoma stans (L.) Juss. ex Kunth	Quillotocto	27	4	5,0	7,1	5,0	5,72
Total		538	56	100,0	100,0	100,0	100,00

Fuente: INGETEC S.A., 2018

Abundancia

La especie más abundante fue *Myrsine guianensis* con una representatividad del 28,8%, seguida por *Baccharis latifolia* con 22,5 % y *Miconia versicolor* con 21,4%. Estas tres especies en conjunto agrupan el 72,7% de los individuos registrados (Figura 110).

Versión 1 – agosto de 2018.

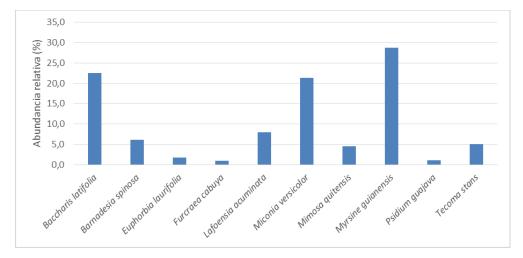


Figura 110 Abundancia relativa de las especies de Vegetación secundaria baja del orobioma Azonal Andino Patía

Fuente: INGETEC S.A., 2018

- Frecuencia

La especie más frecuente fue *Myrsine guianensis*, presentándose en 12 de los 13 muestreos; en segundo lugar aparece *Miconia versicolor* presentándose en 11 muestreos y en tercer lugar está *Lafoensia acuminata* presente en 9 parcelas (Figura 111).

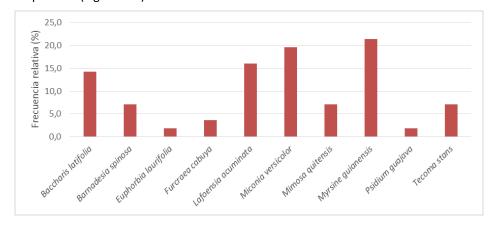


Figura 111 Frecuencia relativa de las especies de Vegetación secundaria baja del orobioma Azonal Andino Patía

Versión 1 – agosto de 2018.

- Índice de Regeneración natural

En cuanto al índice de regeneración natural la especie *Myrsine guianensis* posee el valor más alto (25,9%), siendo la de mayor importancia en el proceso de sucesión de la vegetación secundaria baja del orobioma Azonal andino Patía. Le siguen en importancia las especies *Miconia versicolor* con un índice de 20,9% y *Baccharis latifolia* con 19,8%. Estas tres especies tienen una alta influencia en la dinámica del ecosistema, ya que las tres suman el 66% de la regeneración natural.

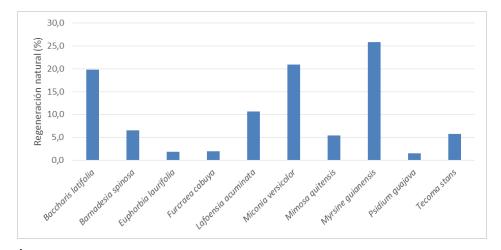


Figura 112 Índice de regeneración natural Vegetación secundaria baja del orobioma Azonal Andino Patía

Fuente: INGETEC S.A., 2018

- Clases diamétricas

Para la elaboración de la distribución por clase diamétrica, se clasificaron los latizales y brinzales en 11 clases diamétricas que van de 0,32 a 8,91 cm de diámetro en las cuales se incluyeron los 538 individuos registrados.

En la Figura 113 se consigna la distribución por clases diamétricas para esta cobertura. De acuerdo con la información encontrada, la mayor abundancia de individuos se concentra en la clase II, que corresponde al rango entre los 1,1 y 1,9 cm de DAP. El 84% de los individuos se registran en las primeras cuatro categorías de DAP, de este comportamiento se infiere que la regeneración natural presenta un estado de desarrollo temprano, en donde aparecen plántulas y renuevos de especies arbóreas. (Figura 113).

Versión 1 – agosto de 2018.

	litud del ervalo	Clase diamétrica
0,3	1,1	I
1,1	1,9	II
1,9	2,7	III
2,7	3,4	IV
3,4	4,2	V
4,2	5,0	VI
5,0	5,8	VII
5,8	6,6	VIII
6,6	7,4	IX
7,4	8,1	Х
8,1	8,9	XI

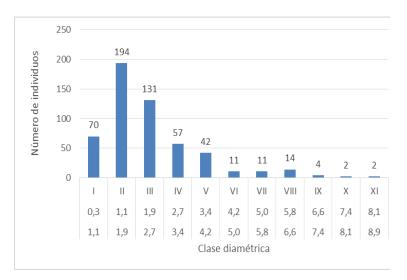


Figura 113 Distribución por clase diamétrica de la Vegetación secundaria baja del orobioma Azonal Andino Patía

Fuente: INGETEC, 2018.

- Distribución diamétrica

Para la elaboración de la distribución por clase de altura, se clasificaron los latizales y brinzales en 11 clases que van de 0,3 a 8 m de altura en las cuales se incluyeron los 538 individuos registrados.

En la Figura 114 se pueden observar los valores de abundancia de individuos para las categorías de tamaño presentes. De acuerdo con la información encontrada las clases con mayor abundancia fueron la clase I con el 45,2% de los individuos y la clase II con el 15,4%. Por lo tanto el 60,6% de los individuos no sobrepasan 1,7m de altura. Es importante anotar que a medida que aumenta el rango de altura, la abundancia de individuos decrece, de modo que en los estratos X y XI solo se presentan un individuo cada uno. Esto indica que la zona estuvo sometida a un alto grado de intervención humana, del cual empieza a recuperarse (Figura 114).

ESQUEMA APP N° 15 DE 2015

Versión 1 – agosto de 2018.

Amplit inter		Clase diamétrica
0,3	1,0	Ţ
1,0	1,7	II
1,7	2,4	III
2,4	3,1	IV
3,1	3,8	V
3,8	4,5	VI
4,5	5,2	VII
5,2	5,9	VIII
5,9	6,6	IX
6,6	7,3	Х
7,3	8,0	ΧI

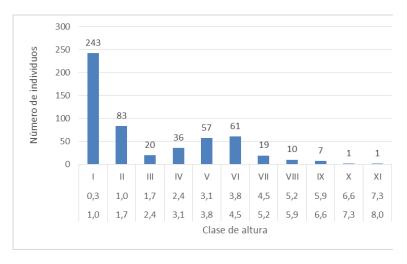


Figura 114 Distribución por clases de altura en la vegetación secundaria baja del orobioma Azonal Andino Patía

Fuente: INGETEC S.A., 2018

En el análisis de la estructura vertical efectuado para el presente ecosistema se tuvo en cuenta la categoría de tamaño de la regeneración natural (posición sociológica) por especie y la estratificación vertical, variables relacionadas con el arreglo de las especies y el consecuente aprovechamiento de luz solar y desarrollo vegetativo de los individuos.

- Categoría de tamaño en la regeneración natural (Posición sociológica)

Con el fin de conocer el dominio aéreo de las especies se determinó la categoría de tamaño de las mismas. La especie *Myrsine guianensis* obtuvo el mayor porcentaje con 27,4%, seguida por *Baccharis latifolia* con 22,6% y *Miconia versicolor* con el 21,7%, acorde con el índice de regeneración natural (Tabla 822 y Figura 115).

Tabla 82 Categoría de tamaño de las especies de Regeneración Natural

Especie	Abundan	cia por Cat tamaño	egoría de	Ct Abs	Ct%
·	I	II	Ш		
Baccharis latifolia (Ruiz & Pav.) Pers.	31	34	56	475,0	22,62
Barnadesia spinosa L.f.	0	16	17	133,0	6,33
Euphorbia laurifolia Juss. ex Lam.	3	0	6	39,0	1,86
Furcraea cabuya Trel.	0	0	5	25,0	1,19

Versión 1 – agosto de 2018.

Lafoensia acuminata (Ruiz & Pav.) DC.	15	10	18	165,0	7,86
DC.	13	10	10	105,0	7,00
Miconia versicolor Naudin.	35	25	55	455,0	21,67
Mimosa quitensis Benth.	7	4	13	98,0	4,67
Myrsine guianensis (Aubl.) Kuntze	56	44	55	575,0	27,38
Psidium guajava L.	0	0	6	30,0	1,43
Tecoma stans (L.) Juss. ex Kunth	9	6	12	105,0	5,00
Total por categoria	156	139	243		
valor fitosociológico por estrato %	29,0	25,8	45,2		
valor fitosociológico por simplificado	3	3	5		
Total	538			2100,0	100,00

Fuente: INGETEC S.A., 2018

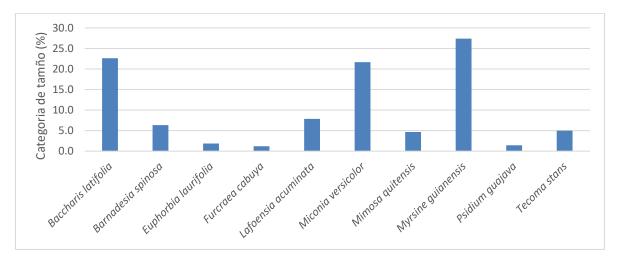


Figura 115 Categoría de tamaño de las especies de la vegetación secundaria baja del orobioma azonal andino Patía

Fuente: INGETEC S.A., 2018

Perfil de vegetación para

De acuerdo al perfil de vegetación obtenido para cobertura Vegetación Secundaria Alta del Orobioma Azonal Andino Patía (Figura 116) se observa una estratificación clara, donde la especie dominante según el muestreo realizado es Guayacan (*Lafoensia acuminata*) la cual en su mayoría está representada por individuos menores a los 6 metros de altura, y brinzales lo que la hace la especie forestal más promisoria ya que su población

Versión 1 – agosto de 2018.

presenta diferentes estados de crecimiento. Se distingue una distribución heterogénea entre las alturas de todas las especies registradas.

Perfil de Vegetación - Vegetación Secundaria Baja del Orobioma Azonal Andino Patía

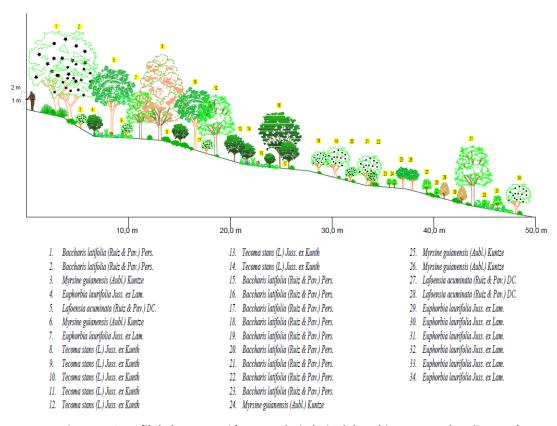


Figura 116 Perfil de la Vegetación secundaria baja del orobioma azonal andino Patía

Índices de diversidad

A continuación, se presentan los indicadores de diversidad del ecosistema, calculados a partir de todos los individuos muestreados, considerando la variedad de especies y familias, su proporción y disposición en el terreno (Tabla 833).

Para la riqueza, durante los 13 muestreos se identificó un total de 9 familias, 10 géneros y 10 especies, con una abundancia total de 538 individuos, con un promedio de 4,31 especies y 41,38 individuos por parcela.

Versión 1 – agosto de 2018.

Estos valores son menores que en otras coberturas con mayor grado de conservación, lo cual es coherente teniendo en cuenta que se trata de una cobertura en una etapa muy temprana de desarrollo.

El índice de diversidad de Margalef presentó un valor de 0,91, lo cual implica que la diversidad es baja, considerando que valores inferiores a dos son considerados como zonas de baja biodiversidad (en general resultado de efectos antropogénicos) y valores cercanos a cinco son indicativos de alta biodiversidad.

De igual forma el índice de Shannon muestra una baja diversidad (1,25), considerando que su valor máximo es cercano a 5, en ecosistemas con gran riqueza.

El índice de equidad de Pielou (J) tomó un valor de 0,86, lo cual indica que existe una alta equidad entre la abundancia de las especies, considerando que su valor máximo es de 1 que se presenta cuando todas las especies son igualmente abundantes.

Para este ecosistema se obtuvo un valor de dominancia bajo (0,33) y el índice de diversidad de Simpson presenta un valor alto (0,67), considerando que su valor oscila en el rango entre 0 y (1-1/s), donde S es el número de especies encontradas, de manera que el límite superior en este caso es 0,9. Es decir que al tomar dos individuos al azar existe una probabilidad baja de que sean de la misma especie.

Tabla 83 Índices de Diversidad de Vegetación secundaria baja del Orobioma Azonal Andino Patía

Índice	Valor
Especies promedio por	4,31
muestreo	,-
Individuos promedio por	41,38
muestreo	41,36
Dominance_D	0,33
Simpson_1-D	0,67
Shannon_H	1,25
Margalef	0,91
Equitability_J	0,86

Fuente: INGETEC S.A., 2018

Orobioma Azonal Subandino Patía

Caracterización florística de la Vegetación secundaria alta del Orobioma Azonal Subandino Patía

- Composición florística de vegetación secundaria alta del Orobioma Azonal Subandino Patía.

Para la cobertura de Vegetación Secundaria alta en el Orobioma Azonal Subandino Patia, de acuerdo con la información levantada en los muestreos realizados en el área de interés se evidencia la presencia de 48 individuos distribuidos en 9 especies, 9 Géneros y 9 Familias botánicas.

Versión 1 – agosto de 2018.

En la **Error! Reference source not found.**89 se presenta la composición florística reportada para la vegetación secundaria alta, donde las especies *Tecoma stans* (L.) Juss. ex Kunth y *Salix humboldtti* presentan la mayor abundancia con 9 individuos cada una, seguido de *Ficus citrifolia* y *Allophylus* con 8 individuos cada especie.

Tabla 84. Composición Florística de Vegetación Secundaria Alta en el Orobioma Azonal Subandino Patía.

FAMILIA	ESPECIE SIN AUTOR	N_COMUN	N° INDIVIDUOS		
BETULACEAE	Alnus acuminata Kunth	Aliso	1		
BIGNONACEAE	Tecoma stans (L.) Juss. ex Kunth	Quillotocto	9		
JUGLANDACEAE	Juglans neotropica Diels.	Nogal	2		
LYTHRACEAE	Lafoensia acuminata (Ruiz & Pav.) DC.	Guayacán	7		
MORACEAE	Ficus citrifolia	Higuerón	8		
ROSACEAE	Prunus serotina Ehrh.	Capulí	1		
RUBIACEAE	<i>Palicourea</i> sp	Majua	3		
SALICACEAE	Salix humboldtiana	Sauce	9		
SAPINDACEAE	Allophylus sp.	Caspirosario	8		
	TOTAL				

Fuente: INGETEC S.A., 2018

En la siguiente figura se presenta la distribución de géneros y especies por familia encontrando que para todas las familias solo se registró 1 género y una especie.

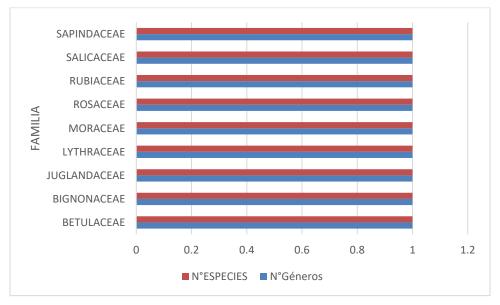


Figura 117 Distribución de géneros y especies por familia en Vegetación Secundaria Alta del Orobioma Azonal Subandino Patía

Versión 1 – agosto de 2018.

- Índice de valor de importancia IVI (Abundancia, Frecuencia y Dominancia) para la Vegetación Secundaria Alta del Orobioma Azonal Subandino Patía

El Índice de Valor de Importancia (IVI) de las especies indica que la especie con mayor peso ecológico dentro de la cobertura analizada corresponde a *Salix humboltii* (Sauce) al presentar un IVI de 47,68%; seguida por las especies *Tecoma stans* (L.) Juss. ex Kunth (Quillotocto) y *Lafoensia acuminata* (Ruiz & Pav.) DC. (Guayacán) con valores de IVI de 36,62% y 30,34% respectivamente (Ver Tabla 85)

Tabla 85. Índice de Valor de Importancia (IVI) en Vegetación Secundaria Alta del Orobioma Azonal Subandino Patía.

ESPECIE	Ab	AB. Relativa %	Do	Do. Relativa %	IVI %
Allophylus sp.	8	16,67	0,082	12,87	29,53
Alnus acuminata Kunth	1	2,08	0,009	1,37	3,45
Ficus citrifolia Mill.	8	16,67	0,071	11,21	27,87
Juglans neotropica Diels.	2	4,17	0,019	3,07	7,24
Lafoensia acuminata (Ruiz & Pav.) DC. (Ruiz & Pav.) DC.	7	14,58	0,100	15,76	30,34
Palicourea sp	3	6,25	0,045	7,02	13,27
Prunus serotina Ehrh.	1	2,08	0,012	1,91	3,99
Salix humboltii	9	18,75	0,184	28,93	47,68
Tecoma stans (L.) Juss. ex Kunth (L.) Juss. ex Kunth	9	18,75	0,113	17,87	36,62
TOTAL GENERAL	48	100	0,635	100	200,00

Fuente: INGETEC S.A., 2018.

Versión 1 – agosto de 2018.

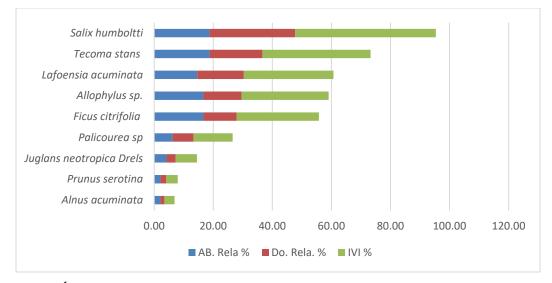


Figura 118Índice de Valor de Importancia (IVI) en Vegetación Secundaria Alta del Orobioma Azonal Subandino Patía.

Fuente: INGETEC S.A., 2018.

En la cobertura vegetal analizada el mayor valor de abundancia relativa está representado por las especies *Salix humboltii* (Sauce) con 9 individuos (18,75%) y *Tecoma stans* (L.) Juss. ex Kunth (Quillotocto) con 9 individuos (18,75%), seguida por la especie *Ficus citrifolia* (Higuerón) con 8 especies al presentar un valor de frecuencia relativa de 16,67%. (**Figura 1**)

Con respecto a la dominancia la especie con mayor aporte de área basal es *Salix humboltii* (Sauce) con un porcentaje de 28,93%, seguida de las especies *Tecoma stans* (L.) Juss. ex Kunth (Quillotocto), *Lafoensia acuminata* (Ruiz & Pav.) DC. (Guayacán) y *Allophylus sp.* (Caspirosario) con valores de 17,87%, 15,76% y 12,87% respectivamente. Estas especies son las ocupan mayor área sobre el suelo y registran el mayor número de individuos (**Tabla 85**).

- Posición sociológica

En el ecosistema vegetación secundaria alta del Orobima Azonal Subandino Patía , la Posición sociología se determinó para el estrato fustal, puesto que se realizó un inventario al 100%; en consecuencia con lo anterior el resultado obtenido muestra que la especie *Tecoma stans* (L.) Juss. ex Kunth es la que mayor índice de PS reportó con un valor re 19,14%, lo que significa que esta garantiza su permanencia en el estrato y es consecuente con la abundancia de la misma en la cobertura puesto que fue una de las especies con mayor número de individuos dentro del ecosistema; muy seguidamente se encuentran *Salix humboltii*, *Ficus citrifolia* y *Allophylus sp.* Con valores de 17,06 y 17,01 respectivamente.

Versión 1 – agosto de 2018.

Tabla.86 Porcentaje de Posición sociológica por especies en Vegetación secundaria alta del Orobioma Azonal Subandino Patía

Especie	PS	PS%
Allophylus sp.	78,33	17,01
Alnus acuminata Kunth	9,79	2,13
Ficus citrifolia	78,33	17,01
Juglans neotropica Diels.	19,58	4,25
Lafoensia acuminata (Ruiz & Pav.) DC.	68,54	14,89
Palicourea sp	29,38	6,38
Prunus serotina Ehrh.	9,79	2,13
Salix humboltii	78,54	17,06
Tecoma stans (L.) Juss. ex Kunth	88,13	19,14
Total	460,42	100,00

Fuente: INGETEC S.A., 2018



Figura 119 Índice de Posición sociológica por especie en Vegetación secundaria alta del Orobioma Azonal Subandino Patía.

Fuente: INGETEC S.A., 2018

- Perfil de vegetación para la Vegetación Secundaria Alta del Orobioma Azonal Subandino Patía

Para este ecosistema como lo indica el análisis de posición sociológica predominan las especies de porte bajo con alturas menores a los 8 metros. Por lo general en esta vegetación se observan individuos juveniles con y especies de rápido crecimiento que dan paso al establecimiento de especies de una vegetación madura o en un estado sucesional superior. Dentro de las especies que se destacan en el ecosistema se encuentran Salix humboldtii, Alophyllus sp. y Lafoensia acuminata, esta última especie es propia de procesos de restauración ecológica por lo que es posible inferir que existió un alto disturbio durante un periodo de tiempo significativo,

Versión 1 – agosto de 2018.

en el que luego se implementaron actividades de restauración que han dado a una vegetación estructurada (Error! Reference source not found.).

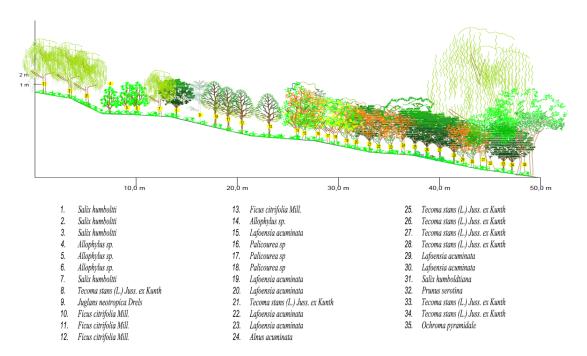


Figura 120 Perfil de vegetación Secundaria Alta del Orobioma Azonal Subandino Patía

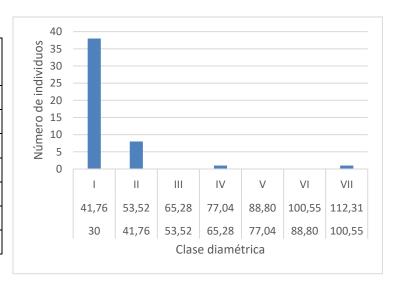
Fuente: INGETEC S.A., 2018

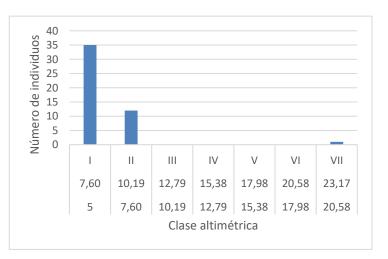
Clase diamétrica

En el análisis de la distribución por clase diamétrica para este ecosistema se clasificaron los fustales en siete (7) clases que van desde los 30 a los 112,31 cm de diámetro, en los cuales se incluyeron los 48 individuos registrados para el análisis de esta cobertura. La información obtenida nos muestra que los individuos el mayor número de individuos (38) se agrupan en la clase I es decir que tienen diámetros entre los 30 y 41,76 cm, lo cual permite inferir que el ecosistema está representado por individuos jóvenes, con especies de rápido crecimiento y adaptadas a las condiciones edafoclimáticas del sector, que bajo condiciones normales y sin la intervención antrópica podría continuar con su estado sucesional (Ver Figura 121).

Versión 1 – agosto de 2018.

Amplitud d	Clase diamétrica	
30	41,76	I
41,76	53,52	П
53,52	65,28	III
65,28	77,04	IV
77,04	88,80	V
88,80	100,55	VI
100,55	112,31	VII




Figura 121 Distribución por clase diamétrica en Vegetación secundaria alta del Orobioma Azonal Subandino Patía.

Fuente: INGETEC S.A., 2018

Clase altimétrica

Para el análisis de la estructura vertical de la cobertura analizada se distribuyeron los individuos muestreados en VII clases altimétricas, cada una de ellas con una amplitud de 4m iniciando en 2,60 m. En la distribución altimétrica se observa que el 97,92% de los individuos se concentran en las clases I y II, siendo la clase altimétrica I predominante, con una abundancia de 35 individuos (72,92%). Esta tendencia nos muestra que se trata de individuos relativamente jóvenes que aún no han alcanzado su máximo desarrollo; la atura máxima presentada es por la especie Salix humbolditana (Sauce), con 22m (Ver Figura 122)

Amplitud d	Clase altimétrica	
5	7,60	1
7,60	10,19	Ш
10,19	12,79	III
12,79	15,38	IV
15,38	17,98	V
17,98	20,58	VI
20,58	23,17	VII

Versión 1 – agosto de 2018.

Figura 122 Distribución por clase altimétrica en Vegetación secundaria alta del Orobioma Azonal subandino Patía

Fuente: INGETEC S.A., 2018

Índices de Diversidad

Para determinar los índices de diversidad se tuvo en cuenta todos los individuos registrados en las unidades muestreales realizadas para esta cobertura, arrojando los resultados que se observan en la Tabla 87.

A nivel de riqueza en la cobertura vegetal analizada se registraron 9 especies para un número total de 48 individuos. Con relación a la diversidad alfa, el l índice de diversidad de Margalef presentó un valor de 2,067, lo cual implica que la diversidad es media, considerando que valores inferiores a dos son considerados como zonas de baja biodiversidad (en general resultado de efectos antropogénicos) y valores cercanos a cinco son indicativos de alta biodiversidad.

De igual forma el índice de Shannon muestra una diversidad baja (1,973), considerando que su valor máximo es cercano a 5, en ecosistemas con gran riqueza.

En cuanto a la dominancia, para este ecosistema se obtuvo un valor de 0,15, cuyo cálculo se relaciona a la dominancia empleando el índice de Simpson, se puede predecir que la probabilidad de que dos individuos seleccionados al azar sean de la misma especie es baja para este tipo de cobertura.

De esta manera, el índice de diversidad de Simpson presenta un valor alto (0,85), considerando que su valor oscila en el rango entre 0 y (1-1/s), donde S es el número de especies encontradas, de manera que el límite superior en este caso es 0,9.

Tabla 87 Índices de diversidad para la cobertura Vegetación secundaria alta del Orobioma Azonal Subandino Patía

Estimador	Resultado
N° especies	9
N° individuos	48
Dominance_D	0,1536
Simpson_1-D	0,8464
Shannon_H	1,973
Evenness_e^H/S	0,799
Brillouin	1,726
Menhinick	1,299
Margalef	2,067
Equitability_J	0,8978

Fuente: INGETEC S.A., 2018

Caracterización florística de la Vegetación secundaria baja del Orobioma Azonal Subandino Patía

Versión 1 – agosto de 2018.

En el ecosistema vegetación secundaria baja del Orobioma Azonal Subandino Patía se relalizaron 18 unidades muestreales, obeteniendo 116 individuoes en total que corresponden a especies arbóreas en estado Latizal y Brinzal.

Este ecosistema cuenta con un área de 26,53 ha que representa el 0,66% del área de influencia total proyecto.

- Composicion Florística

La Vegetación secundaria baja del Orobioma Azonal Subandino Patía se encuentra representada por 5 especies distribuidas en 5 géneros y 5 familias botánicas, lo que permite inferir que no hay representatividad de ninguna de las familias y géneros identificados (Ver Figura 5.123).

Tabla 5.88 Composición florística de la Vegetación secundaria baja del Orobioma Azona Subandino Patía

Familia	Familia Especie		N° Individuos		
ASTERACEAE	Baccharis latifolia (Ruiz & Pav.) Pers.	Chilca blanca	5		
BIGNONACEAE	Tecoma stans (L.) Juss. ex Kunth	Quillotocto	31		
EUPHORBIACEAE	Ricinus communis L.	Higuerilla	39		
LEGUMINOSAE	Leucaena leucocephala (Lam.) de Wit	Leucaena	29		
LYTHRACEAE Lafoensia acuminata (Ruiz & Pav.) DC.		Guayacán	14		
	Total				

Fuente: INGETEC S.A., 2018

Versión 1 – agosto de 2018.

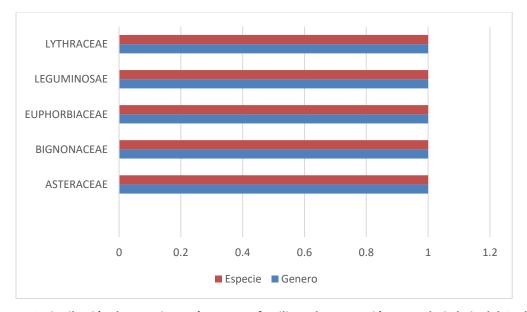


Figura 5.123 Distribución de especies y géneros por familia en la Vegetación secundaria baja del Orobioma Azonal Subandino Patía

Fuente: INGETEC S.A., 2018

Regeneración natural en Vegetación secundaria baja del Orobioma Azonal Subandino Patía

En este ecosistema por tratarse de una cobertura represntada por individuos en estado Latizal y brinzal, el análisis estructural del mismo tiene su base principal en parámetros relacionadoscon el proceso de regeneración natural. En la Tabla 5.89 se presenta la abundancia, frecuencia, categoría de tamaño y la suma de estos nos permite determinar el índices de regeneración natural, para las especies encontradas en el ecosistema analizado.

Tabla 5.89 Abundancia, Frecuencia, Categoria de tamaño relativas e Índice de regeneración natural (Rn%) por especie en la Vegetación secundaria baja del Orobioma Azonal Subandino Patía

Nombre Científico	Frecuencia Relativa	Abundancia Relativa	Ct%	Rn
Baccharis latifolia (Ruiz & Pav.) Pers.	7,41	4,31	3,99	15,71
Lafoensia acuminata (Ruiz & Pav.) DC.	7,41	12,07	13,60	33,08
Leucaena leucocephala (Lam.) de Wit	18,52	25,00	25,18	68,70
Ricinus communis L.	33,62	37,04	33,19	103,85
Tecoma stans (L.) Juss. ex Kunth	29,63	25,00	24,04	78,67
Total	100	100	100	300

Fuente: INGETEC S.A., 2018

Abundancia

Versión 1 – agosto de 2018.

La especie mas abundante fue *Ricinus communis* L. con una representatividad del 37,04%, seguida por *Leucaena leucocephala* (Lam.) de Wit y *Tecoma stans* (L.) Juss. ex Kunth con 25%; estas tres especies en conjunto agrupan 87,04% del total de individuos registrados (Ver Figura 5.124)

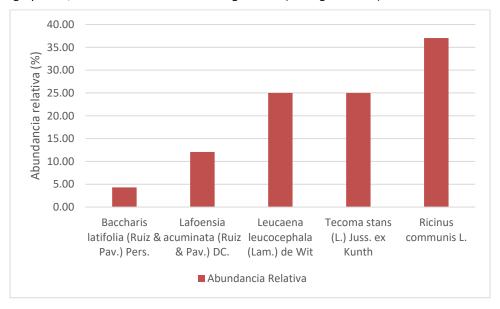


Figura 5.124 Abundancia relativa de las especies de Vegetación secundaria baja del Orobioma Azonal Subandino Patía.

Fuente: INGETEC S.A., 2018

Frecuencia

La especie con mayor presencia en las unidades muestreales fue Ricinus communis L. encontrándose en 10 de las 18 parcelas realizadas; en segundo lugar encontramos Tecoma stans (L.) Juss. ex Kunth presentándose en muestreos.

Versión 1 – agosto de 2018.

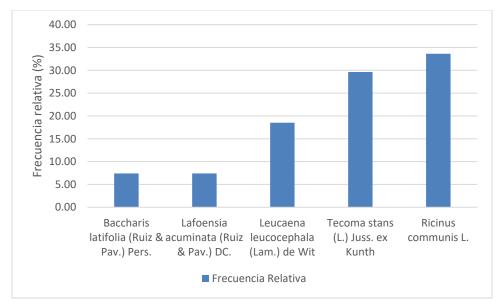


Figura 5.125 Frecuencia relativa de las especies de Vegetación secundaria baja del Orobioma Azonal Subandino Patía

Fuente: INGETEC S.A., 2018

Indice de Regeneración Natural (Rn)

La especie con el valor mas alto del índice de regeneración natural es *Ricinus communis* L., al presentar un Rn de 103,85, esto se debe a la alta presencia de la misma en las parcelas y al ser la especie con mayor aporte de indivivios, presentando valores de frecuencia relativa y abundancia relativa de 33,62 y 37,04% respectivamente (Ver Figura 5.126).

Versión 1 – agosto de 2018.

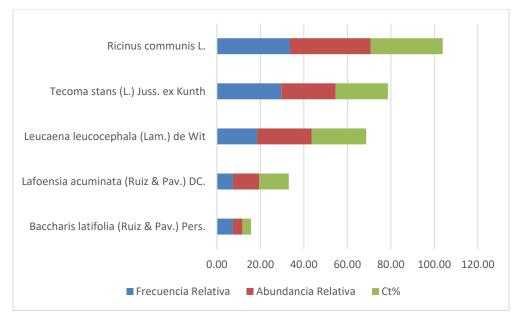


Figura 5.126 Abundancia, Frecuencia y Categoría de tamaño relativo por especie en la vegetación secundaria baja del Orobioma Azonal Subandino Patía

Fuente: INGETEC S.A., 2018

- Posición sociológica

Con el fin de conoce el dominio aéreo de las especies presenters en el ecosistema se determinó la posición sociológica a travez de la categoría de tamaño; los resultados obtenidos muestran que especie *Ricinus communis* L., con 33,19% seguida po Leucaena leucocephala (Lam.) de Wit., con 25,10 y *Tecoma stans* (L.) Juss. ex Kunth. Con el 24,04% (Ver Tabla 5.90); situación acorde a la registrada en el índice de regeneración natural).

Tabla 5.90 Posición sociológica por especie, Abundancia y Frecuencia de la Vegetación secundaria baja del Orobioma Azonal Subandino Patía

Especie	-	н	III	Categoria de Tamaño Absoluta	Ct%
Baccharis latifolia (Ruiz & Pav.) Pers.	0	5	0	20,26	3,99
Lafoensia acuminata (Ruiz & Pav.) DC.	0	3	11	69,05	13,60
Leucaena leucocephala (Lam.) de Wit	3	8	18	127,84	25,18
Ricinus communis L.	5	10	24	168,53	33,19
Tecoma stans (L.) Juss. ex Kunth	1	21	7	122,07	24,04
Total	9	47	60	116	100,00

Fuente: INGETEC S.A., 2018

Versión 1 – agosto de 2018.

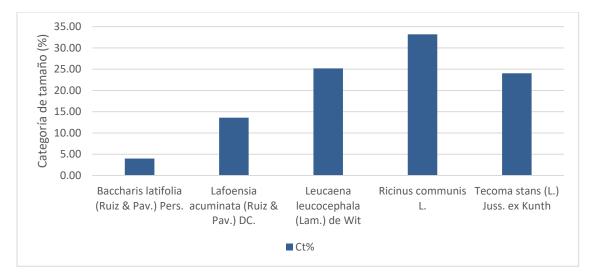
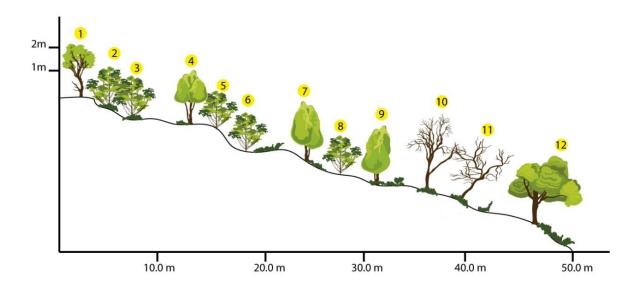


Figura 5.127 Categoría de tamaño de las especies de la Vegetación secundaria baja del Orobioma Azonal Subandino Patía.

Fuente: INGETEC S.A., 2018

- Perfil de vegetación

Este ecosistema presenta un estado de transición entre vegetación secundaria baja y alta; la reducción de esta cobertura esta relacionado con la intensidad de intervención de la misma, por efecto del avance de la frontera agrícola. En este caso en particular se obsercva que las especies de porte bajo son las que predominan como lo es *Ricinus communis* L., las cuales presentan una gran adaptabilidad a las condiciones edafoclimaticas de la zona , que le ha permitido sobrevivir y expandirse con facilida; sin embargo a medida que aumentan la altura de las especis disminuye el numero de las misma presentándose una relación invers entre la abundancia y la altura de las mismas. Al igual que la posiscion sociológia en el perfil de vegetación se ratifica que las especies que predominan en este ecosistema son *Ricinus communis* L., *Leucaena leucocephala* (Lam.) de Wit., y *Tecoma stans* (L.) Juss. ex Kunth (Ver Figura 5.128).



Versión 1 – agosto de 2018.

Perfil de vegetacion -Vegetacion secundaria baja del Orobioma Azonal Subandino Patia

- 1. Bacchatis letifola (Ruiz 8 Pay) Pers
- 2. Ricinus Communis L.
- 3. Ricinus Communis L.
- 4. Tecoma Stans (L) Jus ex kunth.
- 5. Ricinus Comunis L.
- 6. Ricinus Comunis L.

- 7. Lafoensia acuminato (Ruiz 8 Pav) DC
- 8. Ricinus Comunis L.
- 9. Tecoma Stans (L) Jus . ex kunth
- 10. Leucaena leucocephala (Lam) de Wit
- 11. Leucaena leucocephala (Lam) de Wit
- 12. Bacchails latifolia (Ruiz 8 Pay) Pers

Figura 5.128 Perfil de vegetación secundaria baja del Orobioma Azonal Subandino Patía

Fuente: INGETEC S.A., 2018

Clases diamétricas

Para la elaboración de la distribución por clase diamétrica, se clasificaron los latizales y brinzales en ocho (8) clases diamétricas que van dede 0,63 a 10,14 cm de diámetro en los cuales se incluyeron los 116 individuos registrados par este ecosistema. En la Figura 5.129 se puesde apreciar la distribución por clases diamétricas para este ecosistema; en consecuencia con la informacion obtenida la clase donde hay mayor abundancia se concentra en la clase I con individuos con diámetros entre 0,63 y 1,85,seguida por la Clase II (1,85 – 3,07) y III (3,07-4,30); de este comportamiento se infiere que la regeneración natural presenta un estado de desarrollo temprano, en donde aparecen plántulas y renuevos de especies arbóreas.

Versión 1 – agosto de 2018.

Amplit inter	ud del valo	Clase diamétrica
0,63	1,85	I
1,85	3,07	11
3,07	4,30	III
4,30	5,25	IV
5,25	6,48	V
6,48	7,70	VI
7,70	8,92	VII
8,92	10,14	VIII

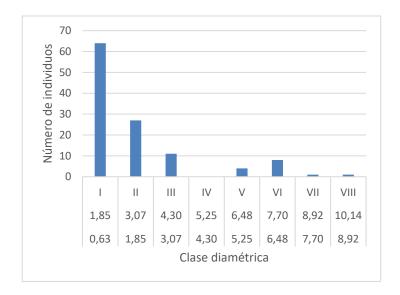


Figura 5.129 Distribución por clase diamétrica de la Vegetación secundaria baja del Orobioma Azonal Subandino Patía

Fuente: INGETEC, 2018.

- Distribución altimétrica

Para la elaboración de la distribución por clse altimétrica, los inidviduos registrados en este ecosistemas se clasificaron en ocho (8) clases que van desde 0,2m a 6,14m de altura en las cuales se incluyeron los 116 individuos registrados.

En la Figura 5.130 se puede apreciar los valores de abundancia de individuos para la s categorías de tamaño presentes. De acuerdo con la informacion obtenida, las clases con mayor abundancia fuero la clase I con el 30,17%, la clase II con 19,83%, la clase III con 27,54 y la clase 4 con 17,24,; por lo tanto el 95,36% del total de los individuos registrados no superan los 3,17m de altura.

Versión 1 – agosto de 2018.

Amplit	ud del	Clase
inter	valo	altimétrica
0,2	0,94	I
0,94	1,68	II
1,68	2,43	III
2,43	3,17	IV
3,17	3,91	V
3,91	4,65	VI
4,65	5,40	VII
5.40	6.14	VIII



Figura 5.130 Distribución por clase altimétrica en la Vegetación secundaria baja del Orobioma Azonal Subandino Patía

Fuente: INGETEC S.A., 2018

Índices de diversidad

Acontinuación se presentan los indicadores de diversidad del ecosistema, calculados a partir de todos los individuos muestreados, considerando la variedad de especies y familias, su proporción y disposición en el terreno (Tabla 5.91).

Para la riqueza, durante los 18 muestreos se identificó un total de cinco (5) familias, cinco (5) géneros y cinco (5) especies, con una abundancia total de 116 individuos, con un promedio de 6,4 individuos por parcela.

El índice de Margalef presentó un valor de 0,84, lo cual implica que la diversidad es baja, considerando que valores inferiores a dos son considerados como zonas de baja biodiversidad (en general resultado de efectos antropogénicos) y valores cercanos a cinco son indicativos de alta biodiversidad.

De igual forma el índice de Shannon muestra una baja diversidad (1,45), considerando que su valor máximo es cercano a 5, en ecosistemas con gran riqueza.

Para este ecosistema se obtuvo un valor de dominancia bajo (0,25) y el índice de diversidad de Simpson presenta un valor alto (0,74), considerando que su valor oscila en el rango entre 0 y (1-1/s), donde S es el número de especies encontradas, de manera que el límite superior en este caso es 0,8. Es decir que al tomar dos individuos al azar existe una probabilidad baja de que sean de la misma especie; Como se puede observar, en realidad el valor del índice mide de forma inversa el grado de diversidad, pues entre mayor sea la probabilidad de encontrar dos individuos de una misma especie, menor será la diversidad de la muestra estudiada.

Versión 1 – agosto de 2018.

Tabla 5.91 Índices de Diversidad de Vegetación secundaria baja en el Orobioma Azonal Subandino Patía

Índice	Valor
N° Especies	5
N° Infividuos	116
Dominance_D	0,2545
Simpson_1-D	0,7455
Shannon_H	1,45
Evenness_e^H/S	0,8529
Brillouin	1,376
Menhinick	0,4642
Margalef	0,8415
Equitability_J	0,9012

Fuente: INGETEC S.A., 2018

5.2.3 Especies Amenazadas y/o en veda

Una vez realizado el muestreo forestal y consolidado el listado de especies encontradas y reportadas para Área de influencia del proyecto, se consultaron los listados de especies de flora amenazada en Colombia, relacionados por el Ministerio de Ambiente y Desarrollo Rural Sostenible, la Resolución 1912 de 15 de septiembre de 2017, la Resolución 316 de 1974 y los Libros Rojos de los Institutos Humboldt y SINCHI.

Como se puede observar en la Tabla 5.92 y Tabla 5.93 se registrarón tres (3) especies arbóreas, dos (2) registradas En Peligro bajo la Resolución 1912 de 2017, el Listado Rojo de la UICN y la Resolución 0316 de 1974; en cuanto a la especie Cyathea sp. Se encuentra vedad bajo la Resolución 0801 de 1977. Para las epifitas vasculares se registrarón tres (3) especies bajo la resolución 0213 de 1977.

Ante la existencia de especies bajo algún grado de amenaza se realizó el tramite ante el MADS para la solicitud de levantamiento parcial de veda, dicho tramite estuvo dividido en dos estudios que contienen la información necesaria para cubrir las 642,27 has del área de intervención del proyecto.

Por un lado, mediante el Auto 2203 del 25 de octubre de 2017, se "levanta de manera parcial la veda de especies de flora silvestre y se toman otras determinaciones" sobre un área de 574,73 has que incluye toda la infraestructura viasl del proyecto, accesos, zodmes y campamentos (Ver Anexo 1. Resolución 2203 de 2017), y por otro mediante radicado MADS E1-2018-005801 del 26 de febrero de 2018, se solicita el inicio de evaluación para la solicitud de levantamiento de veda de 120 has, que incluye Zodmes y accesos. (Ver Anexo 1. Radicado al MADS 20 has, Radicado al MADS Auto 186 de 2018).

Tabla 5.92 Especies vegetales amenazadas o en veda dentro del área de influencia del proyecto.

Versión 1 – agosto de 2018.

ESPECIE	NOMBRE COMÚN	RES. 1912/MADS	LIBROS ROJOS	RED LIST UICN	CITES	ENDEMISMO	VEDAS
<mark>Juglans</mark> neotropica	Nogal Nogal	EN	-	EN	-	-	Resolución 0316 de 1974
Cedrela odorata	Cedro	EN	<mark>-</mark>	EN	III	<mark>-</mark>	<mark>-</mark>
Cyathea sp.	Helecho arbóreo	-	-	-	I	-	Resolución 0801 de 1977
<mark>Puya</mark> <mark>lehmanniana</mark>	chupalla	<mark>VU</mark>	VU	-	-	-	Resolución 0213 de 1977
<mark>Tillandsia</mark> lajensis	<mark>vicundo</mark>	-	NT	-	-	-	Resolución 0213 de 1977
<mark>Tillandsia</mark> <mark>fendleri</mark>	nn	-	NT	-	-	-	Resolución 0213 de 1977

Fuente: CSH., 2018.

Tabla 5.93 Especies registradas en el área del proyecto que se encuentran en alguna categoría de amenaza.

FAMILIA	ESPECIE	ABUNDANCIA	Res. 1912	Libro Rojo Colombia	Red List IUCN		
			<mark>2017</mark>	<mark>2006</mark>	<mark>(2018-1)</mark>		
Dunmalianas	Puya lehmanniana L.B. Sm.	<mark>2335</mark>	<mark>VU</mark>	<mark>VU</mark>	-		
Bromeliaceae	Tillandsia lajensis André.	<mark>380</mark>	-	<mark>NT</mark>	-		
Categorías IUCN, Libros Rojos (LR), Resolución 1912 (MADS, 2017): (CR) En peligro crítico, (EN) En Peligro, (VU)							
\\	Vulnerable, (NT) Casi amenazada, (LC) Preocupación menor, (DD) Datos deficientes.						

Fuente: CSH., 2018.

De los estudios radicados ante el MADS, se obtuvieron los siguientes resultados:

Caracterización de la flora epífita, rupícola y facultativa terrestre.

Para la caracterización de la flora epifita, rupícola y facultativa terrestre se tuvieron en cuenta las coberturas presentes en el área del proyecto vial, en las cuales se establecieron un número de parcelas representativo, según las curvas de acumulación de especies, para caracterizar las coberturas del área del proyecto, de manera que en Bosque Denso altoandino (BDA) se establecieron 5 parcelas, en Bosque de galería (BG), 50 parcelas en Explotación de Materiales de construcción (EMC), 2 parcelas en Herbazal Abierto Rocoso (HAR), 1 parcela en Mosaico de cultivos (MC) 6 parcelas, en Mosaico de pastos y cultivos (MPC) 391 parcelas, en Plantación forestal (PF) 27 parcelas, en Pastos limpios (PL) 12 parcelas, en Red vial (RV) 1 parcela, en Tejido urbano continuo (TUC) 4 parcelas, en Tejido urbano discontinuo (TUD) 11 parcelas, en Vegetación secundaria alta (VSA) 31 parcelas y la cobertura Vegetación secundaria baja (VSB) 65 parcelas (Ver Tabla 5.94; Anexo 10. Epitas_Base de datos y Curvas_Acum_Flora Epífita_ Cartografía).

Tabla 5.94 Coordenadas de las parcelas caracterizadas en las 13 coberturas presentes en el Área del proyecto.

NOMBRE DE LA PARCELA	COORD. ESTE	COORD. NORTE	NOMBRE DE LA PARCELA	COORD. ESTE	COORD. NORTE
BD-OAA 1	952555	596812	MPC-OMA 22	949791	593794
BD-OAA 2	951960	596296	MPC-OMA 220	956214	599472
BD-OAA 3	951991	596391	MPC-OMA 221	954831	603872
BD-OAA 4	952061	596424	MPC-OMA 222	954740	604753
BD-OAA 5	952024	596351	MPC-OMA 223	954761	604912
BG-OAA 1	952018	594974	MPC-OMA 224	954500	604669
BG-OAA 2	952018	594974	MPC-OMA 225	954764	602910
MPC-OAA 1	952461	596864	MPC-OMA 226	954288	602048
MPC-OAA 10	952017	596163	MPC-OMA 227	954582	602151
MPC-OAA 11	952295	596203	MPC-OMA 228	955032	602252
MPC-OAA 12	950736	594732	MPC-OMA 229	955178	600422
MPC-OAA 13	950875	594774	MPC-OMA 23	948450	591164
MPC-OAA 14	950882	594553	MPC-OMA 230	955890	600027
MPC-OAA 15	950672	595091	MPC-OMA 231	948287	591596
MPC-OAA 16	950645	594936	MPC-OMA 232	948434	591640
MPC-OAA 17	950892	595201	MPC-OMA 233	948542	591746
MPC-OAA 18	950975	595102	MPC-OMA 234	948601	591496
MPC-OAA 19	950687	595347	MPC-OMA 235	955076	603357
MPC-OAA 2	952695	596805	MPC-OMA 236	953513	601437
MPC-OAA 20	950472	594820	MPC-OMA 237	953434	601321
MPC-OAA 21	950640	594903	MPC-OMA 238	953448	601335
MPC-OAA 22	950979	595521	MPC-OMA 239	955967	600451
MPC-OAA 23	950718	594653	MPC-OMA 24	950477	592639
MPC-OAA 24	950941	594927	MPC-OMA 240	955171	603097
MPC-OAA 25	951010	595000	MPC-OMA 241	954841	603411
MPC-OAA 26	950899	594682	MPC-OMA 242	954151	601498
MPC-OAA 27	950423	594569	MPC-OMA 243	954969	598072
MPC-OAA 28	950636	594296	MPC-OMA 244	947279	590728
MPC-OAA 29	953099	595763	MPC-OMA 245	947144	590654
MPC-OAA 3	952712	596852	MPC-OMA 246	947155	590546
MPC-OAA 30	950014	593458	MPC-OMA 247	947265	590434
MPC-OAA 31	952964	595727	MPC-OMA 248	947314	590247
MPC-OAA 32	953071	595929	MPC-OMA 249	954741	598151
MPC-OAA 33	950579	593976	MPC-OMA 25	955887	598883
MPC-OAA 34	951719	595385	MPC-OMA 250	954947	598201
MPC-OAA 35	951892	595503	MPC-OMA 251	953961	604158
MPC-OAA 36	952037	595434	MPC-OMA 252	948589	591222
MPC-OAA 37	950195	593725	MPC-OMA 253	948353	592180
MPC-OAA 38	952123	595399	MPC-OMA 254	950105	592147
MPC-OAA 39	952478	595298	MPC-OMA 255	949996	592169
MPC-OAA 4	952592	596600	MPC-OMA 256	954927	597200
MPC-OAA 40	954057	596173	MPC-OMA 257	954726	601774
MPC-OAA 41	953830	596175	MPC-OMA 258	949958	592144
MPC-OAA 42	952643	595401	MPC-OMA 259	954547	602734
MPC-OAA 43	950216	593834	MPC-OMA 26	956422	604957
MPC-OAA 44	952441	595427	MPC-OMA 260	954818	604729
MPC-OAA 45	952479	595283	MPC-OMA 261	954625	604589
MPC-OAA 46	952587	595462	MPC-OMA 262	954564	602216
MPC-OAA 47	953927	596325	MPC-OMA 263	954015	601792
MPC-OAA 48	950078	593575	MPC-OMA 264	955389	598049
MPC-OAA 49	952003	596256	MPC-OMA 265	954844	597204

CSH-1-AM-AM-EIA-G-0007-0

ESTUDIO DE IMPACTO AMBIENTAL PARA LA CONSTRUCCIÓN DE LA DOBLE CALZADA RUMICHACA – PASTO, TRAMO SAN JUAN – PEDREGAL, CONTRATO DE CONCESIÓN BAJO EL ESQUEMA APP N° 15 DE 2015

NOMBRE DE LA PARCELA	COORD. ESTE	COORD. NORTE	NOMBRE DE LA PARCELA	COORD. ESTE	COORD. NORTE
MPC-OAA 5	952456	596791	MPC-OMA 266	955355	598178
MPC-OAA 50	950824	594616	MPC-OMA 267	955281	598015
MPC-OAA 51	950645	594936	MPC-OMA 268	954832	604549
MPC-OAA 52	950782	594366	MPC-OMA 269	947159	590501
MPC-OAA 53	949784	593409	MPC-OMA 27	954550	603347
MPC-OAA 54	949773	593354	MPC-OMA 270	955410	597336
MPC-OAA 55	949838	593405	MPC-OMA 271	955505	597287
MPC-OAA 56	949816	593303	MPC-OMA 272	955596	597139
MPC-OAA 57	950879	594466	MPC-OMA 273	955034	598151
MPC-OAA 58	950926	594416	MPC-OMA 274	954852	598174
MPC-OAA 59	953209	595832	MPC-OMA 275	954910	598369
MPC-OAA 6	952341	596911	MPC-OMA 276	954315	598683
MPC-OAA 60	950640	594903	MPC-OMA 277	954393	602034
MPC-OAA 61	951703	594911	MPC-OMA 278	954178	601886
MPC-OAA 62	950054	593481	MPC-OMA 279	953909	601937
MPC-OAA 63	952816	595483	MPC-OMA 28	954565	603352
MPC-OAA 64	949716	593347	MPC-OMA 280	956856	605415
MPC-OAA 65	949810	593246	MPC-OMA 281	954786	604595
MPC-OAA 66	953203	596175	MPC-OMA 282	954870	604610
MPC-OAA 67	950034	593997	MPC-OMA 283	954314	601526
MPC-OAA 68	949696	593957	MPC-OMA 284	954638	604501
MPC-OAA 69	949791	593794	MPC-OMA 285	954637	604262
MPC-OAA 7	952197	596977	MPC-OMA 286	954025	602036
MPC-OAA 70	949868	593936	MPC-OMA 287	955314	597212
MPC-OAA 71	952073	595569	MPC-OMA 288	950022	592669
MPC-OAA 72	950654	594444	MPC-OMA 289	954419	604394
MPC-OAA 73	953372	596371	MPC-OMA 29	955136	602932
MPC-OAA 74	952026	595296	MPC-OMA 290	949341	592887
MPC-OAA 75	951881	595431	MPC-OMA 291	949170	592825
MPC-OAA 76	952315	596046	MPC-OMA 292	947285	590527
MPC-OAA 78	952421	599173	MPC-OMA 293	955466	597337
MPC-OAA 79	952735	598631	MPC-OMA 294	954480	604319
MPC-OAA 8	952058	596952	MPC-OMA 295	947285	590712
MPC-OAA 80	953046	598656	MPC-OMA 296	954555	604475
MPC-OAA 81	952759	598957	MPC-OMA 297	947710	590146
MPC-OAA 82	952578	598890	MPC-OMA 298	948830	591712
MPC-OAA 83	952658	596341	MPC-OMA 299	954385	601715
MPC-OAA 84	949544	592953	MPC-OMA 3	956762	605141
MPC-OAA 85	950255	594422	MPC-OMA 30	954987	602909
MPC-OAA 86	953822	595928	MPC-OMA 300	954825	598592
MPC-OAA 87	951440	595524	MPC-OMA 301	954791	598816
MPC-OAA 88	951687	595958	MPC-OMA 302	953928	598613
MPC-OAA 89	949523	592996	MPC-OMA 303	954695	604178
MPC-OAA 9	950161	593975	MPC-OMA 304	955109	604498
PF-OAA 1	952461	596742	MPC-OMA 31	954815	602825
PF-OAA 2	949628	592834	MPC-OMA 32	955311	605061
VSA-OAA 1	952282	596000	MPC-OMA 33	954574	603404
VSA-OAA 10		596176	MPC-OMA 34	955206	601454
	952257				
VSA-OAA 2	952116	596254	MPC-OMA 35	955345	601867
VSA-OAA 3	952103	596247	MPC-OMA 36	948222	591932
VSA-OAA 4	952077	596242	MPC-OMA 37	950645	594936

NOMBRE DE LA PARCELA	COORD. ESTE	COORD. NORTE	NOMBRE DE LA PARCELA	COORD. ESTE	COORD. NORTE
VSA-OAA 5	952060	596116	MPC-OMA 38	948078	591906
VSA-OAA 6	952102	596147	MPC-OMA 39	948129	592013
VSA-OAA 7	952159	596162	MPC-OMA 4	956725	605068
VSA-OAA 8	951057	594507	MPC-OMA 40	948169	590774
VSA-OAA 9	952003	596256	MPC-OMA 41	950029	593234
VSB-OAA 1	951280	594683	MPC-OMA 42	949902	593227
VSB-OAA 2	951374	594745	MPC-OMA 43	954257	601426
VSB-OAA 3	949784	593502	MPC-OMA 44	954983	596910
BG-OMA 1	954529	602628	MPC-OMA 45	955909	598278
BG-OMA 10	954266	602459	MPC-OMA 46	948069	590925
BG-OMA 11	954262	602441	MPC-OMA 47	950029	592632
BG-OMA 12	954020	602940	MPC-OMA 48	950056	592789
BG-OMA 13	954315	603024	MPC-OMA 49	955813	597765
BG-OMA 14	954059	602928	MPC-OMA 5	954856	602875
BG-OMA 15	955264	598180	MPC-OMA 50	955763	598123
BG-OMA 16	955223	598090	MPC-OMA 51	955817	598227
BG-OMA 17	954026	602746	MPC-OMA 52	955632	598072
BG-OMA 18	954562	603210	MPC-OMA 54	948440	591458
BG-OMA 19	954423	603179	MPC-OMA 55	949785	592763
BG-OMA 2	954644	602727	MPC-OMA 56	949862	592616
BG-OMA 20	955498	600826	MPC-OMA 57	952416	595071
BG-OMA 21	954000	600829	MPC-OMA 58	951736	594559
BG-OMA 22	953944	600776	MPC-OMA 59	949898	593196
BG-OMA 23	953944	600810	MPC-OMA 6	954098	603168
BG-OMA 24	953934	600810	MPC-OMA 60	949726	592688
BG-OMA 25	954609	603298	MPC-OMA 61	948483	591868
BG-OMA 26	954655	603363	MPC-OMA 62	948759	591817
BG-OMA 27	955293	600421	MPC-OMA 63	954463	600474
BG-OMA 28	955135	599239	MPC-OMA 64	948985	592156
BG-OMA 29	954847	599380	MPC-OMA 65	948674	591835
BG-OMA 3	956009	599681	MPC-OMA 66	949285	592668
BG-OMA 30	954174	602872	MPC-OMA 67	948254	591008
BG-OMA 31	954287	602814	MPC-OMA 68	948298	591018
BG-OMA 32	954934	600374	MPC-OMA 69	950030	592123
BG-OMA 33	954941	600515	MPC-OMA 7	954300	603345
BG-OMA 34	955139	600552	MPC-OMA 70	950367	592963
BG-OMA 35	954031	602745	MPC-OMA 71	954002	596451
BG-OMA 36	954036	602749	MPC-OMA 72	955284	597479
BG-OMA 37	954109	602824	MPC-OMA 73	955730	598779
BG-OMA 38	954071	602801	MPC-OMA 74	956011	599094
BG-OMA 39	954960	600522	MPC-OMA 75	954475	600285
BG-OMA 4	955231	598151	MPC-OMA 76	950159	593055
BG-OMA 40	954905	600467	MPC-OMA 77	950218	593891
BG-OMA 41	952279	594714	MPC-OMA 78	951668	594364
BG-OMA 42	950709	594070	MPC-OMA 79	955824	598517
BG-OMA 43	954821	599271	MPC-OMA 8	953889	604848
BG-OMA 44	954062	602840	MPC-OMA 80	955777	598616
BG-OMA 45	956307	599837	MPC-OMA 81	955738	597747
BG-OMA 46	955095	600559	MPC-OMA 82	955622	598546
BG-OMA 47	953986	601516	MPC-OMA 83	955423	597953
	955172	598065	MPC-OMA 84	955106	597346

CSH-1-AM-AM-EIA-G-0007-0

ESTUDIO DE IMPACTO AMBIENTAL PARA LA CONSTRUCCIÓN DE LA DOBLE CALZADA RUMICHACA – PASTO, TRAMO SAN JUAN – PEDREGAL, CONTRATO DE CONCESIÓN BAJO EL ESQUEMA APP N° 15 DE 2015

NOMBRE DE LA PARCELA	COORD. ESTE	COORD. NORTE	NOMBRE DE LA PARCELA	COORD. ESTE	COORD. NORTE
BG-OMA 5	955186	598298	MPC-OMA 85	954287	596749
BG-OMA 6	954275	602931	MPC-OMA 86	953986	596500
BG-OMA 7	954484	602580	MPC-OMA 87	951695	594199
BG-OMA 8	955245	598092	MPC-OMA 88	950797	593719
BG-OMA 9	954251	602422	MPC-OMA 89	950601	593923
EMC-OMA 1	954450	604213	MPC-OMA 9	954547	605034
EMC-OMA 2	955099	604406	MPC-OMA 90	947628	590849
HAR-OMA 1	949081	591625	MPC-OMA 91	955668	598187
MC-OMA 1	948285	590771	MPC-OMA 92	954942	597534
MC-OMA 2	948369	590855	MPC-OMA 93	954140	596726
MC-OMA 3	948477	590893	MPC-OMA 94	951450	594374
MC-OMA 4	955184	600615	MPC-OMA 95	951356	594315
MC-OMA 5	955214	600633	MPC-OMA 96	949915	592895
MC-OMA 6	956326	600185	MPC-OMA 97	951965	594607
MPC-OMA 1	954927	602888	MPC-OMA 98	947712	590826
MPC-OMA 10	954594	604748	MPC-OMA 99	954334	602348
MPC-OMA 100	948437	591927	PF-OMA 1	948398	590938
MPC-OMA 101	950155	593546	PF-OMA 10	955858	599822
MPC-OMA 102	955741	599862	PF-OMA 11	955911	599801
MPC-OMA 103	950223	593358	PF-OMA 12	948693	591100
MPC-OMA 104	954128	601029	PF-OMA 13	949042	592502
MPC-OMA 105	954123	601172	PF-OMA 14	949237	592680
MPC-OMA 106	949592	592652	PF-OMA 15	949517	592678
MPC-OMA 107	954271	604057	PF-OMA 16	948977	592589
MPC-OMA 108	954299	603969	PF-OMA 17	948980	592722
MPC-OMA 109	954145	603899	PF-OMA 18	947888	590807
MPC-OMA 11	954547	604846	PF-OMA 19	949050	591951
MPC-OMA 110	954318	603157	PF-OMA 2	948436	590986
MPC-OMA 111	954262	602590	PF-OMA 20	948228	591552
MPC-OMA 112	954370	604136	PF-OMA 21	948566	591355
MPC-OMA 113	955791	597547	PF-OMA 22	947463	590236
MPC-OMA 114	948292	591413	PF-OMA 23	948403	590801
MPC-OMA 115	953991	601339	PF-OMA 24	947558	590199
MPC-OMA 116	955791	597547	PF-OMA 25	948229	591285
MPC-OMA 117	955850	597562	PF-OMA 3	948182	591322
MPC-OMA 118	955833	597688	PF-OMA 4	948145	591485
MPC-OMA 119	954283	603558	PF-OMA 5	955807	599793
MPC-OMA 12	954499	604913	PF-OMA 6	950109	592886
MPC-OMA 120	954130	604383	PF-OMA 7	950123	593008
MPC-OMA 121	954503	604054	PF-OMA 8	947905	591915
MPC-OMA 122	954089	603801	PF-OMA 9	950053	593099
MPC-OMA 123	954264	603844	PL-OMA 1	956748	605886
MPC-OMA 124	954347	603714	PL-OMA 10	954066	602601
MPC-OMA 125	954177	603606	PL-OMA 10 PL-OMA 11	954152	602578
		603641	PL-OMA 11 PL-OMA 12	953932	
MPC-OMA 126 MPC-OMA 127	954251				602863 605850
	954250	603486	PL-OMA 2	956722	
MPC-OMA 128	954138	603433	PL-OMA 3	956595	605010
MPC-OMA 129	954430	602453	PL-OMA 4	956113	605029
MPC-OMA 13	954697	605013	PL-OMA 5	954211	602480
MPC-OMA 130	955196	601861	PL-OMA 6	953998	602670
MPC-OMA 131	954424	603871	PL-OMA 7	954115	602675

CSH-1-AM-AM-EIA-G-0007-0

ESTUDIO DE IMPACTO AMBIENTAL PARA LA CONSTRUCCIÓN DE LA DOBLE CALZADA RUMICHACA – PASTO, TRAMO SAN JUAN – PEDREGAL, CONTRATO DE CONCESIÓN BAJO EL ESQUEMA APP N° 15 DE 2015

NOMBRE DE LA PARCELA	COORD. ESTE	COORD. NORTE	NOMBRE DE LA PARCELA	COORD. ESTE	COORD. NORTE
MPC-OMA 132	954443	603786	PL-OMA 8	954129	602566
MPC-OMA 133	954173	603722	PL-OMA 9	954200	602507
MPC-OMA 134	948445	591131	RV-OMA 1	956762	605688
MPC-OMA 135	955019	597415	TUC-OMA 1	947680	590729
MPC-OMA 136	948519	591117	TUC-OMA 2	947795	590723
MPC-OMA 137	954256	603295	TUC-OMA 3	947715	590494
MPC-OMA 138	954351	603303	TUC-OMA 4	947591	590276
MPC-OMA 139	953957	603091	TUD-OMA 1	954903	605126
MPC-OMA 14	953762	604859	TUD-OMA 10	954858	604918
MPC-OMA 140	948532	591213	TUD-OMA 11	955010	604885
MPC-OMA 141	954140	603202	TUD-OMA 2	956752	605152
MPC-OMA 142	954109	603425	TUD-OMA 3	955546	604887
MPC-OMA 143	954469	604010	TUD-OMA 4	955331	604934
MPC-OMA 144	954458	603993	TUD-OMA 5	955236	604711
MPC-OMA 145	948381	591169	TUD-OMA 6	955255	604531
MPC-OMA 146	954192	604193	TUD-OMA 7	955980	605020
MPC-OMA 147	954359	604267	TUD-OMA 8	955862	604906
MPC-OMA 148	948510	591318	TUD-OMA 9	954841	604827
MPC-OMA 149	954392	603315	VSA-OMA 1	953462	604792
MPC-OMA 15	954793	597205	VSA-OMA 10	955540	600208
MPC-OMA 150	954175	603331	VSA-OMA 11	955498	600208
MPC-OMA 151	954007	603380	VSA-OMA 12	951090	594092
MPC-OMA 152	954023	603283	VSA-OMA 13	954940	600740
MPC-OMA 153	954213	603280	VSA-OMA 14	954945	600734
MPC-OMA 154	954063	601296	VSA-OMA 15	954882	600734
MPC-OMA 155	954169	601271	VSA-OMA 16	954847	600763
MPC-OMA 156	954964	602140	VSA-OMA 17	954395	601466
MPC-OMA 157	955089	602000	VSA-OMA 18	954349	601328
MPC-OMA 158	955679	597804	VSA-OMA 19	955956	598812
MPC-OMA 159	955718	597722	VSA-OMA 2	953953	604639
MPC-OMA 16	948276	591096	VSA-OMA 20	955597	600252
MPC-OMA 160	954903	597578	VSA-OMA 21	955292	604858
MPC-OMA 161	954945	597396	VSA-OMA 3	953951	604632
MPC-OMA 162	956036	600201	VSA-OMA 4	953887	604452
MPC-OMA 163	956122	600143	VSA-OMA 5	955981	598714
MPC-OMA 164	955853	600780	VSA-OMA 6	955947	598681
MPC-OMA 165	955801	600585	VSA-OMA 7	955901	598672
MPC-OMA 166	955645	600519	VSA-OMA 8	954895	600730
MPC-OMA 167	955637	600654	VSA-OMA 9	955610	600376
MPC-OMA 168	955565	600786	VSB-OMA 1	956776	605738
MPC-OMA 169	954213	603556	VSB-OMA 10	956816	605777
MPC-OMA 17	948394	591172	VSB-OMA 11	953986	603609
MPC-OMA 170	954726	602441	VSB-OMA 12	956345	604956
MPC-OMA 171	955129	602966	VSB-OMA 13	955045	602816
MPC-OMA 172	954901	603405	VSB-OMA 14	955024	600643
MPC-OMA 173	954515	604809	VSB-OMA 15	955364	600069
MPC-OMA 174	954465	604880	VSB-OMA 16	955520	600016
MPC-OMA 175	954696	603294	VSB-OMA 17	955434	599916
MPC-OMA 176	955583	600445	VSB-OMA 18	955136	600680
MPC-OMA 177			VSB-OMA 19		
IVIT C-OIVIA 1//	955904	600530	A 20-OIMY 13	955267	601734

Versión 1 – agosto de 2018.

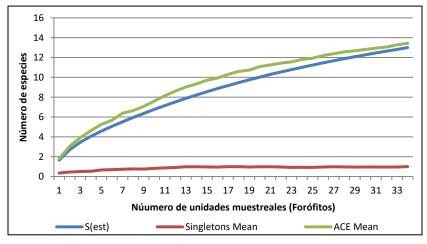
NOMBRE DE LA PARCELA	COORD. ESTE	COORD. NORTE	NOMBRE DE LA PARCELA	COORD. ESTE	COORD. NORTE
MPC-OMA 179	955203	597033	VSB-OMA 20	955882	599756
MPC-OMA 18	955486	597646	VSB-OMA 21	955704	599535
MPC-OMA 180	955958	600723	VSB-OMA 22	954115	602374
MPC-OMA 181	955942	600852	VSB-OMA 23	950295	593542
MPC-OMA 182	955722	600875	VSB-OMA 24	954235	596553
MPC-OMA 183	955130	602288	VSB-OMA 25	955942	598327
MPC-OMA 184	955271	602320	VSB-OMA 26	955893	599184
MPC-OMA 185	954837	602365	VSB-OMA 27	950986	593806
MPC-OMA 186	955074	603366	VSB-OMA 28	954868	601962
MPC-OMA 187	955934	600062	VSB-OMA 29	954680	601986
MPC-OMA 188	954761	605016	VSB-OMA 3	954115	602374
MPC-OMA 189	954703	602808	VSB-OMA 30	954634	601988
MPC-OMA 19	948372	591216	VSB-OMA 31	954866	605064
MPC-OMA 190	954505	597768	VSB-OMA 32	955244	601585
MPC-OMA 191	954056	597998	VSB-OMA 33	954689	602040
MPC-OMA 192	953599	598071	VSB-OMA 34	954364	602313
MPC-OMA 193	953843	597810	VSB-OMA 35	954917	597297
MPC-OMA 194	954237	597641	VSB-OMA 36	954941	597330
MPC-OMA 195	954864	604261	VSB-OMA 37	954742	601988
MPC-OMA 196	954869	604094	VSB-OMA 38	954035	603416
MPC-OMA 197	954764	603917	VSB-OMA 39	955021	605014
MPC-OMA 198	954852	603719	VSB-OMA 4	954782	597428
MPC-OMA 199	954889	603845	VSB-OMA 40	954523	601879
MPC-OMA 2	953888	604855	VSB-OMA 41	954592	601877
MPC-OMA 20	948288	591299	VSB-OMA 42	954894	602013
MPC-OMA 200	954974	603862	VSB-OMA 43	948370	591040
MPC-OMA 201	954608	603469	VSB-OMA 44	954673	605179
MPC-OMA 202	954481	603072	VSB-OMA 45	956209	600308
MPC-OMA 203	954493	603013	VSB-OMA 46	956103	600240
MPC-OMA 204	954621	603109	VSB-OMA 47	955238	600172
MPC-OMA 205	954716	602987	VSB-OMA 48	955177	600210
MPC-OMA 206	954922	602982	VSB-OMA 49	955214	600472
MPC-OMA 207	954430	602205	VSB-OMA 5	954308	602548
MPC-OMA 208	954522	602258	VSB-OMA 50	955810	600261
MPC-OMA 209	954661	602210	VSB-OMA 51	954982	597170
MPC-OMA 21	948324	591374	VSB-OMA 52	955271	600332
MPC-OMA 210	954531	602501	VSB-OMA 53	955264	600215
MPC-OMA 211	955120	602160	VSB-OMA 54	955045	600542
MPC-OMA 212	955253	601981	VSB-OMA 55	955153	600272
MPC-OMA 213	954291	601276	VSB-OMA 56	955268	599997
MPC-OMA 214	955714	600391	VSB-OMA 57	955145	600057
MPC-OMA 215	956009	600353	VSB-OMA 58	955769	600139
MPC-OMA 216	956208	600483	VSB-OMA 59	954004	601686
MPC-OMA 217	956121	598602	VSB-OMA 6	955056	597269
MPC-OMA 218	955272	602118	VSB-OMA 60	955161	597148
MPC-OMA 219	955116	597080	VSB-OMA 61	953911	601610
VSB-OMA 8	954788	605109	VSB-OMA 62	953694	601760
VSB-OMA 9	955777	599827	VSB-OMA 7	954235	603946

Dónde: BDA: Bosque denso Altoandino, BG: Bosque de galería, EMC: Explotación de material de construcción, HAR: Herbazal abierto rocoso, MC: Mosaico de cultivos, MPC: Mosaico de pastos y cultivos, PF: Plantación forestal, PL: Pastos limpios, RV: Red vial, TUC: Tejido urbano continuo, TUD: Tejido urbano discontinuo, Vsa: Vegetación secundaria alta y VSB: Vegetación secundaria baja.

Versión 1 – agosto de 2018.

Fuente: GEOCOL CONSULTORES S.A.

Curva de acumulación de especies.


La estimación del esfuerzo de muestreo en las coberturas con presencia de árboles y/o arbustos presentes en el Área del proyecto vial, para la cual se realiza la caracterización de la flora epífita, rupícola y facultativo terrestre, se evaluó por medio de curvas de acumulación de especies, para cada una de las coberturas y para cada grupo de especies (epífitas vasculares y no vasculares), teniendo en cuenta su hábito (epífita, rupícola y facultativo terrestre), con los forófitos como la unidad muestreal, empleando los estimadores S(est), ACE Mean (basado en datos de abundancia) y Bootstrap (basado en datos de presencia-ausencia), además, se tuvo en cuenta la curva de Singletons (el número de especies de un muestreo que sólo están representadas por un individuo) para las especies vasculares, debido a que se basa en datos de abundancia y para las especie no vasculares, que cuentan con datos de presencia-ausencia se empleó la curva de Uniques (aquellas especies que se registraron solo en una muestra) (Villarreal et. al, 2003); de esta manera se presentan primero las curvas de acumulación de especies vasculares y no vasculares para el hábito epífito y posteriormente para el hábito rupícola, terrestre y lignícola.

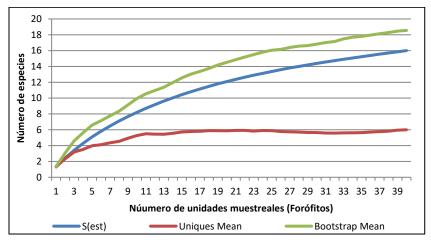
- Curvas de acumulación especies epífitas vasculares y no vasculares.

• Bosque Denso Altoandino.

El esfuerzo de muestreo para las especies epífitas vasculares en la cobertura Bosque denso, en la cual se utilizaron los estimadores S(est) y ACE, y además, se empleó la Curva de Singletons, arrojó como resultado que el estimador basado en datos de abundancia ACE fue representativo en un 96,7%, donde se registraron 13 especies de las 13,44 estimadas, lo que sumado al valor de la curva de Singletons, con una (1) especie, ratifica un buen esfuerzo de muestreo (Ver **Figura 5-131** y **Anexo 10. Epifitas_1. Base de datos y Curvas Acumulación**).

Figura 5-131 Curva de acumulación de especies epífitas vasculares en la cobertura Bosque denso en el área del proyecto.

Fuente: GEOCOL CONSULTORES S.A.



Versión 1 – agosto de 2018.

El esfuerzo de muestreo de las especies epífitas no vasculares para la cobertura Bosque denso, en la cual se utilizaron los estimadores S(est) y Bootstrap, fue representativo en un 86,2% para el estimador Bootstrap, donde se registraron 16 especies de las 18,5 estimadas, observando cómo se estabiliza en una asíntota en la curva de acumulación los estimadores S(est), el cual corresponde a las especies registradas y Bootstrap; en cuanto a la curva de Uniques (aquellas especies que se registraron solo en una muestra), esta curva registró seis (6) especies no vasculares (Ver **Figura 5-132** y **Anexo 10. Epitas _Base de datos y Curvas Acumulación**).

Figura 5-132 Curva de acumulación de especies epífitas no vasculares en la cobertura Bosque denso en el área del proyecto.

Fuente: GEOCOL CONSULTORES S.A.

• Bosque de Galería.

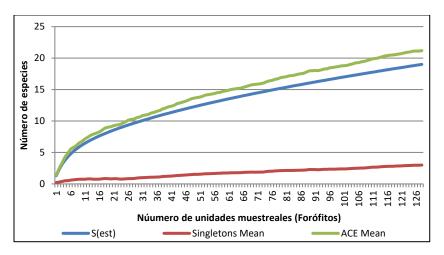
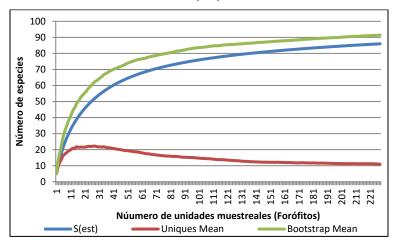

El esfuerzo de muestreo de especies epífitas vasculares para la cobertura Bosque de galería, en la cual se utilizaron los estimadores S(est) y ACE, además, se empleó la Curva de Singletons, arrojó como resultado que el estimador basado en datos de abundancia ACE fue representativo en un 89,6%, donde se registraron 19 especies de las 21,1 estimadas, lo que sumado al valor de la curva de Singletons, con tres (3) especie, ratifica un buen esfuerzo de muestreo (Ver **Figura 5-133** y **Anexo 10. Epitas_Base de datos y Curvas Acumulación**).

Figura 5-133 Curva de acumulación de especies epífitas vasculares en la cobertura Bosque de galería en el área del proyecto.

Versión 1 – agosto de 2018.



Fuente: GEOCOL CONSULTORES S.A.

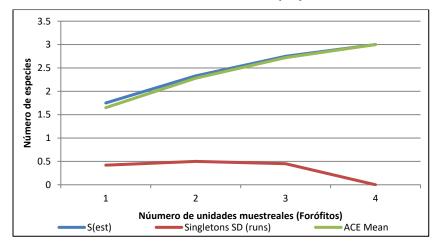
El esfuerzo de muestreo de las especies epífitas no vasculares para la cobertura Bosque de galería, fue representativo en un 94,1% para el estimador Bootstrap, donde se registraron 86 especies de las 91,3 estimadas, observando cómo se estabiliza en una asíntota en la curva de acumulación los estimadores S(est), el cual corresponde a las especies registradas y Bootstrap; en cuanto a la curva de Uniques (aquellas especies que se registraron solo en una muestra), esta curva registró 11 especies no vasculares (Ver **Figura 5-134** y **Anexo 10. Epitas_Base de datos y Curvas Acumulación**).

Figura 5-134 Curva de acumulación de especies epífitas no vasculares en la cobertura Bosque denso en el área del proyecto.

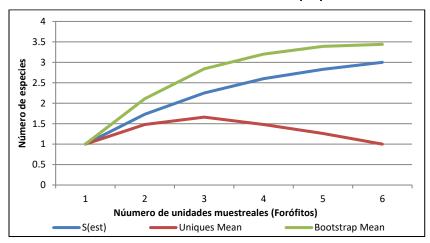
Fuente: GEOCOL CONSULTORES S.A.

• Explotación de material de construcción.

Versión 1 – agosto de 2018.


El esfuerzo de muestreo de especies epífitas vasculares para la cobertura Explotación de material de construcción, en la cual se utilizaron los estimadores S(est) y ACE, y además, se empleó la Curva de Singletons, arrojó como resultado que el estimador basado en datos de abundancia ACE fue representativo en un 100%, donde se registraron 3 especies de las 3 estimadas, lo que sumado al valor de la curva de Singletons, con una (1) especie, ratifica un buen esfuerzo de muestreo (Ver **Figura 5-135** y **Anexo 10. Epitas _Base de datos y Curvas Acumulación**).

Versión 1 – agosto de 2018.

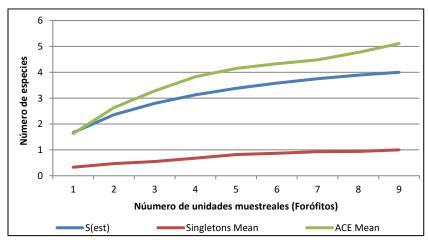

Figura 5-135 Curva de acumulación de especies epífitas vasculares en la cobertura Explotación de material de construcción en el área del proyecto.

Fuente: GEOCOL CONSULTORES S.A.

El esfuerzo de muestreo de las especies epífitas no vasculares para la cobertura Explotación de material de construcción, fue representativo en un 87,2% para el estimador Bootstrap, donde se registraron 3 especies de las 3,4 estimadas, observando cómo se estabiliza en una asíntota en la curva de acumulación los estimadores S(est), el cual corresponde a las especies registradas y Bootstrap; en cuanto a la curva de Uniques (aquellas especies que se registraron solo en una muestra), esta curva registró una (1) especie no vascular (Ver **Figura 5-136** y **Anexo 10. Epitas_Base de datos y Curvas Acumulación**).

Figura 5-136 Curva de acumulación de especies epífitas no vasculares en la cobertura Explotación de material de construcción en el área del proyecto.

Fuente: GEOCOL CONSULTORES S.A.

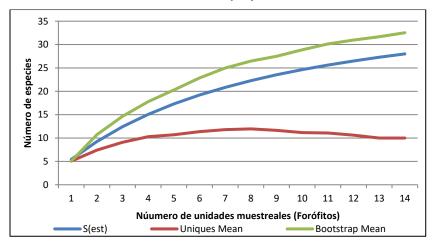

Versión 1 – agosto de 2018.

Mosaico de cultivos.

El esfuerzo de muestreo de especies epífitas vasculares para la cobertura Mosaico de cultivos, en la cual se utilizaron los estimadores S(est) y ACE, y además, se empleó la Curva de Singletons, arrojó como resultado que el estimador basado en datos de abundancia ACE fue representativo en un 78,2%, donde se registraron 4 especies de las 5,1 estimadas, lo que sumado al valor de la curva de Singletons, con una (1) especie, ratifica un buen esfuerzo de muestreo (Ver **Figura 5-137** y **Anexo 10. Epitas_Base de datos y Curvas Acumulación**).

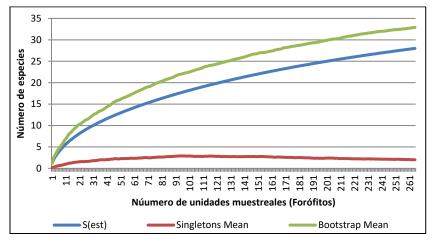
Figura 5-137 Curva de acumulación de especies epífitas vasculares en la cobertura Mosaico de cultivos en el área del proyecto.

Fuente: GEOCOL CONSULTORES S.A.


El esfuerzo de muestreo de las especies epífitas no vasculares para la cobertura Mosaico de cultivos, fue representativo en un 86% para el estimador Bootstrap, donde se registraron 28 especies de las 32,5 estimadas, observando cómo se estabiliza en una asíntota en la curva de acumulación los estimadores S(est), el cual corresponde a las especies registradas y Bootstrap; en cuanto a la curva de Uniques (aquellas especies que se registraron solo en una muestra), esta curva registró 10 especies no vascular (Ver Figura 5-138 y Anexo 10. Epitas_Base de datos y Curvas Acumulación).

Versión 1 – agosto de 2018.

Figura 5-138 Curva de acumulación de especies epífitas no vasculares en la cobertura Mosaico de cultivos en el área del proyecto.



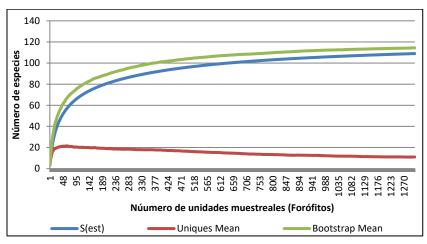
Fuente: GEOCOL CONSULTORES S.A.

• Mosaico de pastos y cultivos.

El esfuerzo de muestreo de especies epífitas vasculares para la cobertura Mosaico de pastos y cultivos, en la cual se utilizaron los estimadores S(est) y ACE, y además, se empleó la Curva de Singletons, arrojó como resultado que el estimador basado en datos de abundancia ACE fue representativo en un 96,8%, donde se registraron 28 especies de las 28,9 estimadas, lo que sumado al valor de la curva de Singletons, con dos (2) especies, ratifica un buen esfuerzo de muestreo (Ver **Figura 5-139** y **Anexo 10. Epifitas_1. Base de datos y Curvas Acumulación**).

Figura 5-139 Curva de acumulación de especies epífitas vasculares en la cobertura Mosaico de pastos y cultivos en el área del proyecto.

Fuente: GEOCOL CONSULTORES S.A.



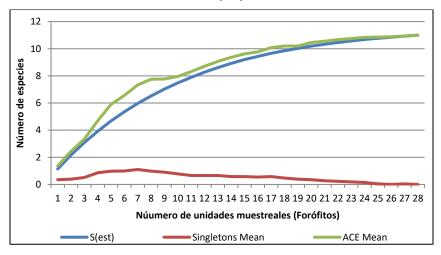
Versión 1 – agosto de 2018.

El esfuerzo de muestreo de las especies epífitas no vasculares para la cobertura Mosaico de pastos y cultivos, fue representativo en un 95,2% para el estimador Bootstrap, donde se registraron 109 especies de las 114 estimadas, observando cómo se estabiliza en una asíntota en la curva de acumulación los estimadores S(est), el cual corresponde a las especies registradas y Bootstrap; en cuanto a la curva de Uniques (aquellas especies que se registraron solo en una muestra), esta curva registró 11 especies no vascular (Ver **Figura 5-140** y **Anexo 10. Epifitas_1. Base de datos y Curvas Acumulación**).

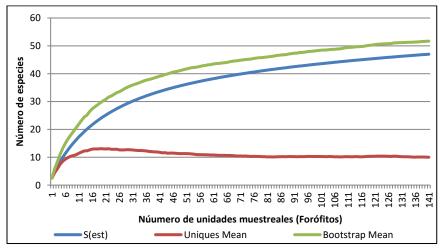
Figura 5-140 Curva de acumulación de especies epífitas no vasculares en la cobertura Mosaico de pastos y cultivos en el área del proyecto.

Fuente: GEOCOL CONSULTORES S.A.

• Plantación forestal


El esfuerzo de muestreo de especies epífitas vasculares para la cobertura Plantación forestal, en la cual se utilizaron los estimadores S(est) y ACE, y además, se empleó la Curva de Singletons, arrojó como resultado que el estimador basado en datos de abundancia ACE fue representativo en un 100%, donde se registraron 11 especies de las 11 estimadas, lo que sumado al valor de la curva de Singletons, con cero (0) especies, ratifica un buen esfuerzo de muestreo (Ver Figura 5-141 y Anexo 10. Epifitas_1. Base de datos y Curvas Acumulación).

Versión 1 – agosto de 2018.

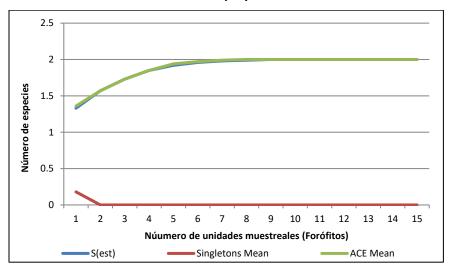

Figura 5-141 Curva de acumulación de especies epífitas vasculares en la cobertura Plantación forestal en el área del proyecto.

Fuente: GEOCOL CONSULTORES S.A.

El esfuerzo de muestreo de las especies epífitas no vasculares para la cobertura Plantación forestal, fue representativo en un 90,2% para el estimador Bootstrap, donde se registraron 47 especies de las 51,9 estimadas, observando cómo se estabiliza en una asíntota en la curva de acumulación los estimadores S(est), el cual corresponde a las especies registradas y Bootstrap; en cuanto a la curva de Uniques (aquellas especies que se registraron solo en una muestra), esta curva registró 10 especies no vascular (Ver Figura 5-142 y Anexo 10. Epifitas_1. Base de datos y Curvas Acumulación).

Figura 5-142 Curva de acumulación de especies epífitas no vasculares en la cobertura Plantación forestal en el área del proyecto.

Fuente: GEOCOL CONSULTORES S.A.

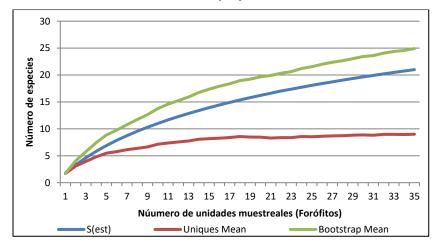

Versión 1 – agosto de 2018.

Pastos limpios.

El esfuerzo de muestreo de especies epífitas vasculares para la cobertura Pastos limpios, en la cual se utilizaron los estimadores S(est) y ACE, y además, se empleó la Curva de Singletons, arrojó como resultado que el estimador basado en datos de abundancia ACE fue representativo en un 100%, donde se registraron dos (2) especies de las dos (2) estimadas, lo que sumado al valor de la curva de Singletons, con cero (0) especies, ratifica un buen esfuerzo de muestreo (Ver **Figura 5-143** y **Anexo 10. Epifitas_1. Base de datos y Curvas Acumulación**).

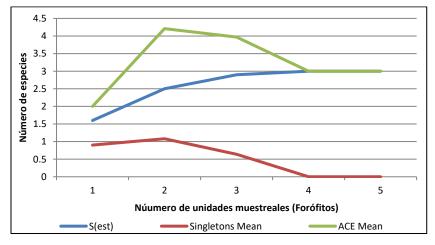
Figura 5-143 Curva de acumulación de especies epífitas vasculares en la cobertura Pastos limpios en el área del proyecto.

Fuente: GEOCOL CONSULTORES S.A.


El esfuerzo de muestreo de las especies epífitas no vasculares para la cobertura Pastos limpios, fue representativo en un 84,3% para el estimador Bootstrap, donde se registraron 21 especies de las 24,9 estimadas, observando cómo se estabiliza en una asíntota en la curva de acumulación los estimadores S(est), el cual corresponde a las especies registradas y Bootstrap; en cuanto a la curva de Uniques (aquellas especies que se registraron solo en una muestra), esta curva registró nueve (9) especies no vascular (Ver Figura 5-144 y Anexo 10. Epifitas_1. Base de datos y Curvas Acumulación).

Versión 1 – agosto de 2018.

Figura 5-144 Curva de acumulación de especies epífitas no vasculares en la cobertura Pastos limpios en el área del proyecto.



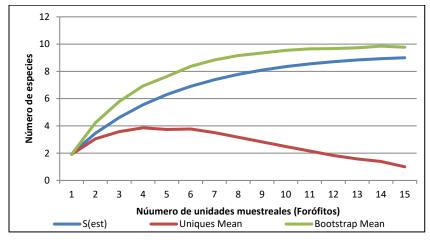
Fuente: GEOCOL CONSULTORES S.A.

• Tejido urbano continúo.

El esfuerzo de muestreo de especies epífitas vasculares para la cobertura Tejido urbano continúo, en la cual se utilizaron los estimadores S(est) y ACE, y además, se empleó la Curva de Singletons, arrojó como resultado que el estimador basado en datos de abundancia ACE fue representativo en un 100%, donde se registraron tres (3) especies de las tres (3) estimadas, lo que sumado al valor de la curva de Singletons, con cero (0) especies, ratifica un buen esfuerzo de muestreo (Ver **Figura 5-145** y **Anexo 10. Epifitas_1. Base de datos y Curvas Acumulación**).

Figura 5-145 Curva de acumulación de especies epífitas vasculares en la cobertura Tejido urbano continúo en el área del proyecto.

Fuente: GEOCOL CONSULTORES S.A.



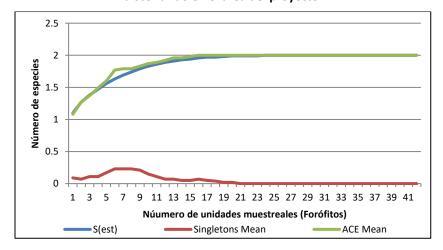
Versión 1 – agosto de 2018.

El esfuerzo de muestreo de las especies epífitas no vasculares para la cobertura Tejido urbano continúo, fue representativo en un 92,11% para el estimador Bootstrap, donde se registraron 9 especies de las 9,7 estimadas, observando cómo se estabiliza en una asíntota en la curva de acumulación los estimadores S(est), el cual corresponde a las especies registradas y Bootstrap; en cuanto a la curva de Uniques (aquellas especies que se registraron solo en una muestra), esta curva registró una (1) especie no vascular (Ver **Figura 5-146** y **Anexo 10. Epifitas_1. Base de datos y Curvas Acumulación**).

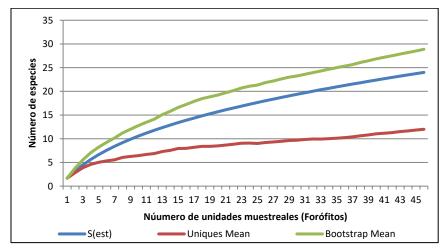
Figura 5-146 Curva de acumulación de especies epífitas no vasculares en la cobertura Tejido urbano continúo en el área del proyecto.

Fuente: GEOCOL CONSULTORES S.A.

• Tejido urbano discontinuo.


El esfuerzo de muestreo de especies epífitas vasculares para la cobertura Tejido urbano discontinúo, en la cual se utilizaron los estimadores S(est) y ACE, y además, se empleó la Curva de Singletons, arrojó como resultado que el estimador basado en datos de abundancia ACE fue representativo en un 100%, donde se registraron dos (2) especies de las dos (2) estimadas, lo que sumado al valor de la curva de Singletons, con cero (0) especies, ratifica un buen esfuerzo de muestreo (Ver **Figura 5-147** y **Anexo 10. Epifitas_1. Base de datos y Curvas Acumulación**).

Versión 1 – agosto de 2018.

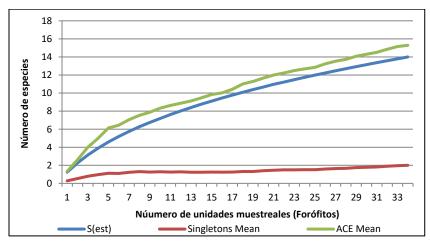

Figura 5-147 Curva de acumulación de especies epífitas vasculares en la cobertura Tejido urbano discontinúo en el área del proyecto.

Fuente: GEOCOL CONSULTORES S.A.

El esfuerzo de muestreo de las especies epífitas no vasculares para la cobertura Tejido urbano discontinúo, fue representativo en un 83,1% para el estimador Bootstrap, donde se registraron 24 especies de las 28,4 estimadas, observando cómo se estabiliza en una asíntota en la curva de acumulación los estimadores S(est), el cual corresponde a las especies registradas y Bootstrap; en cuanto a la curva de Uniques (aquellas especies que se registraron solo en una muestra), esta curva registró 12 especies no vascular (Ver Figura 5-148 y Anexo 10. Epifitas_1. Base de datos y Curvas Acumulación).

Figura 5-148 Curva de acumulación de especies epífitas no vasculares en la cobertura Tejido urbano discontinúo en el área del proyecto.

Fuente: GEOCOL CONSULTORES S.A.

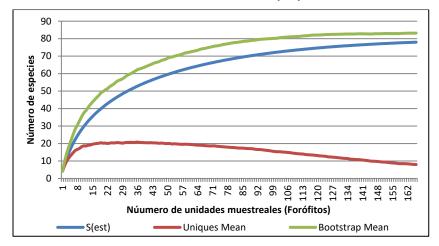

Versión 1 – agosto de 2018.

• Vegetación secundaria alta.

El esfuerzo de muestreo de especies epífitas vasculares para la cobertura Vegetación secundaria alta, en la cual se utilizaron los estimadores S(est) y ACE, y además, se empleó la Curva de Singletons, arrojó como resultado que el estimador basado en datos de abundancia ACE fue representativo en un 91,5%, donde se registraron 14 especies de las 15,2 estimadas, lo que sumado al valor de la curva de Singletons, con dos (2) especies, ratifica un buen esfuerzo de muestreo (Ver **Figura 5-149** y **Anexo 10. Epifitas_1. Base de datos y Curvas Acumulación**).

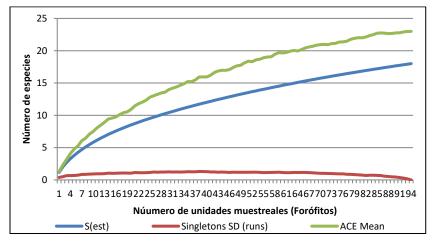
Figura 5-149 Curva de acumulación de especies epífitas vasculares en la cobertura Vegetación secundaria alta en el área del proyecto.

Fuente: GEOCOL CONSULTORES S.A.


El esfuerzo de muestreo de las especies epífitas no vasculares para la cobertura Vegetación secundaria alta, fue representativo en un 93,7% para el estimador Bootstrap, donde se registraron 78 especies de las 83 estimadas, observando cómo se estabiliza en una asíntota en la curva de acumulación los estimadores S(est), el cual corresponde a las especies registradas y Bootstrap; en cuanto a la curva de Uniques (aquellas especies que se registraron solo en una muestra), esta curva registró ocho (8) especies epífitas no vasculares (Ver Figura 5-150 y Anexo 10. Epifitas_1. Base de datos y Curvas Acumulación).

Versión 1 – agosto de 2018.

Figura 5-150 Curva de acumulación de especies epífitas no vasculares en la cobertura Vegetación secundaria alta en el área del proyecto.



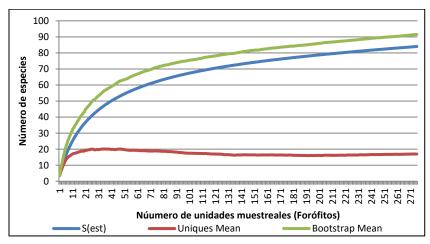
Fuente: GEOCOL CONSULTORES S.A

• Vegetación secundaria baja.

El esfuerzo de muestreo de especies epífitas vasculares para la cobertura Vegetación secundaria baja, en la cual se utilizaron los estimadores S(est) y ACE, y además, se empleó la Curva de Singletons, arrojó como resultado que el estimador basado en datos de abundancia ACE fue representativo en un 78,2%, donde se registraron 18 especies de las 23 estimadas, lo que sumado al valor de la curva de Singletons, con cuatro (4) especies, ratifica un buen esfuerzo de muestreo (Ver **Figura 5-151** y **Anexo 10. Epifitas_1. Base de datos y Curvas Acumulación**).

Figura 5-151 Curva de acumulación de especies epífitas vasculares en la cobertura Vegetación secundaria baja en el área del proyecto.

Fuente: GEOCOL CONSULTORES S.A.



Versión 1 – agosto de 2018.

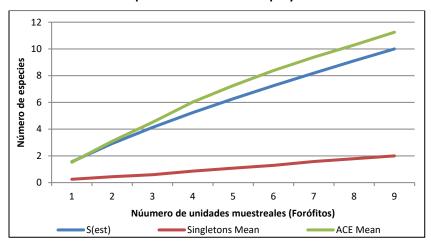
El esfuerzo de muestreo de las especies epífitas no vasculares para la cobertura Vegetación secundaria baja, fue representativo en un 91,8% para el estimador Bootstrap, donde se registraron 84 especies de las 91,4 estimadas, observando cómo se estabiliza en una asíntota en la curva de acumulación los estimadores S(est), el cual corresponde a las especies registradas y Bootstrap; en cuanto a la curva de Uniques (aquellas especies que se registraron solo en una muestra), esta curva registró 17 especies epífitas no vasculares (Ver Figura 5-152 y Anexo 10. Epifitas_1. Base de datos y Curvas Acumulación).

Figura 5-152 Curva de acumulación de especies epífitas no vasculares en la cobertura Vegetación secundaria baja en el área del proyecto.

Fuente: GEOCOL CONSULTORES S.A

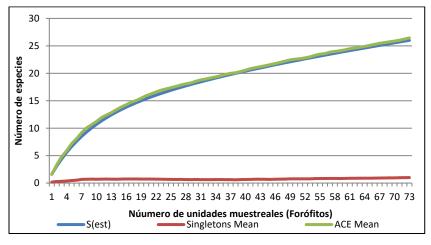
- Curvas de acumulación flora Rupícola y facultativo terrestre.

Bosque denso.


El esfuerzo de muestreo de especies de hábito rupícola y facultativo terrestre vasculares para la cobertura el Bosque denso, en la cual se utilizaron los estimadores S(est) y ACE, y además, se empleó la Curva de Singletons, arrojó como resultado que el estimador basado en datos de abundancia ACE fue representativo en un 88,8%, donde se registraron 10 especies de las 11,25 estimadas, lo que sumado al valor de la curva de Singletons, con dos (2) especies, ratifica un buen esfuerzo de muestreo (Ver **Figura 5-153** y **Anexo 10. Epifitas_1. Base de datos y Curvas Acumulación**).

Versión 1 – agosto de 2018.

Figura 5-153 Curva de acumulación de especies rupícola y facultativo terrestre vasculares en la cobertura Bosque denso en el área del proyecto.

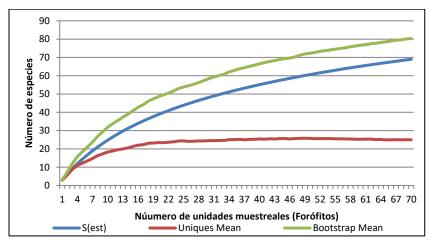


Fuente: GEOCOL CONSULTORES S.A.

• Bosque de galería.

El esfuerzo de muestreo de especies rupícola y facultativo terrestre vasculares para la cobertura Bosque de galería, en la cual se utilizaron los estimadores S(est) y ACE, y además, se empleó la Curva de Singletons, arrojó como resultado que el estimador basado en datos de abundancia ACE fue representativo en un 98,3%, donde se registraron 26 especies de las 26,4 estimadas, lo que sumado al valor de la curva de Singletons, con una (1) especie, ratifica un buen esfuerzo de muestreo (Ver **Figura 5-154** y **Anexo 10. Epifitas_1. Base de datos y Curvas Acumulación**).

Figura 5-154 Curva de acumulación de especies rupícola y facultativo terrestre vasculares en la cobertura Bosque de galería en el área del proyecto.



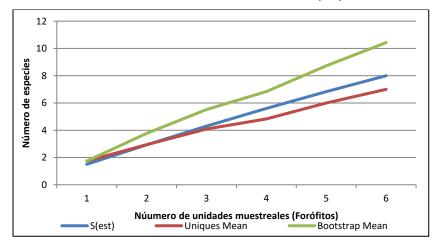
Versión 1 – agosto de 2018.

El esfuerzo de muestreo de las especies rupícola y facultativo terrestre no vasculares para la cobertura Bosque de galería, fue representativo en un 85,8% para el estimador Bootstrap, donde se registraron 69 especies de las 80 estimadas, observando cómo tienden a una asíntota en la curva de acumulación los estimadores S(est), el cual corresponde a las especies registradas y Bootstrap; en cuanto a la curva de Uniques (aquellas especies que se registraron solo en una muestra), esta curva registró 25 especies epífitas no vasculares (Ver **Figura 5-155** y **Anexo 10. Epifitas_1. Base de datos y Curvas Acumulación**).

Figura 5-155 Curva de acumulación de especies rupícola y facultativo terrestre no vasculares en la cobertura Vegetación secundaria baja en el área del proyecto.

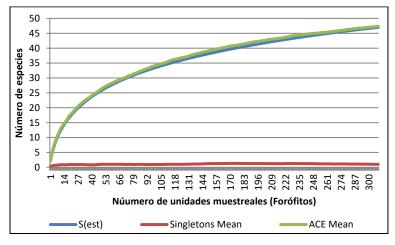
Fuente: GEOCOL CONSULTORES S.A.

• Mosaico de cultivos.


El esfuerzo de muestreo de las especies rupícola y facultativo terrestre no vasculares para la cobertura Mosaico de cultivos, fue representativo en un 76,7% para el estimador Bootstrap, donde se registraron 8 especies de las 10,4 estimadas, observando cómo tienden a una asíntota en la curva de acumulación los estimadores S(est), el cual corresponde a las especies registradas y Bootstrap; en cuanto a la curva de Uniques (aquellas especies que se registraron solo en una muestra), esta curva registró siente (7) especies epífitas no vasculares (Ver Figura 5-156 y Anexo 10. Epifitas_1. Base de datos y Curvas Acumulación).

Versión 1 – agosto de 2018.

Figura 5-156 Curva de acumulación de especies rupícola y facultativo terrestre no vasculares en la cobertura Mosaico de cultivos en el área del proyecto.

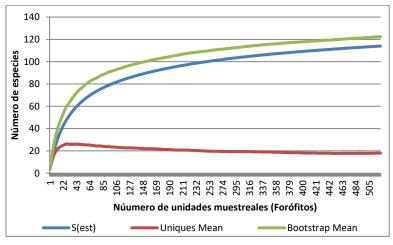


Fuente: GEOCOL CONSULTORES S.A

Mosaico de Pastos y cultivos.

El esfuerzo de muestreo de especies rupícola y facultativo terrestre vasculares para la cobertura Mosaico de pastos y cultivos, en la cual se utilizaron los estimadores S(est) y ACE, y además, se empleó la Curva de Singletons, arrojó como resultado que el estimador basado en datos de abundancia ACE fue representativo en un 99,1%, donde se registraron 47 especies de las 47,3 estimadas, lo que sumado al valor de la curva de Singletons, con una (1) especie, ratifica un buen esfuerzo de muestreo (Ver **Figura 5-157** y **Anexo 10**. **Epifitas_1. Base de datos y Curvas Acumulación**).

Figura 5-157 Curva de acumulación de especies rupícola y facultativo terrestre vasculares en la cobertura Mosaico de pastos y cultivos en el área del proyecto.



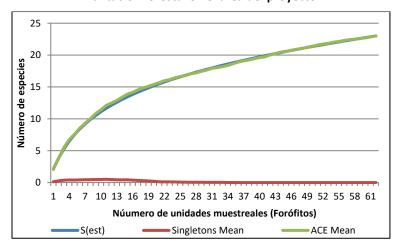
Versión 1 – agosto de 2018.

El esfuerzo de muestreo de las especies rupícola y facultativo terrestre no vasculares para la cobertura Mosaico de pastos y cultivos, fue representativo en un 93,1% para el estimador Bootstrap, donde se registraron 114 especies de las 122 estimadas, observando cómo tienden a una asíntota en la curva de acumulación los estimadores S(est), el cual corresponde a las especies registradas y Bootstrap; en cuanto a la curva de Uniques (aquellas especies que se registraron solo en una muestra), esta curva registró 18 especies epífitas no vasculares (Ver **Figura 5-158** y **Anexo 10. Epifitas_1. Base de datos y Curvas Acumulación**).

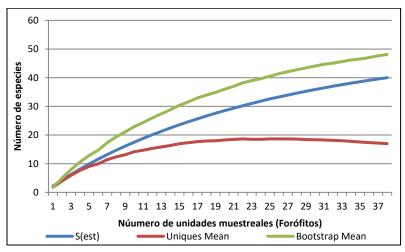
Figura 5-158 Curva de acumulación de especies rupícola y facultativo terrestre no vasculares en la cobertura Mosaico de pastos y cultivos en el área del proyecto.

Fuente: GEOCOL CONSULTORES S.A.

• Plantación forestal.


El esfuerzo de muestreo de especies rupícola y facultativo terrestre vasculares para la cobertura Plantación forestal, en la cual se utilizaron los estimadores S(est) y ACE, y además, se empleó la Curva de Singletons, arrojó como resultado que el estimador basado en datos de abundancia ACE fue representativo en un 100%, donde se registraron 23 especies de las 23 estimadas, lo que sumado al valor de la curva de Singletons, con cero (0) especies, ratifica un buen esfuerzo de muestreo (Ver Figura 5-159 y Anexo 10. Epifitas_1. Base de datos y Curvas Acumulación).

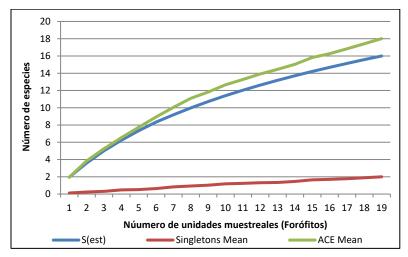
Versión 1 – agosto de 2018.


Figura 5-159 Curva de acumulación de especies rupícola y facultativo terrestre vasculares en la cobertura Plantación forestal en el área del proyecto.

Fuente: GEOCOL CONSULTORES S.A.

El esfuerzo de muestreo de las especies rupícola y facultativo terrestre no vasculares para la cobertura Plantación forestal, fue representativo en un 83,1% para el estimador Bootstrap, donde se registraron 40 especies de las 48,1 estimadas, observando cómo tienden a una asíntota en la curva de acumulación los estimadores S(est), el cual corresponde a las especies registradas y Bootstrap; en cuanto a la curva de Uniques (aquellas especies que se registraron solo en una muestra), esta curva registró 17 especies epífitas no vasculares (Ver Figura 5-160 y Anexo 10. Epifitas_1. Base de datos y Curvas Acumulación).

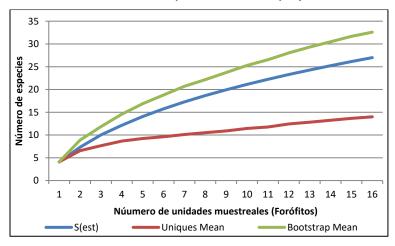
Figura 5-160 Curva de acumulación de especies rupícola y facultativo terrestre no vasculares en la cobertura Plantación forestal en el área del proyecto.


Versión 1 – agosto de 2018.

Pastos limpios.

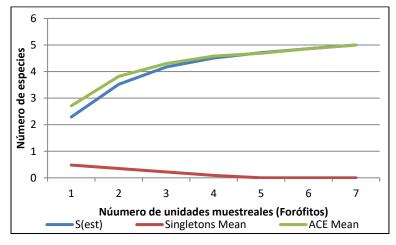
El esfuerzo de muestreo de especies rupícola y facultativo terrestre vasculares para la cobertura Pastos limpios, en la cual se utilizaron los estimadores S(est) y ACE, y además, se empleó la Curva de Singletons, arrojó como resultado que el estimador basado en datos de abundancia ACE fue representativo en un 88,8%, donde se registraron 16 especies de las 18 estimadas, lo que sumado al valor de la curva de Singletons, con dos (2) especies, ratifica un buen esfuerzo de muestreo (Ver **Figura 5-161** y **Anexo 10. Epifitas_1. Base de datos y Curvas Acumulación**).

Figura 5-161 Curva de acumulación de especies rupícola y facultativo terrestre vasculares en la cobertura Pastos limpios en el área del proyecto.


Fuente: GEOCOL CONSULTORES S.A.

El esfuerzo de muestreo de las especies rupícola y facultativo terrestre no vasculares para la cobertura Pastos limpios, fue representativo en un 82,8% para el estimador Bootstrap, donde se registraron 27 especies de las 32,5 estimadas, observando cómo tienden a una asíntota en la curva de acumulación los estimadores S(est), el cual corresponde a las especies registradas y Bootstrap; en cuanto a la curva de Uniques (aquellas especies que se registraron solo en una muestra), esta curva registró 14 especies epífitas no vasculares (Ver **Figura 5-162** y **Anexo 10. Epifitas_1. Base de datos y Curvas Acumulación**).

Figura 5-162 Curva de acumulación de especies rupícola y facultativo terrestre no vasculares en la obertura Pastos limpios en el área del proyecto.

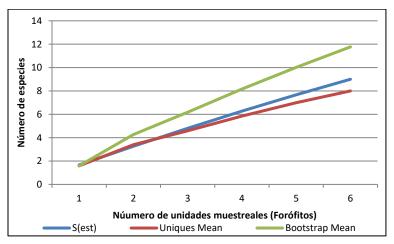


Fuente: GEOCOL CONSULTORES S.A.

• Tejido urbano continúo.

El esfuerzo de muestreo de especies rupícola y facultativo terrestre vasculares para la cobertura Tejido urbano continuo, en la cual se utilizaron los estimadores S(est) y ACE, y además, se empleó la Curva de Singletons, arrojó como resultado que el estimador basado en datos de abundancia ACE fue representativo en un 100%, donde se registraron 5 especies de las 5 estimadas, lo que sumado al valor de la curva de Singletons, con cero (0) especies, ratifica un buen esfuerzo de muestreo (Ver **Figura 5-163** y **Anexo 10. Epifitas_1. Base de datos y Curvas Acumulación**).

Figura 5-163 Curva de acumulación de especies rupícola y facultativo terrestre vasculares en la cobertura Tejido urbano continuo en el área del proyecto.


Versión 1 – agosto de 2018.

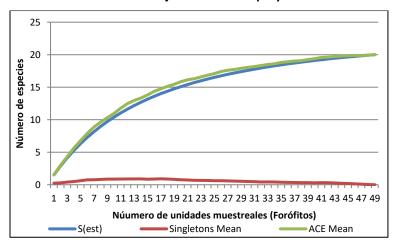
• Tejido urbano discontinuo.

El esfuerzo de muestreo de las especies rupícola y facultativo terrestre no vasculares para la cobertura Tejido urbano discontinuo, fue representativo en un 76,4% para el estimador Bootstrap, donde se registraron 9 especies de las 11,7 estimadas, observando cómo tienden a una asíntota en la curva de acumulación los estimadores S(est), el cual corresponde a las especies registradas y Bootstrap; en cuanto a la curva de Uniques (aquellas especies que se registraron solo en una muestra), esta curva registró ocho (8) especies epífitas no vasculares (Ver Figura 5-164 y Anexo 10. Epifitas_1. Base de datos y Curvas Acumulación).

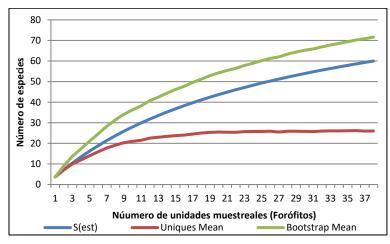
Figura 5-164 Curva de acumulación de especies rupícola y facultativo terrestre no vasculares en la cobertura Pastos limpios en el área del proyecto.

Fuente: GEOCOL CONSULTORES S.A

• Vegetación secundaria baja.


El esfuerzo de muestreo de especies rupícola y facultativo terrestre vasculares para la cobertura Vegetación secundaria baja, en la cual se utilizaron los estimadores S(est) y ACE, y además, se empleó la Curva de Singletons, arrojó como resultado que el estimador basado en datos de abundancia ACE fue representativo en un 100%, donde se registraron 20 especies de las 20 estimadas, lo que sumado al valor de la curva de Singletons, con cero (0) especies, ratifica un buen esfuerzo de muestreo (Ver Figura 5-165 y Anexo 10. Epifitas_1. Base de datos y Curvas Acumulación).

Versión 1 – agosto de 2018.


Figura 5-165 Curva de acumulación de especies rupícola y facultativo terrestre vasculares en la Vegetación secundaria baja en el área del proyecto.

Fuente: GEOCOL CONSULTORES S.A

El esfuerzo de muestreo de las especies rupícola y facultativo terrestre no vasculares para la cobertura Vegetación secundaria baja, fue representativo en un 83,7% para el estimador Bootstrap, donde se registraron 60 especies de las 71,6 estimadas, observando cómo tienden a una asíntota en la curva de acumulación los estimadores S(est), el cual corresponde a las especies registradas y Bootstrap; en cuanto a la curva de Uniques (aquellas especies que se registraron solo en una muestra), esta curva registró 14 especies epífitas no vasculares (Ver Figura 5-166 y Anexo 10. Epifitas_1. Base de datos y Curvas Acumulación).

Figura 5-166 Curva de acumulación de especies rupícola y facultativo terrestre no vasculares en la cobertura Vegetación secundaria baja en el área del proyecto.

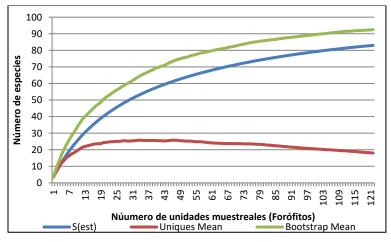

Versión 1 – agosto de 2018.

• Vegetación secundaria alta.

El esfuerzo de muestreo de especies rupícola y facultativo terrestre vasculares para la cobertura Vegetación secundaria alta, en la cual se utilizaron los estimadores S(est) y ACE, y además, se empleó la Curva de Singletons, arrojó como resultado que el estimador basado en datos de abundancia ACE fue representativo en un 97,3%, donde se registraron 33 especies de las 33,9 estimadas, lo que sumado al valor de la curva de Singletons, con dos (2) especies, ratifica un buen esfuerzo de muestreo (Ver **Figura 5-167** y **Anexo 10**. **Epifitas_1**. **Base de datos y Curvas Acumulación**).

Figura 5-167 Curva de acumulación de especies rupícola y facultativo terrestre vasculares en la Vegetación secundaria alta en el área del proyecto.

Fuente: GEOCOL CONSULTORES S.A.


El esfuerzo de muestreo de las especies rupícola y facultativo terrestre no vasculares para la cobertura Vegetación secundaria alta, fue representativo en un 89,7% para el estimador Bootstrap, donde se registraron 83 especies de las 92,4 estimadas, observando cómo tienden a una asíntota en la curva de acumulación los estimadores S(est), el cual corresponde a las especies registradas y Bootstrap; en cuanto a la curva de Uniques (aquellas especies que se registraron solo en una muestra), esta curva registró 18 especies epífitas no vasculares (Ver Figura 5-168 y Anexo 10. Epifitas_1. Base de datos y Curvas Acumulación).

Versión 1 – agosto de 2018.

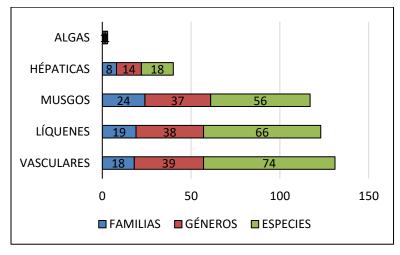
Figura 5-168 Curva de acumulación de especies rupícola y facultativo terrestre no vasculares en la cobertura Vegetación secundaria alta en el área del proyecto.

Fuente: GEOCOL CONSULTORES S.A

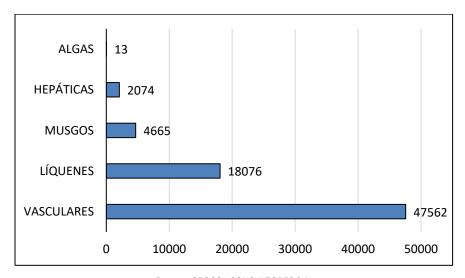
Composición y diversidad de la flora vascular y no vascular de hábito de crecimiento epifito, rupícola y facultativo terrestre.

La composición de especies epífitas, rupícolas y terrestres en el área del proyecto, para las cuales se realizó la caracterización (**Anexo 10. Epifitas**), estuvo representada por 215 especies, 74 de estas fueron especies vasculares y 141 especies no vasculares, con un total de 72.390 registros para los dos grupos de especies (abundancia para las vasculares y frecuencia para las no vasculares).

Durante el desarrollo de la fase de campo fue necesario realizar algunas recolectas definitivas, con el fin de verificar con certeza la categoría taxonómica, los ejemplares fueron identificados y depositados en herbarios acreditados, los respectivos certificados se presentan en el **Anexo 10. Epifitas_ 2. Certificados de Herbario**.


Los grupos de mayor riqueza fueron las especies vasculares, con 18 familias, 39 géneros y 74 especies, seguida por los líquenes con 19 familias, 38 géneros y 66 especies, los musgos con 24 familias, 37 géneros y 56 especies, las hepáticas con 8 familia, 14 géneros y 18 especies y las Algas con una especie (ver **Figura 5-169**).

Versión 1 – agosto de 2018.


Figura 5-169 Riqueza de especies epífitas, rupícolas y terrestres vasculares y no vasculares en el área del proyecto.

Fuente: GEOCOL CONSULTORES S.A.

En cuanto a la frecuencia/abundancia en el área del proyecto, para la cual se realizó la caracterización, se obtuvieron un total de 72.390 registros para los dos tipos de epífitas, de estos, las especies vasculares fueron las mejor representadas con una abundancia de 47.562 registros, seguidas por los líquenes con una frecuencia de 18.076 registros, en tercer lugar los musgos con 4.665 registros de frecuencia, las hepáticas con 2074 registros de frecuencia y las algas con 13 registros de frecuencia (ver **Figura 5-170**).

Figura 5-170 Frecuencia/Abundancia de epífitas vasculares y no vasculares en el área del proyecto.

Versión 1 – agosto de 2018.

La alta abundancia de las epífitas vasculares en el área del proyecto es de esperar, en consideración que éstas pertenecen a un grupo de plantas en el que se estima existen alrededor de 29.505 especies pertenecientes a 83 familias, en las cuales el hábito epífito se ha convertido en una exitosa estrategia adaptativa (Gentry & Dodson, 1987), estos organismos aumentan la complejidad del dosel y proveen recursos adicionales para la fauna (Nadkarni & Matelson, 1989). Muy pocas familias de plantas han tenido tanto éxito al experimentar una radiación extensiva como las epífitas vasculares, de hecho, más de dos tercios de todas las especies epífitas conocidas pertenecen a la familia Orquidaceae y en gran medida la comprensión de la diversidad de epífitas es sinónimo del entendimiento de las orquídeas (Gentry & Dodson, 1987).

En cuanto a la riqueza y frecuencias registradas para los líquenes se debe a que son organismos ampliamente distribuidos en casi todos los ecosistemas terrestres, dado que pueden crecer en un amplio espectro de temperaturas, niveles de humedad y alturas, y son productores primarios en los ecosistemas en los que se encuentran (Sillet *et. al*, 2000). Además, son organismos con tolerancia específica o altamente tolerantes a ambientes extremos en los que se limita el crecimiento de plantas vasculares (Thomas, 1961). Debido a lo anterior, los hongos liquenizados son considerados como organismos bioindicadores, específicamente del aire debido a su condición de poiquilohídricos, por la cual adquieren el agua del aire, y debido a la ausencia de cutícula mantienen una directa interacción con el aire y sus solutos (Aragón *et. al*, 2007; Espitia, 2011).

- Diversidad alfa (α).

Se emplearon índices de diversidad alfa para estimar la diversidad en el área del proyecto vial, para la cual se realiza la caracterización (ver **Tabla 5.95**); el índice de Simpson (λ), fuertemente influenciado por las especies más dominantes, donde adquiere la tendencia de ser más cercano a uno cuando se presenta mayor dominancia de la muestra estudiada. El índice de equidad de Shannon-Wiener (H') puede verse fuertemente influenciado por las especies más abundantes; este índice contempla valores entre cero (0) cuando hay una sola especie y Ln(S) cuando todas las especies están representadas por el mismo número de individuos (Villarreal *et. al*, 2006).

Tabla 5.95 Índices de diversidad alfa aplicados a la flora epífita, rupícola y facultativo terrestre por cobertura y en toda el área del proyecto

					VALOR	ES DE LA	DIVERS	IDAD A	LFA (α)					
ÍNDICES	BDA	BG	EMC	HAR	МС	МРС	PF	PL	RV	TUC	TUD	VSA	VSB	TODAS LAS COBERTURAS
Riqueza	60	136	6	7	46	181	88	58	4	16	31	126	140	215
Frec./Abund.	1604	13847	489	8	691	36139	4436	1491	56	433	1375	4517	7304	72390
Shannon_H	3,22	3,10	0,59	1,91	1,92	3,69	2,70	2,60	1,07	1,57	0,91	3,90	3,71	3,735
Simpson_1-D	0,94	0,87	0,30	0,84	0,61	0,93	0,84	0,86	0,61	0,61	0,33	0,96	0,95	0,935

Dónde: BD: Bosque denso, BG: Bosque de galería, EMC: Explotación de material de construcción, HAR: Herbazal abierto rocoso, MC: Mosaico de cultivos, MPC: Mosaico de pastos y cultivos, PF: Plantación forestal, PL: Pastos limpios, RV: Red vial, TUC: Tejido urbano continuo, TUD: Tejido urbano discontinuo, Vsa: Vegetación secundaria alta y VSB: Vegetación secundaria baja.

Fuente: GEOCOL CONSULTORES S.A.

El índice de dominancia de Simpson obtuvo un valor de 0,93 (ver **Tabla 5.95**); este alto valor de dominancia estuvo influenciado por un grupo de especies que por sus características morfo-fisiológicas tuvieron un alto número de registros, esto sumado al valor del índice de Shannon de 3,73, alcanzando un 70% de la máxima

Versión 1 – agosto de 2018.

diversidad esperada para la muestra (Ln de la riqueza), ratifica el área del proyecto, en lo relacionado con la diversidad alfa de especies epífitas, como medianamente equitativo bajo los parámetros de Shannon y con alta dominancia de algunas especies en la muestra, como lo expone el valor del índice de Simpson.

Por cobertura vegetal caracterizada, el índice de dominancia de Simpson tuvo el mayor valor en la cobertura Vegetación secundaria alta, con un valor de 0,96, seguida por Vegetación secundaria baja con 0,95, mientras que la cobertura con menor valor de dominancia fue Explotación de material de construcción, con 0,30; el índice de equidad de Shannon presento el valor más alto en la cobertura Vegetación secundaria alta, con 3,90 (80,6% de la máxima diversidad esperada para la muestra), seguida por Vegetación secundaria baja, con 3,7 (75,1), mientras que en la cobertura con el menor valor de Shannon fue Explotación de material de construcción con un valor de 0,59 (ver **Tabla 5.95**).

Además, en las epífitas vasculares sobresalen por sus altas abundancias la orquídea *Pleurothallis pulchella*, (Ver **Fotografía 5-13**) con 4344 registros, seguida por la también orquídea *Elleanthus sphaerocephalus*, con 4062 registros (Ver **Fotografía 5-14**), con 354 registros y dentro de las epífitas no vasculares sobresalen por sus altos valores de frecuencia los líquenes *Usnea* sp.2 (Ver **Fotografía 5-15**), con 1463 registros y *Parmotrema dilatatum* (Ver **Fotografía 5-16**), con 1117 registros de frecuencia.

Fotografía 5-13 Pleurothallis pulchella (Kunth) Lindl. Fotografía 5-14 Elleanthus sphaerocephalus Schltr. (Orchidaceae). (Orchidaceae).

Versión 1 – agosto de 2018.

Fotografía 5-15 Usnea sp.2 (Parmeliaceae).

Fotografía 5-16 *Parmotrema dilatatum* (Vain.) Hale (Parmeliaceae).

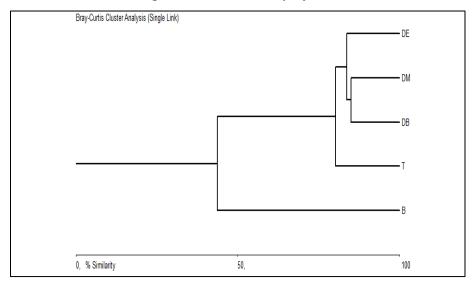
Fuente: GEOCOL CONSULTORES S.A.

Diversidad beta (β).

A continuación, se presentan los resultados del cálculo de la diversidad beta vertical (β), es decir, el recambio de las 47 especies epífitas vasculares y 127 especies epífitas no vasculares en los cinco (5) estratos verticales de los forófitos muestreados en las coberturas del proyecto vial. Los estratos propuestos por Johansson (1974), corresponden a la Base (B), el Tronco (T), el Dosel bajo (Db), el Dosel medio (Dm) y el Dosel externo (De). La diversidad Beta vertical se calculó por medio del índice de Bray-Curtis y se exponen los resultados a través de un Dendrograma de similitud.

En el caso de las especies epífitas vasculares análisis de la diversidad beta vertical, expuso que los estratos verticales más similares fueron dosel bajo y dosel medio, con una similitud del 84,9%, a este clúster se le une el dosel externo con una similitud del 83,6% (ver **Tabla 5.96**).

Tabla 5.96 Índice de similitud de Bray-Curtis expresando la diversidad beta vertical de las especies vasculares de hábito epífito registradas en el área del proyecto.


ÍNDICE DE SIMILA	RIDAD	VERTICAL	VASCULA	RES DE BRA	Y-CURTIS
ESTRATO	В	Т	DB	DM	DE
В	*	43,7	30,3	25,2	31,6
T	*	*	73,2	64,9	80,2
DB	*	*	*	84,9	83,6
DM	*	*	*	*	78,3
DE	*	*	*	*	*

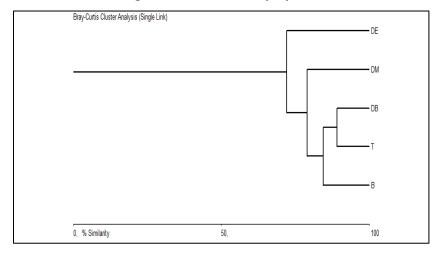
Versión 1 – agosto de 2018.

Figura 5-171 Dendrograma del comportamiento de la diversidad beta vertical de las especies vasculares registradas en el área del proyecto.

Fuente: GEOCOL CONSULTORES S.A

El análisis de la diversidad beta vertical de las especies epífitas no vasculares registradas en el área del proyecto, expuso que los estratos verticales más similares fueron dosel bajo y el tronco, con una similitud del 89,1%, a este clúster se le une la base, con una similitud del 84,5% (ver **Tabla 5.97** y **Figura 5-172**).

Tabla 5.97 Índice de similitud de Bray-Curtis expresando la diversidad beta vertical de las especies no vasculares de hábito epífito registradas en el área del proyecto.


ÍNDICE DE SIMILA	RIDAE) VERTICAL	VASCULA	RES DE BRA	Y-CURTIS
ESTRATO	В	Т	DB	DM	DE
В	*	84,5	83,3	74,7	52,0
Т	*	*	89,1	69,7	46,4
DB	*	*	*	79,0	53,8
DM	*	*	*	*	72,1
DE	*	*	*	*	*

Versión 1 – agosto de 2018.

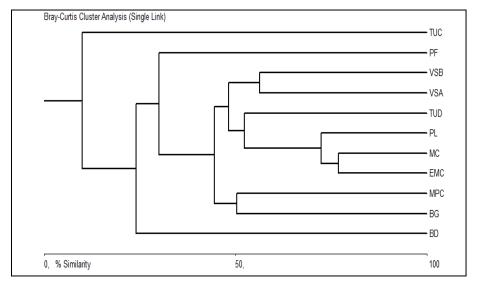
Figura 5-172 Dendrograma del comportamiento de la diversidad beta vertical de las especies vasculares registradas en el área del proyecto.

Fuente: GEOCOL CONSULTORES S.A.

A continuación, se presentan los resultados del cálculo de la diversidad beta horizontal (β), es decir, el recambio de las especies vasculares y no vasculares en las 13 coberturas en el área del proyecto, estimada por medio del índice de Bray-Curtis y se exponen los resultados a través de un dendograma de similitud. El análisis expuso que las coberturas más similares fueron Mosaico de cultivos y Explotación de material de construcción, con una similitud del 76,9%, a este clúster se le une la cobertura de Pastos limpios, con un 72,4%, además se presenta un cluster entre las coberturas Vegetación secundaria alta y Vegetación secundaria baja, con un 56,3% de similitud (ver **Tabla 5.98** y **Figura 5-173**). Esta similitud entre las coberturas se debe a la composición y estructura de la flora epífita que comparten entre ellas.

Tabla 5.98 Índice de similitud de Bray-Curtis expresando la diversidad beta horizontal de las especies epífitas, rupícolas y terrestres vasculares y no vasculares registradas en el área del proyecto.

	ĺl	NDICE	DE SIN	IILARIE	DAD HC	RIZON	ITAL D	E BRAY	/-CURT	'IS	
	BD	BG	EMC	MC	MPC	PF	PL	TUC	TUD	VSA	VSB
BD	*	10,0	6,8	8,1	5,3	24,1	11,4	8,6	6,8	22,7	16,0
BG	*	*	8,4	10,4	50,3	12,3	13,8	1,6	21,4	31,7	44,4
EMC	*	*	*	76,9	4,3	4,5	72,4	1,4	51,3	25,7	21,0
MC	*	*	*	*	5,6	10,1	71,1	3,0	51,2	36,1	26,8
MPC	*	*	*	*	*	7,9	7,2	0,8	11,5	20,5	30,0
PF	*	*	*	*	*	*	7,6	10,0	6,2	30,0	26,4
PL	*	*	*	*	*	*	*	1,7	52,4	32,7	30,5
TUC	*	*	*	*	*	*	*	*	1,7	5,9	3,3
TUD	*	*	*	*	*	*	*	*	*	29,5	48,2
VSA	*	*	*	*	*	*	*	*	*	*	56,3
VSB	*	*	*	*	*	*	*	*	*	*	*


Dónde: BD: Bosque denso, BG: Bosque de galería, EMC: Explotación de material de construcción, HAR: Herbazal abierto rocoso, MC: Mosaico de cultivos, MPC: Mosaico de pastos y cultivos, PF: Plantación forestal, PL: Pastos limpios, RV: Red vial, TUC: Tejido urbano continuo, TUD: Tejido urbano discontinuo, Vsa: Vegetación secundaria alta y VSB: Vegetación secundaria baja.

Versión 1 – agosto de 2018.

Figura 5-173 Dendrograma del comportamiento de la diversidad beta horizontal de las especies epífitas, rupícolas y terrestres vasculares y no vasculares registradas en el área del proyecto.

Dónde: BD: Bosque denso, BG: Bosque de galería, EMC: Explotación de material de construcción, HAR: Herbazal abierto rocoso, MC: Mosaico de cultivos, MPC: Mosaico de pastos y cultivos, PF: Plantación forestal, PL: Pastos limpios, RV: Red vial, TUC: Tejido urbano continuo, TUD: Tejido urbano discontinuo, Vsa: Vegetación secundaria alta y VSB: Vegetación secundaria baja.

Fuente: GEOCOL CONSULTORES S.A.

Especies Epífitas.

Epífitas vasculares.

La composición florística de las especies vasculares de hábito epífito que se registraron en 11 de las 13 coberturas caracterizadas en el área del proyecto, para las cuales se realizó la caracterización, estuvo representada por 47 especies, distribuidas en 10 familias, 24 géneros y 24738 registros de abundancia (Ver **Tabla 5.99**). Las familias con mayor riqueza de especies fueron Orchidaceae con 11 géneros y 24 especies y Bromeliaceae con cuatro (4) géneros y 12 especies, seguidas por tres (3) familias con dos (2) especies cada una y otras seis (6) familias con una (1) especie cada una (**Figura 5-174**).

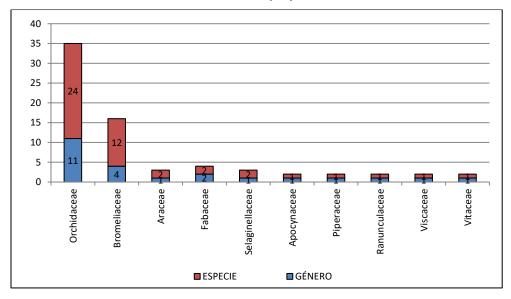
Tabla 5.99 Composición las especies vasculares de hábito epífito por cobertura y en toda el área del proyecto.

FAMILIA	ESPECIES	BD	BG	EMC	мс	MPC	PF	PL	TUC	TUD	VSA	VSB	ABUNDANC IA TOTAL
Apocynaceae	<i>Mandevilla mollissima</i> (Kunth) K.Schum.					1							1
Aragana	Anthurium aff. fendleri Schott		2										2
Araceae	Anthurium sanguineum Engl.	29											29
	Pitcairnia sp.1					3						3	6
Bromeliaceae	Racinaea pectinata (André) M.A. Spencer & L.B. Sm.		287	1	3	174	7		7		14	87	580
	Tillandsia complanata Benth.	150	271			67	51		9		33	4	585

Versión 1 – agosto de 2018.

FAMILIA	ESPECIES	BD	BG	EMC	МС	МРС	PF	PL	TUC	TUD	VSA	VSB	ABUNDANC IA TOTAL
	Tillandsia fendleri Griseb		651			36	11				7	19	724
	Tillandsia incarnata Kunth	1	126			122							249
	Tillandsia lajensis André.		23			31	8				6		68
	Tillandsia mima L.B. Sm.					3	2						5
	Tillandsia pastensis André	198				2	4						204
	Tillandsia recurvata (L.) L.		2213	402	429	7523		441		1119	486	1092	13705
	Tillandsia tetrantha Ruiz & Pav.	2	33	70	26	1	24	224	2	04	-	4	40
	Tillandsia usneoides (L.). L.	60	3651	70	26	2390	31	231	3	81	5	176	6724
Fabaceae	Dioclea sp.1 Vicia andicola Kunth					95						1	96
	Cyclopogon elatus (Sw.) Schltr.					3						1	3
	Elleanthus sphaerocephalus Schltr.					7	332					13	352
	Epidendrum cf. colombianum					,	332					13	332
	A.D.Hawkes										24		24
	<i>Epidendrum coryophorum</i> (Kunth) Rchb.f.	79									10		89
	Epidendrum melinanthum Schltr.					9							9
	Epidendrum secundum Jacq.		6			4							10
	Epidendrum sp.1					41							41
	Epidendrum sp.2		1										1
	Epidendrum sp.4	30											30
	<i>Epidendrum tulcanense</i> Hágsater & Dodson	57	4										61
Orchidaceae	Govenia sodiroi Schltr.		1			2							3
	Maxillaria sp.1	3	31			7	28						69
	Oncidium ornithorhynchum Kunth					73					1		74
	Oncidium sp.1										2		2
	Platystele sp.1											1	1
	Pleurothallis coriacardia Rchb. f.										18		18
	Pleurothallis lamellaris Lindl.		3										3
	Pleurothallis pulchella (Kunth) Lindl.					31							31
	Stelis nutans Lindl.		70										70
	Stelis sp.1	150											150
	Stelis sp.2										60	31	91
	Stelis sp.4					<u> </u>						62	62
	Takulumena uribei Szlach. & Kolan.	12	ļ .			80							92
	Telipogon nervosus (L.) Druce		3			_							3
Piperaceae	Peperomia sp.					3						1	4
	Thalictrum sp.1		4.1			22	-				07	10	10
•	Selaginella sellowii Hieron.	4	11			38	6				87	23	169
e	Selaginella sp.		1		1	5						3	10
Viscaceae	Dendrophthora clavata (Benth.) Urb.					2					1		1
Vitaceae 10 FAMILIAS	Cissus trianae Planch. 46 ESPECIES	775	7388	473	459	3 1075	480	672	19	1200	75/1	1531	3 24505
10 PAIVIILIAS	40 ESPECIES	//3	7308	4/3	433	4	400	0/2	15	1200	734	1331	24303

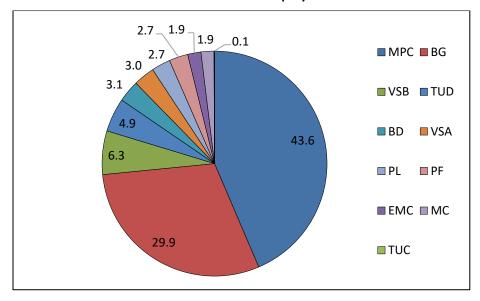
Dónde: BD: Bosque denso, BG: Bosque de galería, EMC: Explotación de material de construcción, MC: Mosaico de cultivos, MPC: Mosaico de pastos y cultivos, PF: Plantación forestal, PL: Pastos limpios, TUC: Tejido urbano continuo, TUD: Tejido urbano discontinuo, VSA: Vegetación secundaria alta y VSB: Vegetación secundaria baja.


 $\label{prop:fuente:geocol} \textit{Fuente: GEOCOL CONSULTORES S.A.}$

Versión 1 – agosto de 2018.

Figura 5-174 Distribución de la riqueza de géneros y especies por familias de especies epífitas vasculares en el área del proyecto.

Fuente: GEOCOL CONSULTORES S.A.

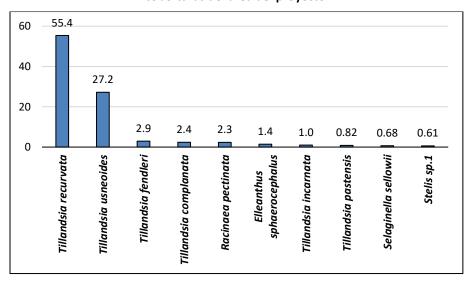

En cuanto a la distribución de las especies epífitas vasculares en las 11 coberturas en las cuales se registraron las especies epífitas vasculares, se presentó una mayor abundancia en las coberturas Mosaico de pastos y cultivos, con 10778 registros, es decir el 43,6%, debido a que es la cobertura con mayor área en el proyecto, seguida por Bosque de galería, con 7388 registros, es decir el 29,9, en tercer lugar Vegetación secundaria baja, con 1550 registros, es decir el 6,3% de la abundancia total, mientras que las coberturas con menor abundancia de especies epífitas vasculares fueron Mosaico de cultivos, con 459 registros, es decir el 1,9% y Tejido urbano continuo, representada con 19 registros, es decir el 0,1 (ver **Figura 5-175**).

Versión 1 – agosto de 2018.

Figura 5-175 Abundancia de las especies vasculares de hábito epífito y facultativo terrestre en las coberturas del Área del proyecto.

Dónde: BD: Bosque denso, BG: Bosque de galería, EMC: Explotación de material de construcción, MC: Mosaico de cultivos, MPC: Mosaico de pastos y cultivos, PF: Plantación forestal, PL: Pastos limpios, TUC: Tejido urbano continuo, TUD: Tejido urbano discontinuo, VSA: Vegetación secundaria alta y VSB: Vegetación secundaria baja.

Fuente: GEOCOL CONSULTORES S.A


En lo relacionado a la abundancia de las especies vasculares de hábito epífito en el área del proyecto, la especie de la familia Bromeliaceae *Tillandsia recurvata* (ver **Fotografía 5-17**) ocupo el primer lugar en con un total de 13705 registros, es decir el 55,4% del total de la abundancia registrada para la flora vascular de hábito epífito, en segundo lugar, se encontró *Tillandsia usneoides* (ver **Fotografía 5-18**), con un total de 6724 registros, es decir el 27,2%, en tercer lugar, *Tillandsia fendleri* (ver **Fotografía 5-19**), con 724 registro, es decir el 2,9% de la abundancia total y en cuarto lugar *Tillandsia complanata* (Ver **Fotografía 5-20**), con 585, es decir el 2,4% de la abundancia total (ver **Figura 5-176**).

Versión 1 – agosto de 2018.

Figura 5-176 Abundancia de las especies vasculares de hábito epífito y facultativo terrestre en las coberturas del área del proyecto.

Fotografía 5-17 *Tillandsia recurvata* (L.) L. (Bromeliaceae).

Fotografía 5-18 *Tillandsia usneoides* (L.). L. (Bromeliaceae).

Versión 1 – agosto de 2018.

Fotografía 5-19 *Tillandsia fendleri* Griseb (Bromeliaceae).

Fotografía 5-20 *Tillandsia complanata* Benth. (Bromeliaceae).

Fuente: GEOCOL CONSULTORES S.A.

• Epífitas no vasculares.

La composición florística de las especies no vasculares de hábito epífito en 11 de las 13 coberturas caracterizadas en el área del proyecto, para las cuales se realizó la caracterización, correspondió a 127 especies, 39 géneros, 50 familias y 21733 registros. Los líquenes fueron el grupo taxonómico mejor representado, con un total de 64 especies y 16759 registros, seguidos por los musgos con 47 especies y 3133 registros de frecuencia, en tercer lugar, las hepáticas con 15 especies y 1828 registros de frecuencia y por último las algas con una (1) especies y 13 registros de frecuencia (ver **Tabla 5.100**).

CSH-1-AM-AM-EIA-G-0007-0

Versión 1 – agosto de 2018.

Tabla 5.100 Composición las especies no vasculares de hábito epífito por cobertura y en toda el Área del proyecto.

T.O	FAMILIA	ESPECIE	BD	BG	ЕМС	МС	МРС	PF	PL	TUC	TUD	VSA	VSB	FRECUENCIA TOTAL	COBERTURA (cm²)
Α	Trentepohliaceae	Trentepohlia sp.		4								7	2	13	136
	Anthocerotaceae	Anthoceros sp.					12							12	292
		Frullania ericoides (Nees ex Mart.) Mont.		30			368	20		3		46	34	501	3996
	Frullaniaceae	Frullania grandifolia Stephani	20	36			41	3				25		125	1374
		Frullania sp.	11	108		6	92		5			41	16	279	8868
		Haplolejeunea sp.	2	24		5	53		2		1	37	26	150	7928
		Lejeunea sp.		55		2	287	16			4	83	10	457	3433
	Lejeuneaceae	Microlejeunea sp.		16										16	820
Н		Neurolejeunea sp.					9	5						14	22
		Taxilejeunea sp.		4										4	46
	Marchantiaceae	Marchantia polymorpha L.					9				2		16	27	328
	Metzgeriaceae	Metzgeria scyphigera A. Evans		18		2	59					5	14	98	1083
	Wietzgeriaceae	Steereella lilliana (Stephani)Kuwah.					1							1	0
	Pallaviciniaceae	Symphyogyna brasiliensis Nees					1							1	0
	Plagiochilaceae	Plagiochila adianthoides (Sw.) Lindenb.		19			83	5				19	8	134	8509
	Tiaglociillaceae	Plagiochila cf. macrostachya Lindenb.		9										9	210
		Arthonia pruinosella Nyl.				24	27				5	25	33	114	843
	Arthoniaceae	Cryptothecia sp.										6		6	60
	Aithoniaceae	Cryptothecia striata G. Thor					7				1	7		15	32
		Herpothallon cf. pustulatum G. Thor	2	79			106	1	33	2	12	35	26	296	4179
	Caliciaceae	Buellia sp.					6							6	70
	Chrysotrichaceae	Chrysothrix xantina (Vain.) Kalb		14			23				5	2		44	658
	Cladoniaceae	Cladonia cf. subsquamosa Kremp.					6						3	9	756
L	Ciadoffiaceae	Cladonia sp.					45					3	4	52	2026
	Coccocarpiaceae	Coccocarpia palmicola (Spreng.) Arv. & D.J. Galloway		3			9					1	1	14	50
	Coenogoniaceae	Coenogonium linkii Ehrenb.		1				1						2	2
	Cocnogoniaceae	Coenogonium sp.					1					3		4	19
		Leptogium austroamericanum (Malme) Dodge		4			5					10	1	20	449
	Collemataceae	Leptogium isidiosellum (Riddle) Sierk											1	1	5
	Concinatacede	Leptogium sessile Vain.		169		7	317	6			1	68	96	664	13084
		Leptogium sp.		2			6					5		13	47

CSH-1-AM-AM-EIA-G-0007-0

Versión 1 – agosto de 2018.

т.о	FAMILIA	ESPECIE	BD	BG	ЕМС	МС	MPC	PF	PL	TUC	TUD	VSA	VSB	FRECUENCIA TOTAL	COBERTURA (cm²)
		Leptogium ulvaceum (Pers.) Vain.	2	56			9		3			7	5	82	1453
		Diploschistes cinereocaesius (Sw.) Vain.					1							1	0
	Graphidaceae	Graphis sp.		22		2	97	11				26	16	174	997
		Phaeographis cf. dendritica (Ach.) Mull. Arg.	1				35	8				4	22	70	376
	Hygrophoraceae	Dictyonema obscuratum Lücking, Spielmann & Marcelli		19			6						7	32	1870
	Lecanoraceae	Lecanora sp.		66		13	572	16	16		8	38	176	905	15937
		Crocodia aurata (Ach.) Link		29			13					16	3	61	639
		Lobariella pallida (Hook.) Moncada & Lücking		206		7	238	39				12	142	644	77292
	Lobariaceae	Pseudocyphellaria crocata (L.) Vain.	35	170			425	9				72	69	780	11221
	Lobariaceae	Sticta fulliginosa (Dicks.) Ach.		57			106	22				9	47	241	22353
		Sticta tomentosa (Sw.) Ach.		39			3					1		43	792
		Sticta weigelii (Ach.) Vain.	4	36			25		10		3	5	18	101	1553
	Megalosporaceae	Megalospora sp.	1	3			27	2				1		34	196
		Canomaculina sp.	14	46			289	6	6			43	55	459	7673
		Flavopunctelia sp.	2	25			72					15	6	120	2249
		Hypotrachyna columbiensis (Zahlbr.)											10	10	2663
		Parmotrema aff. nylanderi (Lynge) Hale	13	192		21	407		11			79	108	831	16187
		Parmotrema andinum (Müll. Arg.) Hale		37			378	27	2		18	52	91	605	4976
		Parmotrema dilatatum (Vain.) Hale		190	2	23	508	22	15		6	121	230	1117	38006,5
	Parmeliaceae	Parmotrema nylanderi (Lynge) Hale											1	1	0
		Parmotrema sp.	68	27			572	84		22		114	67	954	10633
		Usnea aff. cirrosa Motyka		22		4	8					9	44	87	1067
		Usnea cf. rubicunda Stirt.	69	65			530	86		7		123	70	950	12385
		Usnea sp.	24	18			168	13		9		17	4	253	2428
		Usnea sp.2	14	301		8	675	44	8		3	140	270	1463	14672
		Xanthoparmelia sp.	3	66		16	103				25	36	70	319	4005
	Peltigeraceae	Peltigera austroamericana Zahlbr.		8			27						3	38	921
		Heterodermia cf. japonica (M. Satô) Swinscow & Krog					3							3	6
		Heterodermia leucomela (L.) Poelt	8	161		6	253	1				104	57	590	9495
	Dhuasiasas	Heterodermia obscurata (Nyl.) Trevis.	5	43		6	70		17		10	26	18	195	5185
	Physciaceae	Heterodermia sp.	14	207		2	596	36			1	53	100	1009	34242
		Hyperphiscia cf. minor (Fée) Kalb	1	21			19				2	18	1	62	1180
		Hyperphyscia minor (Fée) Kalb		12		4	63			11		14	8	112	1267

CSH-1-AM-AM-EIA-G-0007-0

Versión 1 – agosto de 2018.

т.0	FAMILIA	ESPECIE	BD	BG	ЕМС	МС	MPC	PF	PL	TUC	TUD	VSA	VSB	FRECUENCIA TOTAL	COBERTURA (cm²)
		Hyperphyscia pandani (H. Magn.) Moberg		3	4		27					8	2	44	487
		Physcia undulata Moberg		22		2	292				34		113	463	26076
		Pyxine cf. cocoes (Sw.) Nyl.					33						11	44	1119
		Bacidia aff. medialis (Tuck.) Zahlbr		5			9							14	205
		Bacidia cf. campalea (Tuck.) S. Ekman & Kalb		32	10	3	303	26	3		1	5	61	444	1985
		Bacidia sp.	2	10			37		7			2	1	59	889
	Ramalinaceae	Phyllopsora isidiotyla (Vain.)Riddle		58			192	29					53	332	43328
		Phyllopsora parvifolia (Pers.) Mull. Arg.		3			78	38					15	134	7717
		Ramalina cf. celastri (Spreng.) Krog & Swinscow	4	54		1	628	54	3	4	3	69	48	868	11550
		Ramalina sp.					3							3	4
	Rhizocarpaceae	Rhizocarpon sp.					14					2	1	17	2282
	Stereocaulaceae	Lepraria sp.	2	47		1	57	32			5		10	154	21729
	Stereocaulaceae	Lepraria sp.2	7				5							12	712
		Caloplaca sp.		5			41	1						47	109
	Teloschistaceae	Teloschistes aff. chrysophthalmus (L.) Th. Fr.		14			18					5	3	40	127
		Teloschistes flavicans (Sw.) Norman		22		3	374	18				14	47	478	9170
		Brachythecium cf. plumosum (Hedw) Schimp.										1		1	0
		Brachythecium ruderale (Brid.) W.R. Buck		6			72	7				33	7	125	1738
	Brachytheciaceae	Brachythecium sp.		4			10						3	17	658
	Brachytheclaceae	Rhynchostegium cf. robustum W.R. Buck		20			35					22	1	78	1226
		Rhynchostegium cf. scariosum (Taylor)A.Jaeger					6	1						7	3470
		Rhynchostegium serrulatum (Hedw.) A. Jaeger		3										3	48
		Anomobryum conicum (Hornsch.) Broth.							3					3	56
	Privaceae	Bryum billarderi Schwägr.					16	4					6	26	5187
М	Bryaceae	Bryum huillense Welw. & Duby	5	40		4	49	5				7	14	124	2057
		Bryum sp.		19			14	4					10	47	13879
		Calymperes afzelii Sw.		3		3	47	1			4	5	13	76	1119
	Calymperaceae	Syrrhopodon incompletus Schwägr.		12			186	14				24	22	258	19055
		Syrrhopodon rigidus Hook.& Grev.	2	9			85	13		4			7	120	6892
	Cryphaeaceae	Cryphaea cf. patens Hornsch. ex Müll. Hal.		7			4							11	784
		Campylopodium curvisetum (Hampe) Paris										6		6	30
	Dicranaceae	Campylopus nivalis (Brid.) Brid.					3							3	5
		Campylopus sp.		1			3		1				4	9	128

CONCESIONARIA VIAL. UNIÓN DEL SUR

CSH-1-AM-AM-EIA-G-0007-0

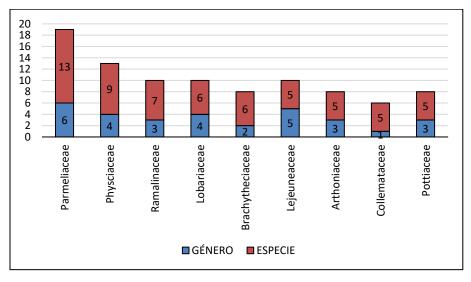
Versión 1 – agosto de 2018.

т.о	FAMILIA	ESPECIE	BD	BG	EMC	МС	MPC	PF	PL	TUC	TUD	VSA	VSB	FRECUENCIA TOTAL	COBERTURA (cm²)
		Dicranum rhabdocarpum Sull					2							2	8
	Ditrichaceae	Ditrichum gracile (Mitt.) Kuntze		6			5							11	96
		Entodon beyrichii (Schwägr.) Müll. Hal.		11		2	51		2			6	3	75	2256
	Cutadautasaa	Entodon cf. jamesonii (Taylor) Mitt	46	26			95	15				14	18	214	5020
	Entodontaceae	Entodon macropodus (Hedw.) Müll. Hal.		61			115	1				6	5	188	14646
		Erythrodontium longisetum (Hook.) Paris	7	39			48	2	1			32	6	135	8203
	Fabraria sasa	Fabronia ciliaris (Brid.) Brid.	1	12			111	11		8	4	16	1	164	2385
	Fabroniaceae	Fabronia ciliaris var. polycarpa (Hook.) W.R. Buck	8	22			74		6			11	6	127	9315
	Fissidentaceae	Fissidens bryoides var. pusillus (Wilson) Pursell	7				16							23	1760
	Cuinaminana	Grimmia longirostris Hook.		5										5	12
	Grimmiaceae	Schistidium rivulare (Brid.) Podp.		4									5	9	150
	11	Isopterygium cf. tenerum (Sw.) Mitt.					16							16	1255
	Hypnaceae	Taxiphyllum taxirameum (Mitt.) M. Fleisch.		23			1					3	1	28	431
	Lembophyllaceae	Squamidium nigricans (Hook.) Broth.	13											13	194
	Leskeaceae	Haplocladium microphyllum (Hedw.) Broth.	11	33			37	2				15	14	112	2264
	Meteoriaceae	Meteoridium remotifolium (Müll. Hal.) Manuel	26	128			84	2				32	18	290	6078
	Mniaceae	Plagiomnium rostratum (Schrad.) T.J. Kop.					24					3		27	138
	Myriniaceae	Helicodontium capillare (Hedw.) A. Jaeger		9			146	5				11	9	180	11431
	Neckeraceae	Neckera scabridens Müll. Hal.		33		3	5					11	5	57	896
	мескегасеае	Neckera urnigera Müll. Hal.		14			5					5	2	26	278
	Polytrichaceae	Polytrichum juniperinum Hedw.		4			26	8					7	45	13246
		Barbula sp.		13			12					5		30	1171
		Didymodon tophaceus (Brid.) Lisa	2											2	240
	Pottiaceae	Didymodon vinealis (Brid.) R.H. Zander											1	1	0
		Trichostomum sp.		3			2							5	284
		Trichostomum sp.2					1							1	5
	Prionodontaceae	Prionodon densus (Sw. ex Hedw.) Müll. Hal.	25	25			8					2		60	1841
	Pterobryaceae	Pireella cf. filicina (Hedw.) Cardot	10	150		1	58		3		5	46	17	290	7748
	Sematophyllaceae	Sematophyllum galipense (Müll. Hal.) Mitt.	8	20			21					8	13	70	2538
	Thuidiaceae	Thuidium tamariscinum (Hedw.) Schimp.	6	1			3					3		13	987
TOTAL	50 FAMILIAS	127 ESPECIES	505	3780	16	181	11478	776	157	70	163	2015	2592	21733	641941,5

Dónde: T.O: Tipo de organismo, BD: Bosque denso, BG: Bosque de galería, EMC: Explotación de material de construcción, MC: Mosaico de cultivos, MPC: Mosaico de pastos y cultivos, PF: Plantación forestal, PL: Pastos limpios, TUC: Tejido urbano continuo, TUD: Tejido urbano discontinuo, VSA: Vegetación secundaria alta y VSB: Vegetación secundaria baja.

CSH-1-AM-AM-EIA-G-0007-0

Versión 1 – agosto de 2018.

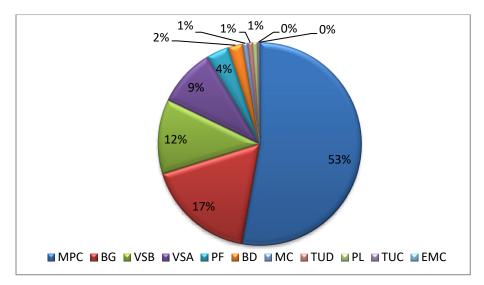


Versión 1 – agosto de 2018.

De las 50 familias de epífitas no vasculares presentes en el área del proyecto, las familias más frecuentes correspondieron a líquenes, de las familias Parmeliaceae, con seis (6) géneros y 13 especies, Physciaceae con cuatro (4) géneros y nueve (9) especies, seguidas por Ramalinaceae, con tres (3) géneros y siete (7) especies y en cuarto lugar Lobariaceae, con cuatro (4) géneros y seis (6) familias, a estas familias les sigue una familia de musgos Brachytheciaceae, con dos (2) géneros y seis (6) especies, y la familia de hepáticas Lejeuneaceae, con cinco (5) géneros y cinco (5) especies (ver **Figura 5-177**).

Figura 5-177 Familias de especie epífitas no vasculares con la mayor riqueza en el área del proyecto.

Fuente: GEOCOL CONSULTORES


La distribución de las epífitas no vasculares de acuerdo a la frecuencia de registros en las 11 coberturas de las 13 caracterizadas en el área del proyecto, mostró que las coberturas con mayor frecuencia de este tipo de organismos fue Mosaico de pastos y cultivos, con 11478 registros, es decir el 52,8% de la frecuencia total, en segundo lugar la cobertura Bosque de galería con 3780 registros, es decir el 17,4%, en tercer lugar la cobertura Vegetación secundaria baja, con 2592 registros, es decir el 11,9% de la frecuencia total, en cuarto lugar Vegetación secundaria alta, con 2015 registros (9,3%), mientras que las coberturas que presentaron la menor frecuencia fueron Tejido urbano continuo con el 0,3% y Explotación de material de construcción con el 0,1% (Ver **Figura 5-178**).

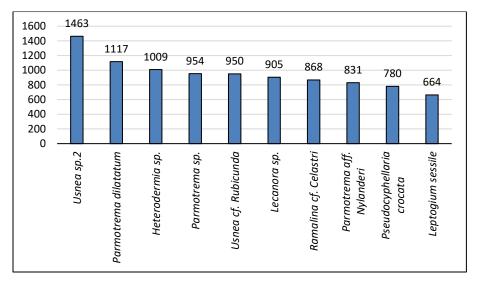
Versión 1 – agosto de 2018.

Figura 5-178 Frecuencia de las especies epífitas no vasculares en las coberturas del Área del proyecto.

Dónde: BD: Bosque denso, BG: Bosque de galería, EMC: Explotación de material de construcción, MC: Mosaico de cultivos, MPC: Mosaico de pastos y cultivos, PF: Plantación forestal, PL: Pastos limpios, TUC: Tejido urbano continuo, TUD: Tejido urbano discontinuo, VSA: Vegetación secundaria alta y VSB: Vegetación secundaria baja.

Fuente: GEOCOL CONSULTORES S.A.

Con relación a la frecuencia de registros de las especies no vasculares de hábito epífito en las coberturas del área del proyecto, el liquen *Usnea* sp.2 (Ver **Figura 5-179**) se destaca por tener la mayor frecuencia, con 1463 registros (6,7% de la frecuencia total), seguido por el también liquen *Parmotrema dilatatum* (Ver **Fotografía 5-22**), con 1117 registros (5,14% de la frecuencia total), en tercer lugar el liquen *Heterodermia* sp. (Ver **Fotografía 5-23**), con 1009 registros (4,6%), en cuarto lugar *Parmotrema* sp. (Ver **Fotografía 5-24**) con 954 registros de frecuencia (4,4% de la frecuencia total) y en quinto lugar *Usnea* cf. *rubicunda* (Ver **Fotografía 5-25**), con 950 (4,3% de la frecuencia total); en cuanto a briofitos, *Frullania ericoides* (ver **Fotografía 5-26**) fue la especie con mayor frecuencia, con 501 registros. (Ver **Figura 5-179**).



Versión 1 – agosto de 2018.

Figura 5-179 Frecuencia de las especies epífitas no vasculares registradas en el Área del proyecto.

Fotografía 5-21 Usnea sp.2 (Parmeliaceae).

Fotografía 5-22 *Parmotrema dilatatum* (Vain.) Hale (Parmeliaceae).

Versión 1 – agosto de 2018.

Fotografía 5-23 Heterodermia sp. (Physciaceae).

Fotografía 5-25 *Usnea* cf. *rubicunda* Stirt. (Parmeliaceae).

Fotografía 5-24 Parmotrema sp. (Parmeliaceae).

Fotografía 5-26 *Frullania ericoides* (Nees ex Mart.) Mont. (Frullaniaceae).

Fuente: GEOCOL CONSULTORES S.A.

A partir de la estimación del área de cobertura (cm²) de las epífitas no vasculares, se pudo determinar que las especies con mayor cobertura en cm² en las 11 coberturas de las 13 caracterizadas en el área del proyecto, fueron los líquenes *Phyllopsora parvifolia*, con 77292 cm² (12% de la cobertura total estimada), seguido por el líquen *Teloschistes* aff. *chrysophthalmus*, con 43328 cm² (6,7% de la cobertura), en tercer lugar, la hepática *Metzgeria scyphigera*, con 38006 cm² (5,9% de la cobertura), en cuarto lugar, el musgo *Neckera scabridens*, con 34242 cm² (5,3% de la cobertura total de especies epífitas no vasculares); las otras 123 especies presentaron menores valores a los mencionados anteriormente, sumando entre estas otras 132 especies 449073 cm², es decir el 69,9% de la cobertura total estimada, de manera que el total de cobertura registrada en la caracterización de especies epífitas no vasculares bajo la metodología RRED (Gradstein *et. al*, 2003) fue de 641941,5 cm² (ver **Tabla 5.100**).

Especies rupícolas y terrestres.

Versión 1 – agosto de 2018.

Especies vasculares.

La composición florística de las especies vasculares de hábito rupícola y facultativo terrestre, que se registraron en 10 de las 13 coberturas caracterizadas en el área del proyecto, para las cuales se realizó la caracterización, estuvo representada por 62 especies, distribuidas en 16 familias, 32 géneros y 22824 registros de abundancia; donde las familias con mayor riqueza de especies fueron Orchidaceae con 14 géneros y 33 especies y Bromeliaceae con cuatro (4) géneros y 12 especies, en tercer lugar Araceae, con tres (3) especies y Selaginellaceae, con dos especies, seguidas por 12 familias con una (1) especie cada una (Ver **Tabla 5.101**).

En cuanto a la distribución de las especies epífitas vasculares en las 10 coberturas en las cuales se registraron las especies rupícolas y terrestres vasculares, se presentó una mayor abundancia en las coberturas Mosaico de pastos y cultivos, con 11830 registros, es decir el 51,8%, debido a que es la cobertura con mayor área en el proyecto, mientras que la coberturas con menor abundancia de especies epífitas vasculares fueron Mosaico de cultivos, con siete (7) registros, es decir el 0,03% (Ver **Tabla 5.101**).

Tabla 5.101 Composición de las especies vasculares de hábito rupícola y facultativo terrestre por cobertura y en toda el área del proyecto.

FAMILIA	ESPECIES	BD	BG	мс	МРС	PF	PL	RV	TUC	VSA	VSB	ABUNDANCIA TOTAL
Apocynaceae	Mandevilla mollissima (Kunth) K.Schum.				10							10
	Anthurium aff. fendleri Schott		10		50		14			19		93
Araceae	Anthurium sanguineum Engl.	5	2							2		9
	Anthurium sp.2						1				5	6
Blechnaceae	Blechnum occidentale L.		10		39		11					60
	Pitcairnia pungens Kunth		132		209		90			31	32	494
	Pitcairnia sp.1		8		107	4					22	141
	Racinaea pectinata (André) M.A. Spencer & L.B. Sm.		119		130	22	1			17	5	294
	Tillandsia complanata Benth.		83	2	121	99			8		19	332
	Tillandsia fendleri Griseb		63		57						9	129
Bromeliaceae	Tillandsia incarnata Kunth		4		26	41	14				12	97
Бготепасеае	Tillandsia lajensis André.	1	87		133	34	4				53	312
	Tillandsia mima L.B. Sm.				20	15		10		16		61
	Tillandsia pastensis André	1			3	27						31
	Tillandsia recurvata (L.) L.		259		333	12	2	30		15	134	785
	Tillandsia usneoides (L.). L.		335		192	40	7	15			140	729
	Puya lehmanniana L.B. Sm.	3	205		1053	292	63		4	57	658	2335
Fabaceae	Vicia andicola Kunth		25		175							200
Gesneriaceae	Kohleria spicata (Kunth) Oerst.										1	1
Iridaceae	Iris sp.				3							3
Lythraceae	Cuphea sp.				2							2
Malpighiaceae	Stigmaphyllon sp.1				3							3
	Bletia stenophylla Schltr.				12							12
	Cranichis ciliata (Kunth) Kunth				7						2	9
	Cyclopogon cf. peruvianus (C.Presl) Schltr.									3		3
	Cyclopogon elatus (Sw.) Schltr.				1							1
Orchidaceae	Elleanthus cf. petrogeiton Schltr.	70										70
Orchidaceae	Elleanthus myrosmatis (Rchb. f.) Rchb. f.				333	25				155	230	743
	Elleanthus sphaerocephalus Schltr.		569		1892	1015	151		48	214	173	4062
	Epidendrum cf. colombianum A.D.Hawkes										1	1
	Epidendrum coryophorum (Kunth) Rchb.f.				7	16					20	43
	Epidendrum melinanthum Schltr.				282	8					7	297

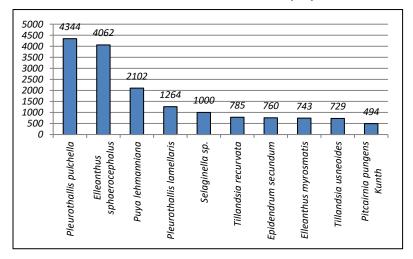
Versión 1 – agosto de 2018.

FAMILIA	ESPECIES	BD	BG	мс	МРС	PF	PL	RV	TUC	VSA	VSB	ABUNDANCIA TOTAL
	Epidendrum secundum Jacq.	2	3		495	98			20	24	118	760
	Epidendrum sp.1		1		99					20	4	124
	Epidendrum sp.2				10							10
	Epidendrum sp.3				50							50
	Epidendrum sp.4	7										7
	Epidendrum tulcanense Hágsater & Dodson	7			56	4						67
	Govenia sodiroi Schltr.		19			9				20	4	52
	Habenaria repens Nutt.		13		73		17				33	136
	Laelia splendida (Schltr.) L.O. Williams		3		71							74
	Malaxis andicola (Ridl.) Kuntze		17							28	3	48
	Maxillaria huebshcii. Rchb.f.				16							16
	Maxillaria sp.1										45	45
	Pleurothallis coriacardia Rchb. f.	85			80	50						215
	Pleurothallis lamellaris Lindl.				799	138				275	52	1264
	Pleurothallis phalangifera (C.Presl) Rchb.f.				258					157	26	441
	Pleurothallis pulchella (Kunth) Lindl.				2376	1089			264	366	249	4344
	Pleurothallis sp.1						20				10	30
	Setlis sp.4	142										142
	Stelis nutans Lindl.		25									25
	Stelis sp.2		6		28	25						59
	Stelis sp.3		15		239					40	10	304
	Takulumena uribei Szlach. & Kolan.				50							50
	Xylobium sp.					8						8
Piperaceae	Peperomia sp.										23	23
Polypodiaceae	Polypodium sp.1				10						3	13
Selaginellaceae	Selaginella sellowii Hieron.		312	5	1283	20	140			76	521	2357
Seiaginellaceae	Selaginella sp.		114		648		44			63	131	1000
Tropaeolaceae	Tropaeolum sp.1				6		12					18
Urticaceae	Pilea serpyllacea (Kunth) Liebm.				5							5
Vitaceae	Cissus sp.				2							2
16 FAMILIAS	62 ESPECIES	323	2439	7	11854	3091	591	55	344	1598	2755	23057

Dónde: BD: Bosque denso, BG: Bosque de galería, EMC: Explotación de material de construcción, MC: Mosaico de cultivos, MPC: Mosaico de pastos y cultivos, PF: Plantación forestal, PL: Pastos limpios, TUC: Tejido urbano continuo, TUD: Tejido urbano discontinuo, VSA: Vegetación secundaria alta y VSB: Vegetación secundaria baja.

Fuente: GEOCOL CONSULTORES S.A.

En lo relacionado a la abundancia de las especies vasculares de hábito rupícola y facultativo terrestre en el área del proyecto, las especies de la familia Orchidaceae *Pleurothallis pulchella* (ver **Fotografía 5-27**) con un total de 4344 registros, es decir el 19% del total de la abundancia registrada para la flora vascular de hábito rupícola y facultativo terrestre, en segundo lugar, se encontró *Elleanthus sphaerocephalus* (ver **Fotografía 5-28**), con un total de 4062 registros, es decir el 17,8%, en tercer lugar, la bromelia de hábito terrestre *Puya lehmanniana* (ver **Fotografía 5-29**), con 2102 registros, es decir el 9,2% de la abundancia total y en cuarto lugar *Pleurothallis lamellaris* (ver **Fotografía 5-30**), con 1264 registros, es decir el 5,5% de la abundancia total y entre las especie con menor registro de abundancia se encontró la orquídea *Epidendrum* cf. *colombianum* (ver **Fotografía 5-31**) y *Pleurothallis lamellaris* (Ver **Fotografía 5-32**), con un (1) registro de abundancia cada una (ver **Figura 5-180**).



Versión 1 – agosto de 2018.

Figura 5-180 Abundancia de las especies vasculares de hábito rupícola y facultativo terrestre y facultativo terrestre en las coberturas del área del proyecto.

Fotografía 5-27 *Pleurothallis pulchella* (Kunth) Lindl (Orchidaceae).

Fotografía 5-28 *Elleanthus sphaerocephalus* Schltr. (Orchidaceae).

Versión 1 – agosto de 2018.

Fotografía 5-29 *Puya lehmanniana* L.B. Sm. (Bromeliaceae).

Fotografía 5-31 *Epidendrum* cf. *colombianum* A.D.Hawkes. (Orchidaceae).

Fotografía 5-30 *Pleurothallis lamellaris* Lindl. (Orchidaceae).

Fotografía 5-32 *Pleurothallis lamellaris* Lindl. (Orchidaceae).

Especies no vasculares.

La composición florística de las especies no vasculares de hábito rupícola y facultativo terrestre, que se registraron en 11 de las 13 coberturas caracterizadas en el área del proyecto, para las cuales se realizó la caracterización, estuvo representada por 122 especies, distribuidas en 48 familias y 3095 registros de frecuencia; donde las familias con mayor riqueza de especies fueron Parmeliaceae con seis (6) géneros y 13 especies y Lejeuneaceae con siete (7) especies, al igual que Lobariaceae, Physciaceae y Bryaceae (Ver **Tabla 5.102**).

En cuanto a la distribución de las especies epífitas vasculares en las 10 coberturas en las cuales se registraron las especies rupícolas y terrestres vasculares, se presentó una mayor abundancia en las coberturas Mosaico de pastos y cultivos, con 2053 registros, es decir el 66,3%, debido a que es la cobertura con mayor área en el proyecto, seguida por Vegetación secundaria baja, con el 13% y Bosque de galería con el 7,8% de la frecuencia total de especies no vasculares de hábito rupícola y facultativo terrestre (Ver b **Tabla 5.102**).

CSH-1-AM-AM-EIA-G-0007-0

Versión 1 – agosto de 2018.

Tabla 5.102 Composición las especies no vasculares de hábito rupícola y facultativo terrestre por cobertura y en el área del proyecto.

т.о	FAMILIA	ESPECIE	BD	BG	HAR	МС	МРС	PF	PL	RV	TUD	VSA	VSB	FRECUENCIA TOTAL	COBERTURA (cm²)
	Anthocerotaceae	Anthoceros sp.		6			42	1	3			2	11	65	3275
	Aytoniaceae	Asterella lateralis M. Howe		2			4	1	1			1	2	11	2757
		Frullania ericoides (Nees ex Mart.) Mont.		7	1		19	1	1				6	35	6626
	Frullaniaceae	Frullania grandifolia Stephani					1					2		3	1270
		Frullania sp.		3			23	1				2	7	36	3290
		Acanthocoleus aberrans (Lindenb. & Gottsche) Kruijt					1							1	172
		Haplolejeunea sp.		1		1	22		3			4	10	41	9681
		Lejeunea sp.		1			3					1	1	6	741
Н	Lejeuneaceae	Macrolejeunea cf. pallescens (Mitt.) Schiffner					4						1	5	436
		Microlejeunea sp.		2										2	360
		Neurolejeunea sp.					2							2	130
		Taxilejeunea sp.		1			2							3	296
	Marchantiaceae	Marchantia polymorpha L.					13						5	18	3088
	Metzgeriaceae	Metzgeria scyphigera A. Evans		1			5							6	653
	Pallaviciniaceae	Symphyogyna brasiliensis Nees					1							1	50
	Plagiochilaceae	Plagiochila adianthoides (Sw.) Lindenb.		2	1		3	1				1	3	11	1186
	Arthoniaceae	Arthonia pruinosella Nyl.				1	3						2	6	195
	Arthoniaceae	Herpothallon cf. pustulatum G. Thor		1			4					1		6	451
	Chrysotrichaceae	Chrysothrix xantina (Vain.) Kalb					25						1	26	2760
	Cladoniaceae	Cladonia cf. subsquamosa Kremp.		1			98	1	2			7	5	114	29916
	Claudillaceae	Cladonia sp.		3		1	47	1	3				9	64	6788
	Coccocarpiaceae	Coccocarpia palmicola (Spreng.) Arv. & D.J. Galloway					3					1	1	5	153
		Leptogium austroamericanum (Malme) Dodge					1							1	49
L	Callamatanaa	Leptogium sessile Vain.		4		1	32	3				3	6	49	4123
	Collemataceae	Leptogium sp.		1			2							3	160
		Leptogium ulvaceum (Pers.) Vain.		2			1					1		4	429
	Cranhidaeas	Diploschistes cinereocaesius (Sw.) Vain.					9						2	11	858
	Graphidaceae	Graphis sp.											1	1	24
	Hygrophoraceae	Dictyonema obscuratum Lücking, Spielmann & Marcelli					1						2	3	70
	Lecanoraceae	Lecanora sp.					6						3	9	738

CSH-1-AM-AM-EIA-G-0007-0

т.о	FAMILIA	ESPECIE	BD	BG	HAR	МС	МРС	PF	PL	RV	TUD	VSA	VSB	FRECUENCIA TOTAL	COBERTURA (cm²)
		Crocodia aurata (Ach.) Link						1						1	5
		Lobariella pallida (Hook.) Moncada & Lücking			1	5	20	2				1	2	31	6924
		Pseudocyphellaria crocata (L.) Vain.		3			4	1					2	10	532
	Lobariaceae	Sticta fulliginosa (Dicks.) Ach.					16					1	2	19	5503
		Sticta neopulmonarioides Moncada & Coca	1											1	0
		Sticta tomentosa (Sw.) Ach.		1			1							2	216
		Sticta weigelii (Ach.) Vain.					4		1				4	9	1913
		Canomaculina sp.		3			28						5	36	4792
		Flavopunctelia sp.		6		1	30					1	10	48	3853
		Parmotrema aff. nylanderi (Lynge) Hale		7			30	1				5	8	51	7503
		Parmotrema andinum (Müll. Arg.) Hale		1	1		21			1	1	2	5	32	5333
		Parmotrema dilatatum (Vain.) Hale		1			30		1			1	12	45	5643
		Parmotrema nylanderi (Lynge) Hale				1	3					1	4	9	390
	Parmeliaceae	Parmotrema sp.					6	2				2	1	11	1099
		Punctelia reddenda (Stirt.) Krog					4						2	6	313
		Usnea aff. cirrosa Motyka					3						1	4	98
		Usnea cf. rubicunda Stirt.		3			17	2				2	4	28	3729
		Usnea sp.					6							6	980
		Usnea sp.2		2			34	3	1			2	2	44	2360
		Xanthoparmelia sp.		1		2	66		3		2	1	10	85	18080
	Peltigeraceae	Peltigera austroamericana Zahlbr.		3								2	1	6	1925
		Heterodermia leucomela (L.) Poelt		5			15	2				2	2	26	1651
		Heterodermia obscurata (Nyl.) Trevis.		3			18	2	1			2	3	29	7271
		Heterodermia sp.		11	1	1	65	3	5			5	11	102	21965
	Physciaceae	Hyperphiscia cf. minor (Fée) Kalb		1			4					3	2	10	1569
	,	Hyperphyscia minor (Fée) Kalb					1							1	0
		Physcia undulata Moberg		2		1	38				2	1	7	51	9945
		Pyxine cf. cocoes (Sw.) Nyl.					4							4	235
		Bacidia aff. medialis (Tuck.) Zahlbr					4							4	16
	Ramalinaceae	Bacidia cf. campalea (Tuck.) S. Ekman & Kalb					2						1	3	13
	Namamacede	Bacidia sp.		1			6						4	11	999
		Phyllopsora isidiotyla (Vain.)Riddle				5	30	2					7	44	5539

CSH-1-AM-AM-EIA-G-0007-0

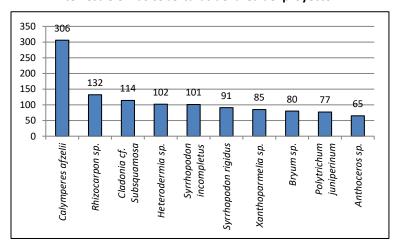
т.о	FAMILIA	ESPECIE	BD	BG	HAR	МС	МРС	PF	PL	RV	TUD	VSA	VSB	FRECUENCIA TOTAL	COBERTURA (cm²)
		Phyllopsora parvifolia (Pers.) Mull. Arg.				2	31	9					7	49	13778
		Ramalina cf. celastri (Spreng.) Krog & Swinscow				1	7	1					5	14	228
	Rhizocarpaceae	Rhizocarpon sp.		6		1	85	2	9		1	4	24	132	21817
	Ctoropoulogogo	Lepraria sp.		3			6	2					1	12	1670
	Stereocaulaceae	Lepraria sp.2		2			17	1				4	1	25	4768
	Teloschistaceae	Teloschistes aff. chrysophthalmus (L.) Th. Fr.					1							1	10
	Teloschistaceae	Teloschistes flavicans (Sw.) Norman					10						3	13	446
		Brachythecium ruderale (Brid.) W.R. Buck		4			34	3				5	14	60	9055
		Brachythecium sp.		3			9		1				2	15	1420
	Brachytheciaceae	Rhynchostegium cf. robustum W.R. Buck		9			17						4	30	2276
		Rhynchostegium cf. scariosum (Taylor)A.Jaeger					1							1	400
		Rhynchostegium serrulatum (Hedw.) A. Jaeger		1			3							4	994
		Anomobryum conicum (Hornsch.) Broth.				1	3				1	1		6	1307
		Bryum billarderi Schwägr.		1	1		8	5					2	17	4976
		Bryum huillense Welw. & Duby		10			38	3	1			1	11	64	5398
	Bryaceae	Bryum roseum (Hedw.) Crome		1				2						3	120
	Di yaccac	Bryum sp.		2	2	9	57	2	1			1	6	80	12813
		Rhodobryum huillense (Welw. & Duby) A. Touw					2							2	1405
		Schizymenium sp.					1							1	10
М		Calymperes afzelii Sw.		16		2	230	4	9		1	11	33	306	60428
		Calymperes cf. guildinguii Hook. & Grev.					1							1	22
	Calymperaceae	Syrrhopodon cf. circinatus (Brid.) Mitt.		4			3						9	16	1836
		Syrrhopodon incompletus Schwägr.		8			66		6			5	16	101	14692
		Syrrhopodon rigidus Hook.& Grev.		6		4	65	1	2			3	10	91	19695
	Cryphaeaceae	Cryphaea cf. patens Hornsch. ex Müll. Hal.		2			9						1	12	3374
		Campylopodium curvisetum (Hampe) Paris		1			5					2	1	9	2091
	Dicranaceae	Campylopus nivalis (Brid.) Brid.					22					2	6	30	5588
	Dicranaceae	Campylopus sp.		2			14						7	23	924
		Dicranum rhabdocarpum Sull					8							8	1088
	Ditrichaceae	Ditrichum gracile (Mitt.) Kuntze					6					1	2	9	3114
		Entodon beyrichii (Schwägr.) Müll. Hal.		7		1	21		1			4	2	36	8159
	Entodontaceae	Entodon cf. jamesonii (Taylor) Mitt					13	4				2	2	21	1591
		Entodon macropodus (Hedw.) Müll. Hal.		2			21					1	6	30	7048

CSH-1-AM-AM-EIA-G-0007-0 Versión 1 – agosto de 2018.

т.о	FAMILIA	ESPECIE	BD	BG	HAR	МС	МРС	PF	PL	RV	TUD	VSA	VSB	FRECUENCIA TOTAL	COBERTURA (cm²)
		Erythrodontium longisetum (Hook.) Paris		4			22					2	4	32	5593
	Fahaaaiaaaa	Fabronia ciliaris (Brid.) Brid.					21	3				4	1	29	3567
	Fabroniaceae	Fabronia ciliaris var. polycarpa (Hook.) W.R. Buck		6		1	17	2				1	1	28	9986
	Final dente and	Fissidens bryoides var. pusillus (Wilson) Pursell		1			23		2			2		28	5292
	Fissidentaceae	Fissidens sublimbatus Grout					2							2	50
	Grimmiaceae	Schistidium rivulare (Brid.) Podp.		1			1						3	5	490
	11	Isopterygium cf. tenerum (Sw.) Mitt.					1					1		2	50
	Hypnaceae	Taxiphyllum taxirameum (Mitt.) M. Fleisch.					1							1	360
	Hypopterygiaceae	Hypopterygium tamariscinum (Hedw.) Brid.		1										1	70
	Lembophyllaceae	Squamidium nigricans (Hook.) Broth.					2					1		3	944
	Leskeaceae	Haplocladium microphyllum (Hedw.) Broth.		8			28	1	1		2	5	14	59	5578
	Meteoriaceae	Meteoridium remotifolium (Müll. Hal.) Manuel		6		1	16		5				3	31	4559
	Mniaceae	Plagiomnium rostratum (Schrad.) T.J. Kop.					5					1		6	938
	Myriniaceae	Helicodontium capillare (Hedw.) A. Jaeger		5			24		1		1	5	1	37	9174
	Neckeraceae	Neckera scabridens Müll. Hal.					2					1	3	6	36
	Neckeraceae	Neckera urnigera Müll. Hal.		1										1	300
	Polytrichaceae	Polytrichum juniperinum Hedw.		2			59	8				2	6	77	19404
		Barbula sp.		1		1	14		2				2	20	2359
		Didymodon cf. rigidulus Hedw.					1							1	17
	Pottiaceae	Didymodon vinealis (Brid.) R.H. Zander		10			19		4		1		10	44	6990
	Pottiaceae	Tortella cf. alpicola Dixon					1							1	120
		Trichostomum sp.		2			20		1			3	1	27	7978
		Trichostomum sp.2					30						1	31	1162
	Prionodontaceae	Prionodon densus (Sw. ex Hedw.) Müll. Hal.					1	1				3		5	486
	Pterobryaceae	Pireella cf. filicina (Hedw.) Cardot		7			15	1				6	8	37	5421
	Sematophyllaceae	Sematophyllum galipense (Müll. Hal.) Mitt.		1			14	1				2	3	21	4206
	Thuidiaceae	Thuidium tamariscinum (Hedw.) Schimp.		2			13	2				4		21	8008
TOTAL	48 FAMILIAS	122 ESPECIES	1	240	8	44	2053	89	71	1	12	150	426	3095	516798

Dónde: T.O: tipo de organismo, BD: Bosque denso, BG: Bosque de galería, EMC: Explotación de material de construcción, MC: Mosaico de cultivos, MPC: Mosaico de pastos y cultivos, PF: Plantación forestal, PL: Pastos limpios, TUC: Tejido urbano continuo, TUD: Tejido urbano discontinuo, VSA: Vegetación secundaria alta y VSB: Vegetación secundaria baja.

Fuente: GEOCOL CONSULTORES S.A.



Versión 1 – agosto de 2018.

En lo relacionado a la frecuencia de las especies no vasculares de hábito rupícola y facultativo terrestre en el área del proyecto, la especie de musgo *Calymperes afzelii* (ver **Fotografía 5-33**) presento la mayor frecuencia de registros, con un total de 306 registros, es decir el 9,9% del total de la frecuencia registrada para la flora no vascular de hábito rupícola y facultativo terrestre, en segundo lugar se encontró el liquen *Rhizocarpon* sp. (Ver **Fotografía 5-34**), con un total de 132 registros, es decir el 4,3% y entre las especie no vasculares rupícolas y terrestres con menor registro de frecuencia se encontró el musgo *Calymperes* cf. *guildinguii* (Ver **Fotografía 5-35**) y la hepática *Acanthocoleus aberrans* (ver **Fotografía 5-36**), con un (1) registro de abundancia cada una (ver **Figura 5-181**).

Figura 5-181 Abundancia de las especies vasculares de hábito rupícola y facultativo terrestre y facultativo terrestre en las coberturas del área del proyecto.

Fuente: GEOCOL CONSULTORES S.A

Fotografía 5-33 *Calymperes afzelii* Sw. (Calymperaceae).

Fotografía 5-34 *Rhizocarpon* sp. (Rhizocarpaceae).

Versión 1 – agosto de 2018.

Fotografía 5-35 *Calymperes* cf. *guildinguii* Hook. & Grev. (Calymperaceae).

Fotografía 5-36 Acanthocoleus aberrans (Lindenb. & Gottsche) Kruijt (Lejeuneaceae).

Fuente: GEOCOL CONSULTORES S.A.

Especies epífitas, rupícolas y terrestres con alguna categoría de amenaza en el área del proyecto

De todas las especies registradas en el área del proyecto, solo dos (2) especies vasculares de la familia Bromeliaceae, una de hábito terrestre, *Puya lehmanniana* y otra bromelia de hábito epífito, *Tillandsia lajensis*, se encuentran registradas en alguna categoría de amenaza (**Tabla 5.103**).

Cabe resaltar que todas las especies de la familia Orchidaceae se encuentran registradas en el CITES Apéndice II, por lo tanto, su tráfico y comercialización están regulados por un convenio internacional, como lo es el CITES.

Tabla 5.103 Especies registradas en el área del proyecto que se encuentran en alguna categoría de amenaza.

FAMILIA	ESPECIE	ABUNDANCIA	Res. 1912	Libro Rojo Colombia	Red List IUCN
FAIVIILIA	ESPECIE	ABUNDANCIA	-2017	-2006	(2015-4)
Busanskinses	Puya lehmanniana L.B. Sm.	2335	-	VU	-
Bromeliaceae	Tillandsia lajensis André.	380	-	NT	-

5.2.4 Uso de las especies, Especies de importancia económica, ecológica y cultural.

Con el fin de identificar el uso que le dan las comunidades a las diferentes especies encontradas en el área de influencia del estudio, se realizaron entrevistas a los habitantes de la zona, especialmente a los campesinos encarados de las actividades agropecuarias; los usos reportados por los mismos fueron plasmados en la **Tabla 5.104**.

CSH-1-AM-AM-EIA-G-0007-0

Versión 1 – agosto de 2018.

Tabla 5.104 Usos de las especies identificadas en el Área de Influencia del proyecto.

ESPECIE	NOMBRE COMÚN	usos	ACTIVIDADES PRODUCTIVAS	ANIMALES FAMILIARIZADOS	CONSUMO CULTURAL	ENTIDAD DE PODER	ОТКО	USO CULTURAL
Acacia decurrens Willd.	Acacia	Cerca viva, forraje	х	х				
Aegiphila odontophylla Donn.Sm.	Cedrillo	Maderable	Х		х			Х
Ageratina tinifolia (Kunth) R.M.King & H.Rob.	Chilca roja	cerca viva	Х					Х
Ageratum conyzoides (L.) L	Flor morada	Desconocido					Х	
Allophylus sp.	Caspirosario	cerca viva	Х					Х
Allophylus excelsus (Triana & Planch.) Radlk.	Palo blanco	cerca viva, maderable	Х		Х			Х
Alnus acuminata Kunth	Aliso	cerca viva	х		х			х
Amaryllidaceae sp1	Cebolla de monte	Desconocido					Х	
Anthoxanthum odoratum L.	Pasto azul	Desconocido					Х	
Arcytophyllum muticum (Wedd.) Standl.	Flor blanca	Desconocido					Х	
Asteraceae sp1	Pilosa	Desconocido					х	
Baccharis sp1	Baccharis	Desconocido					Х	
Baccharis latifolia (Ruiz & Pav.) Pers.	Chilca blanca	cerca viva, Medicinal	Х					Х
Barnadesia spinosa L.f.	Pilampo	cerca viva	Х					Х
Berberis hallii Hieron.	Espina amarilla	Desconocido					Х	
Buddleja americana L.	Salvia blanca	cerca viva	Х		Х			Х
Byrsonima crassifolia (L.) Kunth	Mora	cerca viva	Х		Х			Х
Calamagrostis sp1	Calamagrostis	Desconocido					Х	
Carica papaya L.	Papaya	alimento			Х			
Cavendishia sp.1	Chaquilulo	cerca viva, alimento para aves	Х					Х
Cestrum buxifolium Kunth.	Tinto	Maderable, cerca viva	Х		Х			Х
Cestrum racemosum Ruiz & Pav.	Sauco blanco	Medicinal, cerca viva	Х		Х			Х

CSH-1-AM-AM-EIA-G-0007-0

ESPECIE	NOMBRE COMÚN	usos	ACTIVIDADES PRODUCTIVAS	ANIMALES FAMILIARIZADOS	CONSUMO CULTURAL	ENTIDAD DE PODER	OTRO	USO CULTURAL
cf. Pentacalia sp1	Pentacalia	Desconocido					х	
Chusquea sp1	Chusquea 2	Desconocido					Х	
Chusquea lehmannii Pilg.	Carrizo	Construcción			х			х
Coriaria ruscifolia L.	Sancia	Desconocido					х	
Crotalaria incana L.	Abrojo	Desconocido					х	
Cyperus sp1	Cyperus	Desconocido					Х	
Dalea coerulea (L. f.) Schinz & Thell.	Pispura	cerca viva	Х					х
Dodonaea viscosa (L.) Jacq.	Hayuelo	Desconocido					Х	
Elaphandra lehmannii (Hieron.) Pruski	Elophandra	Desconocido					х	
Elaphoglossum sp	Lanza	Desconocido					х	
Elleanthus sphaerocephalus Schltr	Elleanthus	Desconocido					х	
Epidendrum sp.1	Guaminche	Desconocido					х	
Escallonia paniculata (Ruiz & Pav.) Schult.	Chilco	cerca viva, maderable	Х		х			х
Eugenia sp2	Arrayán 2	cerca viva, maderable	Х		х			х
Euphorbia laurifolia Juss. ex Lam.	Lechero	cerca viva	Х					
Furcraea cabuya Trel.	Fique	Desconocido					х	
Gaiadendron punctatum (Ruiz & Pav.) G.Don	Matapalo	cerca viva	Х		х			х
Galium hypocarpium (L.) Endl. ex Griseb.	Naranjita	Desconocido					х	
Geissanthus sp.	Charmolan	cerca viva, alimento para aves	Х		х		х	
Hesperomeles obtusifolia (DC.) Lindl.	Cerote	cerca viva, maderable	х		х			х
Hirtella carbonaria Little	Carbonquillo	Maderable	х		х			х
<i>llex</i> sp.	León	cerca viva, maderable	х		х			х
Inga fastuosa (Jacq.) Willd.	Guaba	alimento			х			х
Juglans neotropica Diels.	Nogal	cerca viva, maderable	х		х			х
Lafoensia acuminata (Ruiz & Pav.) DC.	Guayacán	cerca viva, maderable	х		х			х

CSH-1-AM-AM-EIA-G-0007-0

ESPECIE	NOMBRE COMÚN	usos	ACTIVIDADES PRODUCTIVAS	ANIMALES FAMILIARIZADOS	CONSUMO CULTURAL	ENTIDAD DE PODER	OTRO	USO CULTURAL
Lamourouxia virgata Kunth	Trompeta	Desconocido					х	
Lantana camara L.	Venturosa	cultural						х
Leandra subseriata (Naudin) Cogn.	Amarillo 2	cerca viva, maderable	х		Х			х
Leandra acutiflora (Naudin) Cogn.	Monchiro	cerca viva	Х		х			х
Lithospermum officinale L	Lithospermum	Desconocido					х	
Lycopodium sp1	Musgo verde	Desconocido					х	
Malvaceae sp1	Espinita	Desconocido					х	
Meliosma caucana Cuatrec. & Idrobo	Aguacatillo 2	cerca viva, maderable	Х		х			х
Meliosma cf. cundinamarcensis Cuatrec. & Idrobo	Sabiaceae	Desconocido					Х	
Miconia sp1	Amarillo	cerca viva, maderable	х		х			х
Miconia theaezans Cogn.	Munchiro	cultural						х
Miconia versicolor Naudin.	Morochillo	cultural						х
Mimosa albida Willd.	Zarza	cultural						х
Mimosa quitensis Benth.	Guarango	cultural						х
Monnina aestuans (L.f.) DC.	Uvilán	cultural						х
Monochaetum sp1	Mayo pequeño	cerca viva, cultural	х					х
Morella pubescens (Humb. & Bonpl. ex Willd.) Wilbur	Laurel	cultural	х					х
Myrcianthes rhopaloides (Kunth) McVaugh	Arrayán	cultural, maderable, alimento para aves	х		Х			х
Myrsine guianensis (Aubl.) Kuntze	Cucharo	cerca viva, cultural	Х		х			х
Niphidium sp	Niphidium	Desconocido					х	
Govenia sodiroi Schltr.	Cutal	Desconocido					х	
Oreopanax sp.	Pumamaque	cerca viva	х					х
Palicourea guianensis Aubl.	Majua	cerca viva	х					
Passiflora sp1	Corazón	Desconocido					х	
Peperomia sp1	Peperomia 1	Desconocido					х	

CSH-1-AM-AM-EIA-G-0007-0

ESPECIE	NOMBRE COMÚN	usos	ACTIVIDADES PRODUCTIVAS	ANIMALES FAMILIARIZADOS	CONSUMO CULTURAL	ENTIDAD DE PODER	ОТКО	USO CULTURAL
Persea americana Mill.	Aguacate	alimento			х			
Pilea cf. myriantha Killip	Pilea	Desconocido					х	
Piper sp1	Cordoncillo	cultural						х
Pleurothallis lamellaris Lindl.	Flor verde	Desconocido					х	
Pleurothallis sp	Orquídea larga	Desconocido					х	
Polypodium sp1.	Helecho	Desconocido					х	
Portulaca oleracea L	Congona	Desconocido					х	
Prunus huantensis Pilg.	Pilche	cerca viva, maderable	Х		х			х
Prunus serotina Ehrh.	Capulí	alimento			х			х
Psidium guajava L.	Guayabilla	alimento			х			х
Psychotria sp1	Cafetillo	cultural						х
Pteridium aquilinum (L.) Kuhn	Helecho 2	Desconocido					х	
Pterocaulon virgatum (L.) DC.	Falso frailejón	cultural						х
Puya sp	Chupalla	cultural						х
Rubus floribundus Kunth.	Mora silvestre	alimento			х			х
Salvia sp1	Matico	Desconocido					х	
Sambucus nigra L.	sauco negro	cerca viva, Medicinal			х			х
Saurauia bullosa Wawra.	Mote	cerca viva, maderable	Х		х			х
Saurauia ursina Triana & Planch.	Moquillo	cerca viva, maderable	х		х			х
Senna pistaciifolia (Kunth) H.S.Irwin & Barneby	Pichuelo	cerca viva, maderable	х		х			х
Sida glomerata Cav.	Ortigo	cultural						х
Siparuna aspera (Ruiz & Pav.) A.DC.	Sarapanga	cerca viva, maderable	х		х			х
Solanum sp	Cujaca	cultural						х
Styrax sp.	Hojarasco	cerca viva, maderable	х		х			х
Tagetes minuta L	Yamata	Desconocido					Х	

-G-0007-0 Versión 1 – agosto de 2018.

ESPECIE	NOMBRE COMÚN	usos	ACTIVIDADES PRODUCTIVAS	ANIMALES FAMILIARIZADOS	CONSUMO CULTURAL	ENTIDAD DE PODER	ОТКО	USO CULTURAL
Tecoma stans (L.) Juss. ex Kunth	Quillotocto	cultural						х
Tibouchina lepidota (Bonpl.) Baill.	Mayo	cultural						х
Tillandsia fendleri Griseb	Vicundo	cultural						х
Tillandsia lajensis André.	Bromelia	cultural						х
Tournefortia fuliginosa Kunth.	Pelotillo 1	cerca viva, maderable	Х		х			х
Tournefortia scabrida Kunth.	Mayorquín	cultural						х
Vallea stipularis L.f.	Roso	cultural						х
Verbesina arborea Kunth	Colla	cultural						х
Viburnum pichinchense Benth.	Pelotillo 2	cerca viva, maderable	Х		Х			х
Viburnum sp1	Pelotillo	cerca viva, maderable	Х		Х			Х
Viola scandens Humb. & Bonpl. ex Schult.	Viola	Desconocido					Х	
Weinmannia cochensis Hieron	Encenillo	cultural						х

Fuente: GEOCOL CONSULTORES S.A., 2017.

Versión 1 – agosto de 2018.

A partir de las entrevistas realizadas se pudo determinar que el uso más frecuente es el de subsistencia, debido a la necesidad de madera, leña y postes de las comunidades (ver **Fotografía 5-37**); una de las especies más utilizadas para tal fin es *Eucalyptus globulus* (eucalipto), especie que es muy apetecida por la comunidad por su rápido crecimiento, fácil adaptación a las condiciones edafoclimáticas de la zona y, alto potencial maderable; también son mencionadas las especies *Acacia decurrens* (acacia amarilla), *Acacia melanoxylon* (acacia japonesa), *Cupressus lusitanica* (ciprés), como material dendroenergético.

Fotografía 5-37 Tala de Eucaliptos (*Eucalyptus globulus*) en la vereda El Culantro Municipio de Contadero (E: 950197 N: 594343).

Fuente: GEOCOL CONSULTORES S.A., 2017.

Por ser el área de influencia del proyecto en su gran mayoría agropecuaria se presenta el uso de actividades productivas; en este los habitantes de la zona mencionan actividades tales como el tutorado en los cultivos de *Pisum sativum* L (arveja) y *Phaseolus vulgaris* L (frijol), como se puede apreciar en la **Fotografía 5-38**.

Fotografía 5-38 Tutorado en cultivo de arveja (*Pisum sativum* L.), vereda Las Delicias Municipio de Contadero (E: 593178 N: 950859).

Fuente: GEOCOL CONSULTORES S.A., 2017.

Versión 1 – agosto de 2018.

Otra de las actividades agropecuarias representativa de la zona es la utilización de las especies forestales para la delimitación de terrenos con cercas vivas o muertas, siendo la primera la más observada. Las especies que son de mayor utilización en esta actividad son el *Alnus acuminata* (aliso), *Acacia decurrens* (acacia amarilla), *Acacia melanoxylon* (acacia japonesa), *Cupressus lusitanica* (ciprés), *Eucalyptus globulus* (eucalipto), y especies de porte arbustivo como *Euphorbia laurifolia* (lechero), *Baccharis latifolia* (chilca), entre otros.

El uso cultural en la región se ve reflejado por la utilización de las especies como medicina, tal es el caso del *Eucalyptus globulus* (eucalipto) y *Sambucus nigra* (sauco) que son utilizados para síntomas de gripa como la tos; la *Baccharis latifolia* (chilca) para curar el tímpano vacuno, el *Hesperomeles obtusifolia* (cerote.) para la inflamación de los riñones, *Morella pubescens* (laurel) para curar enfermedades como la laringitis, en baños para proteger a los recién nacidos, el tallo posee taninos y sus raíces maceradas con vino tinto se usan como afrodisiaco. Industrialmente de los frutos del laurel se obtiene cera, cuyas características de producto cien por ciento natural le permiten su uso en diversidad de aplicaciones. Este uso también es observado en la siembra de especies como el *Alnus acuminata* (aliso), para la protección del recurso hídrico.

5.2.5 Análisis de fragmentación.

El análisis de la fragmentación de las coberturas de la tierra identificadas en el área de influencia definida para el EIA del Proyecto Vial Doble Calzada Rumichaca – Pasto, tramo San Juan - Pedregal se realizó de acuerdo a la metodología consignada en el capítulo 2 de este estudio, donde la comparación entre los escenarios Sin y Con Proyecto fue la principal herramienta para la cuantificación y descripción de este numeral. La comparación de los dos escenarios se realizó con base a las coberturas de la tierra identificadas para el proyecto y la integración del área de intervención definida para este, donde se identificaron, cuantificaron y espacializaron las coberturas naturales, para su posterior comparación y análisis.

Esta comparación de las coberturas se soportó de las métricas del paisaje, análisis de procesos de cambio y el modelo propuesto por Riitters et al (2000), el cual expone la representación espacial y categorización de la fragmentación de los relictos naturales dispuestos en un paisaje.

- Comparación de las coberturas de la tierra para los dos escenarios

El análisis por comparación multitemporal de coberturas detalla el cambio en la presencia/ausencia, área y forma de los parches asociados a las coberturas identificadas en el All de Flora. Las coberturas de la tierra identificadas para los dos tiempos se relacionan en la **Tabla 5.105**, y se representan gráficamente en la **Figura 5-182** y **Figura 5-183**. En este sentido cabe aclarar que el análisis de fragmentación se realizó tomando como información inicial las coberturas identificadas para 2017, y como escenario de cambio las áreas de coberturas potencialmente afectadas por el área de intervención proyectada, buscando identificar aquellas que tendrán una mayor afectación por ocasión del proyecto.

Como pudo observarse, para 2017 fueron identificadas 14 coberturas; cuatro (4) de estas relacionadas con territorios artificializados, tres (3) asociadas a actividades productivas, y las siete (7) restantes asociadas a coberturas vegetales nativas y/o en procesos sucesionales, exceptuando por las plantaciones forestales (**Figura 5-182**). De estas la de mayor representatividad corresponde al Mosaico de pastos y cultivos, aunque también son relevantes las vegetaciones secundarias alta y baja, y el Bosque ripario. En relación con el escenario con proyecto, las 14 coberturas identificadas para el área de influencia del proyecto permanecerían en el conjunto analizado, describiéndose a continuación los cambios más representativos respecto al escenario actual.

Versión 1 – agosto de 2018.

Tabla 5.105 Coberturas de la tierra para los dos escenarios

COBERTURAS DE LA TIERRA	ÁREA (HA) DEL ESCENARIO SIN PROYECTO	ÁREA (HA) INTERVENIDA	ÁREA (HA) RESTANTES EN EL ESCENARIO CON PROYECTO	PORCENTAJE DE INTERVENCIÓN DE LA COBERTURA ACTUAL
Tejido urbano continuo	23,19	3,11	20,08	13,41
Tejido urbano discontinuo	62,36	20,85	41,51	33,44
Pastos limpios	85,48	12,64	72,84	14,79
Mosaico de cultivos	69,33	4,62	64,71	6,66
Mosaico de pastos y cultivos	2.886,19	484,24	2.401,96	16,78
Bosque ripario	145,48	8,20	137,28	5,64
Plantaciones forestales	147,01	25,22	121,79	17,15
Ríos	18,51	0,99	17,53	5,32
Red vial y terrenos asociados	24,35	7,68	16,67	31,54
Explotación de materiales de construcción	11,59	2,53	9,06	21,83
Vegetación secundaria alta	189,52	26,61	162,90	14,04
Vegetación secundaria baja	350,52	45,30	305,22	12,92
Herbazal abierto rocoso	17,74	0	17,74	0
Bosque denso alto andino	9,32	0,30	9,02	3,20
Área total		4.04	10,58	

Fuente: GEOCOL CONSULTORES S.A., 2017

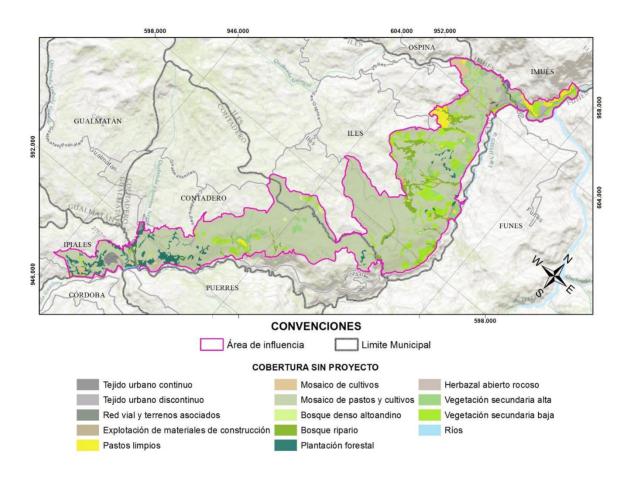
Teniendo en cuenta el área de afectación proyectada, respecto al primer grupo de coberturas representadas por los territorios artificializados, los mayores cambios se evidenciarían en la cobertura de Red vial y terrenos asociados, Explotación de materiales de construcción y Tejido urbano discontinuo, previendo una afectación de cerca de 30 ha en los territorios artificializados, lo cual en términos de fragmentación de ecosistemas naturales implicaría el establecimiento de nuevas áreas de reasentamiento, lo que posiblemente pueda generar cambios en las coberturas actuales en el mediano y largo plazo.

De otra parte, respecto a las coberturas asociadas a sistemas productivos, aquella que presentaría mayores cambios corresponde al Mosaico de Pastos y cultivos, donde la intervención podría alcanzar las 484,24 ha (16,78% del área actualmente representada), que en términos de coberturas generaría un cambio en el uso del suelo, teniendo posibles efectos en la fragmentación por los cambios de permeabilidad de la matriz actual. En línea con lo anterior, el mosaico de paisaje actual, en donde se diferencia un conjunto de pastos con cercas vivas, representa una matriz permeable respecto al paso de la fauna y la funcionalidad del paisaje, que podría verse afectada al reemplazarse por un corredor lineal artificial que tiene la posibilidad de actuar como barrera física frente a las dinámicas que ocurren en el mosaico analizado.

Respecto a las coberturas naturales el mayor cambio se evidenciaría en la cobertura de Vegetación secundaria alta, que pasaría de 189,52 ha a 162,9 ha (26,61 ha de reducción equivalentes a 14,04% del área actual), lo que en términos de fragmentación se traduce en una menor representatividad de coberturas sucesionales que actualmente pueden estar cumpliendo roles funcionales al aportar a la conectividad e interacción entre diferentes tipos de parches naturales remanentes. Lo anterior ocurre igualmente con la Vegetación secundaria

Versión 1 – agosto de 2018.

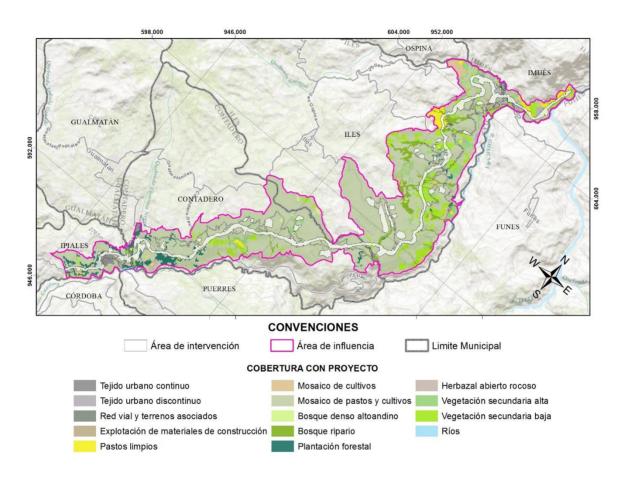
baja, de la cual se espera la intervención de 45,3 ha, que en el mediano y largo plazo una vez realizado el proyecto, tendría un efecto sinérgico junto con la intervención de la Vegetación secundaria baja.


En la **Figura 5-182** y **Figura 5-183** se puede observar la distribución espacial de las coberturas actuales (2017) y la relación del área de afectación potencial con las mismas en el escenario con proyecto, con lo cual se evidencia como podrían verse alterados los flujos y dinámicas funcionales entre las coberturas actuales una vez se ejecute el proyecto, en la medida en que el proyecto corresponde a un corredor artificial que puede llegar a generar cambios en la permeabilidad de la matriz.

Versión 1 – agosto de 2018.

Figura 5-182 Coberturas de la tierra identificadas para el escenario Sin Proyecto (año 2017)

Fuente: GEOCOL CONSULTORES S.A., 2017

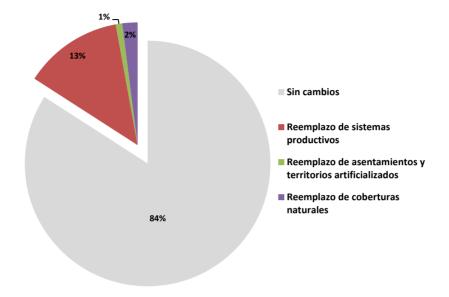


Versión 1 – agosto de 2018.

Figura 5-183 Coberturas de la tierra identificadas para el escenario Con Proyecto (área de intervención)

Fuente: GEOCOL CONSULTORES S.A., 2017

Análisis por procesos de cambio identificados para cada escenario


Una vez realizada la descripción cuantitativa y cualitativa de los cambios para las coberturas en los dos escenarios, se realizó el análisis de procesos de cambio con el fin de identificar los procesos y motores de cambio que podrán dinamizar dicha transformación con el área de intervención proyectada, y así conocer los patrones comunes en el cambio de la configuración de las coberturas (Figura 5-184).

Versión 1 – agosto de 2018.

Figura 5-184 Procesos de cambio identificados entre los dos escenarios analizados (2017-proyecto)

Fuente: GEOCOL CONSULTORES S.A., 2017

Como puede observarse, el 84% área de influencia analizada permanecerá sin cambios en las coberturas en relación con el desarrollo del proyecto, manteniendo la dinámica y funcionalidad actuales (**Figura 5-184**). En esta medida, el 16% restante presentará cambios una vez se desarrolle el proyecto, siendo el reemplazo de los sistemas productivos el cambio de mayor representatividad, ya que las áreas agrícolas heterogéneas y los pastos representan un 78,09 % del área de intervención, siendo las coberturas que presentarán mayores cambios con ocasión del proyecto. Este patrón podrá representar cambios en el uso del suelo y aportar de manera moderada a la fragmentación, debido a que los sistemas productivos mantienen permeabilidad para la conectividad en el paisaje, mientras que coberturas artificiales tienden a reducir esta condición y ser más agrestes y limitantes en procesos de conectividad como la dispersión de semillas y el desplazamiento de la fauna.

De otra parte, los cambios relacionados con el proyecto sobre las coberturas asociadas a territorios artificializados y asentamientos humanos, solamente representan 1% del área de influencia analizada, previendo una afectación cercana a 33 ha (13,6% del área de intervención). De estas coberturas se puede afirmar que no representarán cambios en el uso del suelo, ni aportarán a la fragmentación, debido a que mantendrán su relación con los sistemas antrópicos.

Finalmente los cambios en las coberturas naturales, estos representan el 2% de representatividad respecto al área de influencia, y el 13,07% de los cambios generados por el área de intervención con 83,92 ha, siendo la Vegetación secundaria baja la cobertura de mayor intervención, con 45,3 ha susceptibles a cambios. En este sentido, respecto a la fragmentación generada por el proyecto, las coberturas naturales si presentarán algunos cambios, pero estos estarán mayormente representados sobre las coberturas sucesionales

Versión 1 – agosto de 2018.

tempranas, sin afectar de manera significativa coberturas de mayor complejidad como el Bosque denso altoandino o los bosques riparios.

6 Análisis de métricas como indicadoras del proceso de fragmentación

Como ya se ha mencionado, la fragmentación de las coberturas vegetales corresponde a un proceso donde el hábitat natural se transforma pequeños parches de menor área, aumentando el aislamiento de estos entre sí, por una matriz transformada diferente a la original (Wilcove et al., 1986). De acuerdo con lo anterior, este proceso conlleva cuatro (4) efectos principales de la fragmentación en las coberturas, ecosistemas y paisajes, que corresponden a: i) disminución del hábitat disponible; ii) aumento en el número de parches; iii) disminución en el tamaño de los parches; y iv) aumento en el aislamiento entre parches (Fahrig, 2009).

Así bien, con el fin de comprender y dimensionar el proceso de fragmentación y los efectos que estos han tenido sobre el conjunto de coberturas analizado para el área de influencia, se calcularon un grupo de métricas del paisaje para las coberturas naturales (Bosque denso altoandino, Bosque ripario, Herbazal abierto rocoso y Vegetación secundaria alta y baja), sobre la cual se puede hacer una lectura de lo que ha ocurrido con esta en el tiempo, e identificar patrones de cambio en la estructura y composición espacial de las coberturas, para así obtener indicadores de transformación de estas. De esta forma, conforme lo propuesto por McGarigal & Marks (1995), las métricas utilizadas fueron: número de parches (NP), densidad de parches (PD), parche más grande (LPI), área total de la clase (CA), porcentaje de abundancia de cada clase (PLAND), índice de forma (SHAPE_MN), distancia euclidiana al vecino más próximo (ENN_MN), índice de proximidad media (PROX_MN), índice de diversidad de Shannon (SHDI) y riqueza de los parches (PR); calculadas mediante el programa Fragstats (McGarigal& Marks, 1995). Además de lo anterior, se incluyó la métrica de contexto paisajístico propuesta por MADS y Conservación internacional, la cual cuantifica la conectividad espacial entre los parches naturales de un paisaje mediante un índice que relaciona el área y forma de cada relicto.

De manera consiguiente al análisis de métricas, se calculó un modelo para espacializar la fragmentación, propuesto por Riitters et al. (2009). Este modelo permite representar gráficamente las categorías de área interior, área núcleo y área en transición, conforme el requerimiento de hábitat y respuesta de las especies a este tipo de espacios.

Ahora bien, los resultados de las métricas del paisaje se muestran en la **Tabla 5.106**, con el fin de observar los cambios y la transformación ocurrida durante los años analizados. El análisis de dichos resultados se explica a continuación de la tabla.

Tabla 5.106 Resultados de las métricas realizadas para cada escenario

COBER ¹ ANALIZ		Bosque altoar		Bosque	ripario	1101100	l abierto oso		tación aria alta	U	tación aria baja
Métricas d	el paisaje	Sin Proyecto	Con Proyecto	Sin Proyecto	Con Proyecto	Sin Proyecto	Con Proyecto	Sin Proyecto	Con Proyecto	Sin Proyecto	Con Proyecto
	CA	9,7336	9,522	143,253 2	136,9052	18,1976	18,1976	191,074 8	162,5088	350,832 8	304,280
	PLAND	0,2409	0,2804	3,546	4,0314	0,4505	0,5359	4,7297	4,7853	8,6843	8,9601
Nivel de	NP	4	4	41	46	3	3	63	70	69	90
clase	LPI	0,1414	0,1682	1,0423	0,9969	0,2881	0,3427	0,7438	0,7664	0,9114	0,7477
ciase	SHAPE_ MN	1,2424	1,2008	1,5745	1,5468	1,5111	1,5111	1,4141	1,3196	1,6111	1,4781
	PROX_ MN	0	0	1,5793	0,8098	0	0	2,0278	0,7679	1,7319	0,8778

Versión 1 – agosto de 2018.

COBERTURAS ANALIZADAS		Bosque denso altoandino		Bosque ripario		Herbazal abierto rocoso		Vegetación secundaria alta		Vegetación secundaria baja	
	ENN_M N	521,8463	529,711	143,363 6	139,4865	6288,17 4	6288,174	180,743 7	175,2639	189,751	150,974
Nivel de	SHDI	Sin Proye	cto	1,1886							
paisaje	וטחכ	Con Proye	cto	1,2079							

Fuente: GEOCOL CONSULTORES S.A., 2017

Antes de presentar la descripción por cobertura, cabe mencionar que se realizó el análisis de diversidad de parches para el escenario actual y el escenario con proyecto (métrica SHDI de la **Tabla 5.106**), evidenciando que a pesar de la alteración potencial de las coberturas, ninguna será reemplazada, aunque habrá un aumento en el tipo de parches que se asocien a la construcción de la doble calzada, posiblemente de coberturas artificializadas asociadas al proyecto vial.

Bosque denso altoandino

De acuerdo con la métrica de área de la clase (CA) se observa una pequeña disminución de 0,21 ha (pasando de 9,73 ha a 9,52 ha), aunque cabe mencionar que es una cobertura que se encuentra pobremente representada en el área de influencia, sin tener mayor incidencia en la configuración del futuro mosaico del paisaje. En línea con lo anterior, respecto al "Porcentaje de la clase" (PLAND), que indica el porcentaje ocupado este tipo de bosques, este presenta una leve disminución de 0,03% una vez se realice el proyecto, manteniendo la baja representatividad de la cobertura.

Para el caso de la métrica de número de parches (NP), que para 2017 corresponde a cuatro (4) parches, está se mantendrá sin cambios una vez se intervenga el área proyectada, lo que en términos de fragmentación no altera la estructura del paisaje, en la medida en que corresponde a un parche de bosque denso donde no habrá una pérdida de área significativa, pudiendo albergar fauna de hábitos específicos que buscan recursos complementarios y suplementarios en otros parches de la misma o de otra cobertura. De otra parte el "Índice del parche más grande" (LPI) que indica el porcentaje de área ocupada por el parche de mayor tamaño respecto al área total analizada, este se mantendrá constante (0,1414), lo que tiene una implicación positiva ya que a pesar de la afectación potencial por ocasión del proyecto, el parche de mayor tamaño de Bosque denso altoandino permanecerá sin cambios significativos en su área.

En cuanto a la métrica de forma de los parches (SHAPE_MN), esta podrá presentar una leve disminución de 0,0416, evidenciando que, en el escenario con proyecto, estos bosques tenderán a presentar una forma más regular, teniendo probablemente una mayor capacidad de respuesta a los efectos de borde.

Por último, las métricas que califican el aislamiento físico entre los parches de la misma clase evidencian que actualmente los parches de Bosque denso altoandino se encuentran más confinados respecto a cómo estarán en el escenario con proyecto, por lo que se puede inferir que los parches que se encuentran más cercanos en el escenario actual (2017), tenderán a presentar una mayor distancia entre sí una vez se ejecuten las actividades del proyecto. De manera paralela la métrica de distancia euclidiana (ENN_MN presentará un ligero aumento (de 521,84 a 529,71), indicando que espacialmente los parches tenderán a presentar una mayor distancia entre sí una vez se intervenga el área potencial de afectación, posiblemente a razón de uno de los parches presentes en el mosaico actual. La métrica de Proximidad (PROX_MN) tuvo un valor de cero, lo que indica que los parches de bosque denso altoandino se encuentran todos a una distancia meno de 100 metros entre sí.

Versión 1 – agosto de 2018.

Bosque de Galería y/o Ripario

De acuerdo con la métrica de área de la clase (CA) se observa una disminución de 6,34 ha del área actualmente representada por esta cobertura, que pasará de 143,25 ha que hay en la actualidad, a 136,90 ha. Lo anterior indica una baja disminución y simplificación de esta cobertura, cuyo mantenimiento resulta relevante debido a que aporta a la conectividad del sistema paisajístico, y a la complejidad ecológica y funcional, en relación con el escenario de intervención proyectado. Así se evidencia igualmente en la disminución del "Porcentaje de la clase" (PLAND), que cambiará de 0,5%, mostrando una tendencia a una menor representatividad en el mediano plazo, generando un efecto en la fragmentación, ya que este tipo de bosques propician la conectividad entre otras coberturas y parches del paisaje.

Respecto a la métrica de número de parches (NP), este se incrementará pasando de 41 a 46 parches lo que indica una mayor fragmentación de esta cobertura en el corto y mediano plazo, así como la presencia de parches de menor tamaño que sean más vulnerables a ser reemplazados en el tiempo por otra tipo de coberturas. De otra parte el "Índice del parche más grande" (LPI) que indica el porcentaje de área ocupada por el parche de mayor tamaño respecto al área total analizada, cambiará de 1,04 a 0,99, reduciéndose en 0,05%, lo que posiblemente responde a que el parche de mayor tamaño en la actualidad no será el que presentará mayor fragmentación, por lo que no habrá un cambio significativo en la estructura de esta cobertura.

En cuanto a la métrica de forma de los parches (SHAPE_MN), esta presentará cambios entre 1,57 y 1,54, lo que si bien está relacionado con la forma típica en la que estas coberturas se expresan espacialmente por su forma alargada e irregular (siguiendo los cursos de los cuerpos de agua), evidencia que con el paso del tiempo en el intervalo analizado estos bosques podrán estar espacialmente más confinados, presentando una forma menos irregular, perdiendo su condición lineal y disminuyendo su funcionalidad como corredores naturales en el área de influencia.

Por último, las métricas que califican el aislamiento físico entre los parches de la misma clase evidencian que con la presencia del proyecto, los Bosques riparios se encontrarán más agregados y cercanos de lo que se encuentran actualmente (reducción de 1,57 a 1,54 entre 2017 y el escenario con proyecto para la métrica PROX_MN), por lo que se puede inferir que los parches que en el mediano y largo plazo los parches se encontrarán más separados entre sí, pudiendo ser un indicador de mayores procesos de fragmentación. De manera paralela la métrica de distancia euclidiana (ENN_MN) disminuirá igualmente entre los dos escenarios analizados (de 143,36 actualmente a 139,48 con ocasión del proyecto), indicando una tendencia a un aislamiento significativo y mayores procesos de fragmentación entre los parches de bosque ripario una vez se ejecuten las actividades constructivas y operativas del proyecto.

Herbazal abierto rocoso

Respecto al Herbazal abierto rocoso, de acuerdo con la métrica de área de la clase (CA) se observa leve incremento entre el área actualmente representada por la cobertura, y su representatividad en el escenario con proyecto, aunque en términos generales y de acurdo con la escala del proyecto esta es casi imperceptible (de 18,19 ha a 18,21 ha), que es un resultado de baja significancia contemplando que actualmente esta cobertura tampoco es representativa o dominante para el área de influencia analizada. Lo anterior se explica en función de que corresponde a una cobertura limitante respecto a su intervención, ya que sus condiciones edáficas, morfológicas y ecológicas limitan su intervención y modificación intensiva. Por lo anterior el porcentaje de clase también se mantiene muy similar entre ambos escenarios (0,45 para la actualidad y 0,53 para el escenario con proyecto), sin representa cambios significativos.

Versión 1 – agosto de 2018.

Los tres parches existentes en la actualidad se mantendrían igualmente en el escenario con proyecto (NP=3), alineado igualmente con la métrica de "Índice del parche más grande" (LPI) que muestra la misma un porcentaje cercano al 1% para ambos casos. De otra parte, en cuanto a la métrica de forma de los parches (SHAPE_MN), esta cambia levemente tendiendo a ser un parche más regular y redondeado en el corto y mediano plazo.

Por último, las métricas que califican el aislamiento físico entre los parches de la misma clase, el índice de proximidad (PROX_MN) resultó en cero, indicando que los tres parches se encuentran a una distancia menor de 100 metros entre sí, mientras que la distancia euclidiana muestra que el promedio de distancia se mantendría igual en los dos escenarios analizados.

Vegetación secundaria (alta y baja)

Respecto a las coberturas sucesionales representadas por la Vegetación secundaria alta y baja, de acuerdo con la métrica de área de la clase (CA) se observa para la Vegetación secundaria alta una disminución de aproximadamente 28,57 ha (de 191,07 ha actualmente a 162,50 ha en el escenario con proyecto), mientras que para la Vegetación secundaria baja una disminución de 350,83 ha en la actualidad a 304,28 ha en el escenario de intervención (aproximadamente 46 ha). Este patrón evidencia un reemplazo significativo de las coberturas sucesionales actuales, lo cual se evidencia igualmente en el "Porcentaje de clase" (PLAND), que disminuye igualmente para ambas coberturas una vez comparados los dos escenarios (de 0,06 para Vegetación secundaria alta y de 0,3% para la baja).

Respecto a la métrica de número de parches (NP), hay un incremento para la Vegetación secundaria alta (de 63 a 70), y baja (de 69 a 90 parches), evidenciando una mayor fragmentación de los parches para ambas coberturas sucesionales. No obstante, para ambas coberturas sucesionales disminuye el porcentaje de representatividad del parche de mayor tamaño (menos 0,02 para Vsa y menos 0,28 par Vsb), evidenciando la vulnerabilidad de los parches de dicha cobertura frente a los procesos de transformación y la presión ejercida por las actividades a realizar en el área potencial de afectación.

En cuanto a la métrica de forma de los parches (SHAPE_MN), los parches de ambas coberturas disminuyen hacia el valor de uno (SHAPE_MN=1) entre el escenario actual y con proyecto, indicando una mayor regularidad en su forma (más redondeadas), y reduciendo el área de perímetro expuesta a los demás elementos del mosaico analizado.

Por último, las métricas que califican el aislamiento físico entre los parches de la misma clase, la métrica "PROX_MN" muestra un patrón de agregación significativo para la cobertura de Vegetación secundaria baja (pasando de 1,73 a 0,87) y alta (de 2,02 a 0,76), indicando una mayor conectividad entre los parches, aunque este patrón puede responder a que uno de los parches actuales se vea fragmentado en otros de menor tamaño permaneciendo cercanos, lo cual se puede relacionar con el comportamiento de la métrica "ENN MN" que disminuye en ambos escenarios, mostrando un menor aislamiento entre esos elementos.

7 Representación espacial de los efectos de transformación sobre las coberturas naturales

Como complemento al análisis de fragmentación realizado con FRAGSTATS, se utilizó el GIS SAGA para representar espacialmente los procesos de fragmentación que han afectado a la cobertura vegetación secundaría baja. Con este análisis, SAGA clasifica los procesos de fragmentación de acuerdo con un gradiente de transformación, además de indicar el tipo de fragmentación que caracteriza una cobertura, y si este se presenta por efecto de borde (por fuerzas externas al parche), o desde el interior hacia afuera, lo cual puede responder a degradación del área de interior, o a la perforación de los parches mismos.

Versión 1 – agosto de 2018.

De esta forma los resultados arrojados por el modelo reflejan el gradiente de transformación y el tipo de fragmentación incidente sobre las coberturas naturales, categorizándolas en tipo Núcleo, Interior, Perforado, Borde, Transicional, Parche y Ninguno. Con esto puede definirse si la fragmentación sigue un carácter sujeto a las áreas de borde, o si ocurre desde el interior de los parches, pudiendo identificar posibles afectaciones en la distribución de la fauna y flora del paisaje.

En este sentido el modelo de SAGA se realizó con las categorías "Bosque" — "No bosque", donde Bosque corresponde al conjunto de coberturas naturales (Bosque denso altoandino, Bosque ripario, Herbazal abierto rocoso y Vegetación secundaria alta y baja), previendo que estas no se comportan de manera independiente en el paisaje, sino que interactúan como un solo sistema dentro de la matriz transformada. De otra parte, como "No bosque" se tomaron las coberturas restantes, previendo que estas corresponden a coberturas con baja representatividad de elementos naturales y vegetación, teniendo una dinámica diferente e incidiendo en la fragmentación.

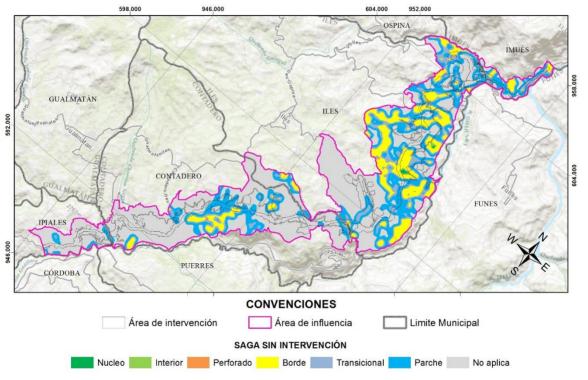
Tabla 5.107 Categorías de fragmentación identificadas para las coberturas naturales en los dos escenarios analizados

CATEGORÍA DE FRAGMENTACIÓN	ÁREA (HA) PARA EL AI SIN PROYECTO	ÁREA (HA) PARA EL AI CON PROYECTO	
NÚCLEO	3,27	3,46	
INTERIOR	7,72	6,82	
PERFORADO	2,68	3,62	
BORDE	505,31	479,73	
TRANSICIONAL	433,47	394,43	
PARCHE	941,07	793,04	
NO APLICA	2218,44	2607,95 (642,28+1965,67)	

Fuente: GEOCOL CONSULTORES S.A., 2017

Como el área analizada para el proyecto tiene una forma alargada no es común encontrar parches redondeados con áreas núcleo efectivas, por lo que actualmente está categoría de parche únicamente está representada por 3,27 ha. No obstante esta baja representatividad se mantendrá una vez se intervenga el área potencial de afectación (**Tabla 5.107**), por lo que los parches continuarán siendo susceptibles a los efectos de borde, tal como ocurre en la actualidad. De otra parte, la categoría de interior de parche, que incluye las celdas que mantienen vecindad con celdas de bosque, presentará una ligera disminución (menos de 1 ha) entre un escenario y el otro, evidenciando igualmente una tendencia a que una vez intervenidas las coberturas actuales, están seguirán siendo susceptibles a los factores externos provenientes de la matriz, propiciando su transformación en el mediano y largo plazo.

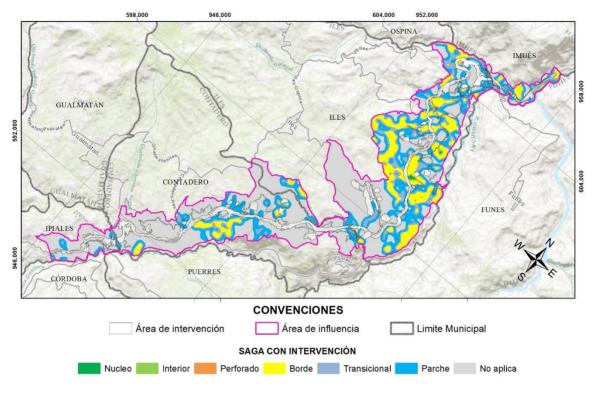
Para el caso de las categorías de Borde, Transicional y Parche, estas tres son las que presentan cambios más significativos en cuanto a su área representada actualmente versus el área representada en el escenario con proyecto, con lo cual se puede afirmar que una vez desarrolladas las actividades en el área potencial de afectación, los parches de cobertura natural tendrán una menor relación e interacción con celdas de su mismo



Versión 1 – agosto de 2018.

tipo, y estarán más expuestas a los efectos de las celdas de "No bosque" o transformadas, lo que puede acelerar los procesos de fragmentación, y llevar a los parches a una categoría de "No aplica" (es decir No bosque), por lo que se evidencia el aumento de esta ultima de 2.218,44 ha en el escenario actual a 2.607,95 ha en el escenario con proyecto, como puede observarse en color gris en la **Figura 5-185**.

Figura 5-185 Categorías de fragmentación identificadas para las coberturas naturales en el escenario sin proyecto.


Fuente: GEOCOL CONSULTORES S.A., 2017

Versión 1 – agosto de 2018.

Figura 5-186 Categorías de fragmentación identificadas para las coberturas naturales en el escenario con proyecto.

Fuente: GEOCOL CONSULTORES S.A., 2017

8 Análisis del Contexto paisajístico de los parches de vegetación natural

Respecto al contexto paisajístico, que hace referencia a la conectividad entre fragmentos de coberturas naturales (entre 0 y 1, siendo el valor de 1 el mejor contexto paisajístico), se pudo observar que actualmente existen parches con CP de 1 para las coberturas de bosques naturales (4 parches), vegetación secundaria alta (12 parches) y Vegetación secundaria baja (7 parches), evidenciando una baja conectividad entre los parches de las coberturas naturales, principalmente porque en la actualidad se evidencian los resultados del incremento en la transformación y dominancia de una matriz transformada, en donde las coberturas dominante corresponden a sistemas productivos (columnas de escenario actual de la (**Tabla 5.108**).

De los parches resultantes en el escenario con proyecto (columnas de escenario con intervención de la **Tabla 5.108**, se mantienen dos (2) parches con CP=1 para la cobertura de Bosques naturales, nueve (9) para Vegetación secundaria alta y cinco (5) para Vegetación secundaria baja, lo que evidencia que a pesar de la intervención generada las coberturas se mantendrán de manera similar en cuanto al contexto paisajístico actual. De otra parte la cobertura que cuenta con un menor contexto paisajístico corresponde a la vegetación secundaria con dos (2) parches con CP>0,2 para ambos escenarios analizados, que evidencia que en términos generales la intervención relacionada con el proyecto no generará cambios significativos en el patrón de distribución espacial de las coberturas.

Versión 1 – agosto de 2018.

De los parches resultantes, la cobertura que mayor contexto paisajístico presenta es la Vegetación secundaria baja (valor máximo de 0,64), aunque también cuenta con parches con CP=0, disminuyendo el promedio de conectividad. De otra parte, la cobertura que cuenta con un menor contexto paisajístico corresponde a los Herbazales abiertos rocosos pues únicamente se identificó un parche de esta cobertura en el área de influencia. Igualmente se observó que los bosques naturales presentan bajos índices de conectividad, presentando una tendencia al aumento de la fragmentación en el mediano y largo plazo.

En la **Tabla 5.108** se muestran los resultados de la métrica de contexto paisajístico para los Bosques naturales (que agrupa las coberturas de Bosques riparios y Bosque denso altoandino) y la vegetación secundaria alta y baja con su respectiva área para ambos escenarios analizados (actual y con proyecto).

Tabla 5.108 Contexto paisajístico identificado para los parches de vegetación natural

	Escenario act	ual (2017)	Escenario con intervención			
N°	FRAGMENTO DE COBERTURA NATURAL	CONTEXTO PAISAJÍSTICO	ÁREA (HA)	FRAGMENTO DE COBERTURA NATURAL	CONTEXTO PAISAJÍSTICO	ÁREA (HA)
1	Bosques naturales	1.00	0.01	Bosques naturales	1.00	1.84
2	Bosques naturales	0.71	0.65	Bosques naturales	0.93	0.75
3	Bosques naturales	0.48	4.46			
4	Bosques naturales	1.00	0.64			
5	Bosques naturales	0.62	1.76			
6	Bosques naturales	0.87	0.35			
7	Bosques naturales	0.93	1.12			
8	Bosques naturales	0.73	27.31	Bosques naturales	0.78	12.44
9	Bosques naturales	0.78	39.87	Bosques naturales	0.65	17.56
10	Bosques naturales	1.00	1.20	Bosques naturales	1.00	0.56
11	Bosques naturales	0.71	1.32	Bosques naturales	0.92	5.32
12	Bosques naturales	1.00	8.24	Bosques naturales	0.73	0.09
13	Bosques naturales	0.65	3.10	Bosques naturales	0.83	0.15
14	Bosques naturales	0.92	1.04	Bosques naturales	0.74	0.01
15	Bosques naturales	0.79	6.34			
16	Bosques naturales	0.83	4.85			
17	Bosques naturales	0.59	3.35			
18	Bosques naturales	0.74	3.19			
19	Bosques naturales	0.67	1.11			
20	Bosques naturales	0.62	3.10			
21	Bosques naturales	0.63	2.33			
22	Bosques naturales	0.96	1.25			
23	Vegetación secundaria alta	0.69	2.48	Vegetación secundaria alta	0.90	2.43
24	Vegetación secundaria alta	1.00	0.00	Vegetación secundaria alta	0.69	1.78
25	Vegetación secundaria alta	0.90	0.07	Vegetación secundaria alta	1.00	0.35
26	Vegetación secundaria alta	1.00	2.16	Vegetación secundaria alta	1.00	0.64
27	Vegetación secundaria alta	1.00	2.06	Vegetación secundaria alta	1.00	1.62
28	Vegetación secundaria alta	1.00	4.96	Vegetación secundaria alta	1.00	5.36
29	Vegetación secundaria alta	0.90	1.27	Vegetación secundaria alta	1.00	3.30
30	Vegetación secundaria alta	0.69	0.57			
31	Vegetación secundaria alta	1.00	0.92			
32	Vegetación secundaria alta	0.68	4.52	Vegetación secundaria alta	0.41	0.42
33	Vegetación secundaria alta	0.71	15.00	Vegetación secundaria alta	1.00	0.15
34	Vegetación secundaria alta	0.39	26.79	Vegetación secundaria alta	0.43	0.39

CSH-1-AM-AM-EIA-G-0007-0

ESTUDIO DE IMPACTO AMBIENTAL PARA LA CONSTRUCCIÓN DE LA DOBLE CALZADA RUMICHACA – PASTO, TRAMO SAN JUAN – PEDREGAL, CONTRATO DE CONCESIÓN BAJO EL ESQUEMA APP N° 15 DE 2015

	Escenario act	ual (2017)	Escenario con intervención			
N°	FRAGMENTO DE COBERTURA	CONTEXTO	ÁREA	FRAGMENTO DE COBERTURA	CONTEXTO	ÁREA
IN	NATURAL	PAISAJÍSTICO	(HA)	NATURAL	PAISAJÍSTICO	(HA)
35	Vegetación secundaria alta	1.00	2.56	Vegetación secundaria alta	0.16	0.04
36	Vegetación secundaria alta	1.00	1.14	Vegetación secundaria alta	0.68	0.14
37	Vegetación secundaria alta	0.41	1.05	Vegetación secundaria alta	1.00	2.62
38	Vegetación secundaria alta	0.69	20.17	Vegetación secundaria alta	0.71	0.57
39	Vegetación secundaria alta	1.00	1.91	Vegetación secundaria alta	0.45	2.62
40	Vegetación secundaria alta	0.16	2.15	Vegetación secundaria alta	0.39	5.16
41	Vegetación secundaria alta	1.00	2.07	Vegetación secundaria alta	0.94	0.27
42	Vegetación secundaria alta	0.45	3.94	Vegetación secundaria alta	0.93	0.30
43	Vegetación secundaria alta	0.92	2.20	Vegetación secundaria alta	0.80	1.80
44	Vegetación secundaria alta	0.94	1.28	Vegetación secundaria alta	0.71	1.02
45	Vegetación secundaria alta	0.93	1.25	Vegetación secundaria alta	1.00	0.25
46	Vegetación secundaria alta	0.62	0.63	Vegetación secundaria alta	0.85	0.32
47	Vegetación secundaria alta	0.71	15.18	Vegetación secundaria alta	0.77	1.10
48	Vegetación secundaria alta	0.43	14.22	Vegetación secundaria alta	1.00	3.44
49	Vegetación secundaria alta	1.00	2.67			
50	Vegetación secundaria alta	0.76	0.74			
51	Vegetación secundaria alta	0.85	0.64			
52	Vegetación secundaria alta	0.77	3.13			
53	Vegetación secundaria alta	0.69	0.75			
54	Vegetación secundaria alta	0.65	1.78			
55	Vegetación secundaria alta	1.00	0.16			
56	Vegetación secundaria alta	0.56	1.29			
57	Vegetación secundaria alta	0.87	12.39			
58	Vegetación secundaria baja	0.75	0.08	Vegetación secundaria baja	0.71	0.16
59	Vegetación secundaria baja	0.72	1.35	Vegetación secundaria baja	0.77	0.92
60	Vegetación secundaria baja	0.99	1.65	Vegetación secundaria baja	0.72	0.09
61	Vegetación secundaria baja	0.35	5.45	Vegetación secundaria baja	1.00	0.26
62	Vegetación secundaria baja	1.00	0.37	Vegetación secundaria baja	0.85	18.18
63	Vegetación secundaria baja	0.42	0.34	Vegetación secundaria baja	0.61	0.70
64	Vegetación secundaria baja	0.71	3.09	Vegetación secundaria baja	1.00	0.65
65	Vegetación secundaria baja	0.77	0.80	Vegetación secundaria baja	0.73	0.26
66	Vegetación secundaria baja	0.52	2.43	Vegetación secundaria baja	0.91	0.73
67	Vegetación secundaria baja	0.51	4.66	Vegetación secundaria baja	0.54	0.25
68	Vegetación secundaria baja	0.33	6.39	Vegetación secundaria baja	0.33	5.06
69	Vegetación secundaria baja	0.96	8.47	Vegetación secundaria baja	0.25	0.16
70	Vegetación secundaria baja	0.85	16.62	Vegetación secundaria baja	0.21	1.59
71	Vegetación secundaria baja	0.82	25.09	Vegetación secundaria baja	0.38	0.33
72	Vegetación secundaria baja	1.00	0.28	Vegetación secundaria baja	0.86	0.84
73	Vegetación secundaria baja	0.65	0.45	Vegetación secundaria baja	0.15	0.31
74	Vegetación secundaria baja	0.34	1.53	Vegetación secundaria baja	0.48	1.37
75	Vegetación secundaria baja	0.96	2.75	Vegetación secundaria baja	0.96	21.50
76	Vegetación secundaria baja	0.21	0.64	Vegetación secundaria baja	0.59	0.81
77	Vegetación secundaria baja	0.54	1.00	Vegetación secundaria baja	1.00	0.83
78	Vegetación secundaria baja	0.25	0.54	Vegetación secundaria baja	0.92	3.43
79	Vegetación secundaria baja	0.38	12.85	Vegetación secundaria baja	0.85	1.25
80	Vegetación secundaria baja	0.15	3.85	Vegetación secundaria baja	0.98	1.63
81	Vegetación secundaria baja	0.61	6.38	Vegetación secundaria baja	0.81	3.05
82	Vegetación secundaria baja	0.59	10.94	Vegetación secundaria baja	0.73	0.69
83	Vegetación secundaria baja	0.48	1.61	Vegetación secundaria baja	0.92	3.99

Versión 1 – agosto de 2018.

	Escenario act	ual (2017)	Escenario con intervención			
N°	FRAGMENTO DE COBERTURA	CONTEXTO	ÁREA	FRAGMENTO DE COBERTURA	CONTEXTO	ÁREA
IN	NATURAL	PAISAJÍSTICO	(HA)	NATURAL	PAISAJÍSTICO	(HA)
84	Vegetación secundaria baja	0.98	0.71	Vegetación secundaria baja	0.54	4.95
85	Vegetación secundaria baja	0.69	0.84	Vegetación secundaria baja	0.94	0.51
86	Vegetación secundaria baja	0.81	6.39	Vegetación secundaria baja	0.78	4.55
87	Vegetación secundaria baja	0.73	1.39	Vegetación secundaria baja	0.93	0.55
88	Vegetación secundaria baja	0.47	15.08	Vegetación secundaria baja	0.65	0.52
89	Vegetación secundaria baja	0.99	0.89	Vegetación secundaria baja	1.00	3.71
90	Vegetación secundaria baja	0.54	2.22	Vegetación secundaria baja	0.83	6.27
91	Vegetación secundaria baja	0.78	4.24	Vegetación secundaria baja	1.00	2.22
92	Vegetación secundaria baja	0.73	0.35	Vegetación secundaria baja	0.82	0.80
93	Vegetación secundaria baja	0.90	0.89	Vegetación secundaria baja	1.00	3.27
94	Vegetación secundaria baja	0.65	2.46	Vegetación secundaria baja	0.88	0.63
95	Vegetación secundaria baja	0.64	2.14	Vegetación secundaria baja	0.99	0.52
96	Vegetación secundaria baja	1.00	1.00	Vegetación secundaria baja	0.94	0.92
97	Vegetación secundaria baja	0.99	0.95	Vegetación secundaria baja	0.90	3.33
98	Vegetación secundaria baja	0.83	6.08			
99	Vegetación secundaria baja	1.00	0.48			
100	Vegetación secundaria baja	1.00	1.26			
101	Vegetación secundaria baja	0.51	3.84			
102	Vegetación secundaria baja	0.88	2.27			
103	Vegetación secundaria baja	0.83	2.46			
104	Vegetación secundaria baja	0.61	6.18			
105	Vegetación secundaria baja	0.99	7.24			
106	Vegetación secundaria baja	0.52	21.76			
107	Vegetación secundaria baja	0.67	4.24			
108	Vegetación secundaria baja	1.00	2.60			
109	Vegetación secundaria baja	1.00	0.80			
110	Vegetación secundaria baja	0.51	2.88			
111	Vegetación secundaria baja	0.61	0.01			
112	Vegetación secundaria baja	0.90	0.15			
113	Vegetación secundaria baja	0.70	5.69			
114	Vegetación secundaria baja	0.94	8.09			
115	Vegetación secundaria baja	0.73	1.08			
116	Vegetación secundaria baja	0.49	1.17			
117	Vegetación secundaria baja	0.66	6.51			
118	Vegetación secundaria baja	0.66	1.91			
119	Vegetación secundaria baja	0.96	4.11			

Fuente: GEOCOL CONSULTORES S.A., 2017

Por último, cabe mencionar que los valores de contexto paisajístico pueden estar fuertemente influenciados por el hecho de que tanto el área de influencia del proyecto como el área de intervención tienen forma alongada, lo que puede incidir en el radio de búsqueda de parches cercanos al analizar cada parche de cobertura natural identificado para el área de influencia, lo que explica que hayan pocos parches con valores de CP=1, evidenciando una conectividad moderada. En esta medida se esperaría que al ampliar el área de análisis se presentaran mayores valores de CP, lo que podría dar una lectura más clara de los patrones de conectividad en el paisaje donde se encuentra inmersa el área de influencia analizada.

CSH-1-AM-AM-EIA-G-0007-0 Versión 1 – agosto de 2018.

Versión 1 – agosto de 2018.

BIBLIOGRAFÍA

- SINCHI, MADRS. (2006). Libro Rojo de Plantas de Colombia Especies Maderables Amenazadas I Parte. Bogotá D.C.
- CORPONARIÑO. (2007). PGOF Plan General de Ordenacion Forestal del Departamento de Nariño. Pasto, Nariño.
- CORPONARIÑO. (2009). Plan de Ordenamiento y Manejo de la Cuenca Hidrográfica del Rio Guaitara. Pasto.
- CORPONARIÑO. (2009). Plan de Ordenamiento y Manejo de la Cuenca Hidrográfica del Rio Guaitara. Pasto.
- IAvH, I. (2003). Convenio de las Naciones Unidas sobre Diversidad Biologica (Ley 165 de 1994) y Protocolo de Cartagena sobre Seguridad en la Biotecnologia. Bogotá, D.C.
- IDEAM. (2010). Leyenda Nacional de Coberturas de la Tierra. Metodología CONRINE LandCover adaptada para Colombia Escala 1:100.000. Bogota, Colombia: Instituto de Hidrología, Meteorología y Estudios Ambientales.
- IDEAM, IGAC, IAvH, Invemar, I.Sinchi e IIAP. (2007). *Ecosistemas continentales, costeros y marinos de Colombia*. Bogotá D.C.: Instituto de Hidrología, Meteorología y Estudios Ambientales, Instituto Geográfico Agustín Codazzi, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Instituto de Investigaciones Ambientales del Pacífico Jhon von Neumann, Institut.
- IDEAM, IGAC, IAvH, Invemar, I.Sinchi e IIAP. (2007). *Ecosistemas continentales, costeros y marinos de Colombia*. Bogotá D.C.: Instituto de Hidrología, Meteorología y Estudios Ambientales, Instituto Geográfico Agustín Codazzi, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Instituto de Investigaciones Ambientales del Pacífico Jhon von Neumann, Institut.
- IDEAM, IGAC, IAvH, Invemar, I.Sinchi e IIAP. (2017). *Ecosistemas continentales, costeros y marinos de Colombia Escala 1:100.000.* Bogotá: Instituto de Hidrología, Meteorología y Estudios Ambientales, Instituto Geográfico Agustín Codazzi, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Instituto de Investigaciones Ambientales del Pacífico Jhon von Neumann.
- IDEAM., I. I. (2007). Ecosistemas Continentales, Costeros y Marinos de Colombia. Bogotá:s.n.
- Latorre, J. (2005). Biodiversidad y Conservacion en los Paerques Nacionales Naturales de Colombia. Bogotá D.C.
- Municipio de Contadero. (2001-2003). Esquema de Ordenamiento Territorial. COntadero.
- Municipio de Iles. (2003-2012). Esquema de Ordenamiento Territorial. Iles.
- Muños, J. e. (2004). El laurel de Cera una especie promisoria de los Andes. Quito Ecuador: SOBOC Grafic
- Muñoz, J., & Luna, C. (1999). Guía para el cultivo, aprovechamiento y conservación de Laurel de cera (Myrica pubescens H& B ex. Willdenow). *Convenio Andrés Bello, Serie Ciencia y Tecnología, No 76*, 48.
- Rangel-Ch. (2000). Tipos de Vegetación en Colombia. Colombia Diversidad Biótica III La región de vida paramuna. Universidad Nacional de Colombia- Instituto de Ciencias Naturales, Instituto de Investigación en Recursos Biológicos Alexander von Humboldt.
- Sánchez-Pérez, B., Castillo-Acosta, O., & Cámara-Cabrales, L. (2011). Regeneración natural de la selva alta perennifolia en el parque estatal Agua Blanca, Macuspana, Tabasco, México. *Polibotánica*, *32*, 63-88.

